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Abstract—We consider a system consisting of ' parallel queues,
served by one server. Time is slotted, and the server serves one of
the queues in each time slot, according to some scheduling policy.
We first characterize the exponent of the buffer overflow proba-
bility and the most likely overflow trajectories under the Longest
Queue First (LQF) scheduling policy. Under statistically identical
arrivals to each queue, we show that the buffer overflow exponents
can be simply expressed in terms of the total system occupancy
exponent of m parallel queues, for some m < N. We next turn
our attention to the rate of queue length information needed to op-
erate a scheduling policy, and its relationship to the buffer over-
flow exponents. It is known that queue length blind policies such as
processor sharing and random scheduling perform worse than the
queue aware LQF policy, when it comes to buffer overflow prob-
ability. However, we show that the overflow exponent of the LQF
policy can be preserved with arbitrarily infrequent queue length
updates.

Index Terms—Buffer overflow probability, large deviations,
queue length-based scheduling.

I. INTRODUCTION

CHEDULING is an essential component of any queueing

system where the server resources need to be shared be-
tween many queues. Perhaps the most basic requirement of a
scheduling algorithm is to ensure the stability of all queues in
the system, whenever feasible. Much research work has been
reported on “throughput optimal” scheduling algorithms that
achieve stability over the entire capacity region of a network
[11], [16]. While stability is an important and necessary first-
order metric, most practical queueing systems have more strin-
gent quality of service requirements.

In this paper, we consider a system consisting of /V parallel
queues and a single server. A scheduling policy decides which
of the queues gets service in each time slot. Our aim is to better
understand the relationship between the amount of queue length
information required to operate a scheduling policy and the cor-
responding buffer overflow probability. The scheduling deci-
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sions may take into account the current queue lengths in the
system, in which case we will call the policy “queue aware.”
If the scheduling decisions do not depend on the current queue
lengths, except to the extent of knowing whether or not a queue
is empty, we will call it a “queue-blind” scheduling policy.

We analyze the buffer overflow probability of the widely
studied Longest Queue First (LQF) policy in the large-buffer
regime. We assume that the queues are fed by statistically iden-
tical arrival processes. Under such a symmetric traffic pattern,
we show that the large deviation exponent of the buffer over-
flow probability under LQF scheduling is expressible purely in
terms of the total system occupancy exponent of an m queue
system, where m < N is determined by the input statistics.
We also characterize the most likely overflow trajectories and
show that there are at most N possible overflow modes that
dominate.

Although any work-conserving policy [such as LQF, pro-
cessor sharing (PS) or random scheduling (RS)] will achieve
the same throughput region and total system occupancy dis-
tribution, the LQF policy outperforms queue-blind policies in
terms of the buffer overflow probability. Equivalently, this im-
plies that the buffer requirements are lower under LQF sched-
uling than under queue-blind scheduling, if we want to achieve
a given overflow probability. For example, our study indicates
that under Bernoulli and Poisson traffic, the buffer size required
under LQF scheduling is only about 55% of that required under
RS, when the traffic is relatively heavy. On the other hand, with
LQF scheduling, the scheduler needs queue length information
in every time slot, which leads to a significant amount of control
signaling. Motivated by this, we identify a “hybrid” scheduling
policy, which achieves the same buffer overflow exponent as
the LQF policy, with arbitrarily infrequent queue length infor-
mation.

A. Related Work

To our knowledge, Bertsimas et al. [1] were among the
first to analyze the large deviations behavior of scheduling
policies in parallel queues. They consider the case of two
parallel queues and characterize the buffer overflow exponents
under two important service disciplines, namely generalized
processor sharing (GPS) and generalized LQF. We also refer to
the related papers [12], [20], [22], where the authors analyze
a system of parallel queues, with deterministic arrivals and
time-varying connectivity. For a survey of asymptotics under
PS, see [3].

Stolyar and Ramanan [14] study large deviations for the
largest weighted delay first policy and prove the optimality
of the exponent of the weighted delay under that policy. The
single-node result was later generalized to a multiclass model
with fixed routes in [13]. In a very similar spirit and setting,
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Fig. 1. N parallel queues served by one server.

Venkataramanan et al. [21] deal with large deviations of total
end-to-end buffer overflow probability. Subramanian [15]
derives large deviations of max-weight scheduling for general
convex rate regions, rather than the simplex rate regions in [13]
and [14]. In each case, the optimal exponent and the most likely
overflow trajectory are obtainable by solving a variational
control problem. In many cases, the optimal solution to the
variational problem can be found by solving a finite-dimen-
sional optimal control problem [1], [14], [15]. In [18] and
[19], an interesting link is established between large deviation
optimality and Lyapunov drift minimizing scheduling policies.

The rest of this paper is organized as follows. In Section II, we
present the system description, and some preliminaries on large
deviations. Our characterization of the large deviation behavior
of LQF scheduling is presented in Section III. Section IV com-
pares LQF scheduling to queue-blind scheduling in terms of the
overflow probability and buffer scaling. In Section V, we study
scheduling with infrequent queue length information. A shorter
version of this paper appeared in [8].

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Fig. 1 depicts a system consisting of N parallel queues,
served by one server. We assume that time is slotted, and the
server is capable of serving one packet per slot. Within each
queue, packets are served on a first come, first served basis. Ar-
rivals occur according to a random process 4;[t],i =1,..., N,
which denotes the number of packets that arrive at queue i
during slot . The arrivals to the different queues are indepen-
dent. We assume a symmetric traffic pattern, i.e., the arrival
processes to each queue are statistically identical to each other.
For simplicity, let us also assume that the arrivals are indepen-
dent across time slots. The average arrival rate to a queue is
E [4;[t]] = A packets/slot for each i. For stability, we assume
that the condition A < % is satisfied. Let us also define

ta

Ailt1,t2] = Z A7),

T=t

ty <ia

as the number of arrivals to queue ¢ between time slots 71 to 5.
The queue evolution equation is given by

Q:[t + 1] = max(0, Q;[t] + A:[t] — Si[t]),

where S;[t] denotes the service allocated to queue 4 during slot
t.

The log-moment generating function of the input process to
each queue, defined by

A(F) = log E [exp(84;]1])]
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is assumed to exist for each § > 0. The convex dual of A(f) is

defined by
A"(x) = sup[fz — A(6)].
0

It is well known from the strong law of large numbers that
the sequence of empirical means A;[1,n]/n, n € N converges
almost surely to A. Cramér’s theorem [6, Th. 1.3] shows that the
sequence of empirical means satisfies an LDP with rate function
A*(-) on the real line. Specifically, for any set G C R with
interior G° and closure G, we have

1 AL,
— inf A"(z) <liminf — log[FD{ [1. 7] c G}
veae n—oo M n
1 Aill, -
< limsup —logP {M € G} < — inf A*(z).
n—oo I n el

Intuitively of course, this implies that the probability of the
sample mean deviating from A decays exponentially in 7, where
the rate of decay is given by A*(-).

Next, let us consider the sample paths of the sequence of par-
tial sums process

AN = DA, L], e [0.1] )

In effect, we have scaled both time and vertical axes by n,
and embedded the arrival sequence into cadlag functions (i.e.,
right-continuous functions with left limits) on the interval [0, 1].
Again, for the sequence of processes A?(t), n € N, a func-
tional strong law of large numbers can be shown to hold. That
is, the sequence A (%), n € N converges almost surely to the
deterministic process At, t € [0, 1], on the space of cadladg func-
tions endowed with the supremum norm; see [7, Th. 4].

Analogously to Cramér’s theorem, we may expect a large
deviation bound on the probability that the sequence of sample
paths deviates from the almost sure limit A#, ¢ € [0,1]. Such
a result does exist, although a precise formulation of such
an LDP requires defining a suitable topology on the space of
cadlag functions on [0, 1]. A sample path LDP for the partial
sums process, first shown by Varadhan [17], uses the supremum
norm topology, while subsequent generalizations work with the
Skorokhod topology [2], [9], [10]. In particular, the sequence
A?(-), n € N, satisfies an LDP on the space of cadldg func-
tions on [0, 1] equipped with the supremum norm, with rate
function given by

Ha(t) = [ A% (@) G)

if a(t) is absolutely continuous and a(0) = 0. If not, the rate
function is infinite [5, Th. 5.1.2].

A sample path LDP of the form given in (3) may be satisfied
under more general conditions than independent and identically
distributed (i.i.d.) arrivals in each time slot. In [4, Th. 5], general
mixing conditions for a stationary increment sequence to satisfy
a sample path LDP of the form in (3) are derived. Although we
have assumed i.i.d. arrivals for simplicity, all we really need is
the arrival process to satisfy an LDP with rate function 7(-),
along with the scaling condition

1
lim —A*(z) = <.

r—oo o
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In the i.i.d. case, the above scaling condition is implied by our
assumption that A(8) < oo for each § > 0.

We are interested in the steady-state probability of a buffer
overflow in the large-buffer regime, under a given scheduling
policy II. Let us denote the overflow limit by M. More specif-
ically, we are interested in the exponent of the overflow proba-
bility under the large-buffer scaling, which is defined! as

M 1=1,..., I

EL = liinoo —% logP { max Q0] > M} )]
where );[0] denotes the steady-state queue length, assuming the
system has been running for a long time. We emphasize that this
exponent depends on the scheduling policy II, as well as the
system size /V and the input statistics. We also define the expo-
nent corresponding to the total system occupancy exceeding a
certain limit:

N
1 ,
Oy = lim ——logP Q:0] > . 5
v = Jim - log {E 2[]_Q} ®)

i=1

As we shall see, the system occupancy exponent in (5) plays
an important role in our analysis of the buffer overflow ex-
ponent (4) under the LQF policy. The limit in (5) is well de-
fined for all work-conserving policies. Indeed, the following
well-known lemma asserts that © y is the same for all work-con-
serving scheduling policies.

Lemma 1: All work-conserving policies achieve the same
steady-state system occupancy distribution and, hence, the same
system exponent © .

In fact, the above result holds at a sample-path level, since
one packet would leave the system every time slot if the system
is not empty, under any work-conserving policy.

We first analyze the LQF scheduling policy, which, as the
name implies, serves the longest queue in each slot, with an ar-
bitrary tie-breaking rule. We also consider two other work-con-
serving policies: RS, which serves a random occupied queue
in each slot (each with equal probability), and PS, which di-
vides the server capacity equally between all occupied queues.
Note that LQF scheduling is queue-aware, while RS and PS are
queue-blind.

III. BUFFER OVERFLOW PROBABILITY UNDER LQF
SCHEDULING

In this section, we present our main results regarding the
buffer overflow exponents and trajectories under LQF sched-
uling. We begin by characterizing the system occupancy expo-
nent O for a work-conserving policy.

Proposition 1: Under any work-conserving policy, the
system occupancy exponent is given by

1, 1
(")j\] = ;I;f(‘) Ez\ (LL + N) (6)

Proof (Outline): The result is a consequence of the fact
that the total system occupancy distribution is the same as the
queue length distribution of a single queue, served by the same

IThe limit in (4) may not exist for an arbitrary policy IT. Thus, to be precise,
one should consider the corresponding lim inf and lim sup, which always exist
as long as the overflow event is measurable under policy II.
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server, but fed by the sum process ), A;(#). Since the input pro-
cesses to the different queues are i.i.d., the log-moment gener-
ating function of the sum process is N A(6). Next, from the def-
inition of the convex dual, the rate function of the sum process
can be expressed as NA*(x/N). Once the rate function of the
input process is known, the overflow exponent of a single-server
queue can be easily computed. In particular, the result is a simple
consequence of [6, Th. 1.4]. O

We now define scaled processes for the arrivals and queue
lengths, which are often used to study sample path large devia-
tions in the large-buffer regime. For every sample path that leads
to a buffer overflow at time slot 0, there exists a time —n < 0 for
which all queues are empty. Since we are interested in large M
asymptotics, we let T' = %, and define the sequence of scaled
queue length processes

(A’I)(t)zwﬁ @:1,

o N, )

?

These are cadlag functions defined on the interval [T, 0]. Sim-
ilarly, we define a scaled version of the cumulative arrival pro-
cesses?

A [-MT, | Mt]]

A1y = o ,

te[-T,0].
The initial condition implies that ¢;(—T") = 0,4 < N. Under
the above scaling, ¢;(0) > 1 corresponds to the overflow of
queue ¢ at time 0.

Analogously to (3), we assume that the sequence A,gM)(t)
satisfies an LDP in the space of cadldg functions on [—T, 0]
endowed with the uniform topology, with rate function given

by

Ir(ai(t)) = / A (a(8))dt, ®)

J =T

when a(t) is absolutely continuous and a(—7") = 0. The rate
function is infinite otherwise. In (8), z;(#) is the almost ev-
erywhere derivative of the absolutely continuous function a;(#)
and, hence, has the interpretation of the empirical rate of the
arrival process to queue i. In particular, the assumption that
AEM) (t) satisfies an LDP is automatically satisfied for i.i.d. ar-
rivals as discussed earlier.

Next, in order to specify the queue evolution under LQF
scheduling, let us partition Hl as follows. Let Z be any
nonempty subset of {1,2,...,N}. We define Rz such that
k¢ I, j € I, q, < g. Intuitively, in region Rz, the
queues in the index set Z evolve together, and all other
queues are smaller. For example, in the case N = 2, the
positive quadrant is partitioned into three regions, namely
Ri = {{q1.92) |1 > 2}, R2 = {(q1.92) |g2 > @1 }, and
Ri2 = {(¢1,92) g1 = g2 }. It is clear that the regions Ry are
convex and constitute a partition of Rl as 7 ranges over all
nonempty index sets.

2This is an abuse of notation when compared to (2). We define these processes
in the interval [—T', 0] instead of [0, 1] in order to study an overflow event at
time 0.
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When the vector of scaled queue lengths (7) lies in the region
'Rz, the evolution relation is given by

qu(t) = Z.’L‘i(t) —1;
i€ i€T

(.}k’(t) :ka:(t)7 Vk ¢ I, 9)

where the dotted quantities denote derivatives.3

We now state the main result regarding the large deviations
behavior of LQF scheduling. The result states that the expo-
nent under LQF scheduling is expressible purely in terms of the
system occupancy exponents. Recall from Proposition 1 that the
system occupancy exponent of j parallel queues is given by

1 1
0; = inf —A"(a+ ). (10)
J

a>0 @

Define aj to be the optimizing value of @ in (10). Let us define
the candidate index set Z* C {1,2,..., N}, as

T*={j|1<j<N,a;>A}U{N} (11)
We remark that Z* consists of only those indices j < N — 1 for
which the likeliest overflow rate (LT exceeds the arrival rate A;
however, 7* always includes the index /V regardless of the value
of a%;. The interpretation of this will be clear once the likeliest
overflow trajectories predicted by Theorem 1 are understood.

Theorem 1: Under independent and statistically identical ar-
rival processes to each queue, the large deviation behavior of
buffer overflow under LQF scheduling is given as follows:

i) The exponent is given by
£y = min jo,. (12)
where 0 is the system occupancy exponent for j parallel
queues, given by (10).

ii) For a given A, suppose that a unique & < N minimizes
(12). If £ < N, the most likely overflow event consists
of k& queues reaching overflow, and the remaining queues
growing to O(M) without overflowing. If k& = N, the
most likely overflow event consists of all queues reaching
overflow together.

The proof of the theorem involves invoking an LDP for the
queue length process, and solving a variational problem to ob-
tain the rate function. We relegate the proof to Appendix A and
discuss the result intuitively.

The first part of the theorem states that the buffer overflow ex-
ponent under LQF scheduling is only a function of the system
occupancy exponent ©; of a system with j parallel queues,
where 7 € 7*. The candidate index set Z7* consists of all 5 for
which ¢% > A for j < N — 1, and always includes N. The

J
second part of the theorem asserts that if E}\?QF equals £Oy, for

a unique k£ < N, then the most likely overflow scenario con-
sists of k£ queues overflowing, and the other N — k queues grow
approximately to M ai , which is less than M. In particular, the
queues that do not overflow are never the longest and, hence, get
no service. The service is shared equally among the £ queues

3We use the notation of derivative for simplicity of notation, although the
derivatives may not exist everywhere. Strictly speaking, we ought to write down
these equations with integrals, as shown in [1].

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

that overflow, and a}, denotes the most likely rate at which the
k queues overflow, in spite of getting all the service. On the
other hand, the queues that do not overflow get to keep all their
arrivals, which occur at the average rate A. The exponent for
this case is given by k©,, which corresponds to all the queues
in a k-queue system overflowing together. This is because the
N — k queues which do not get service receive arrivals at the
average rate, and hence do not contribute to the exponent. Fi-
nally, if § = N minimizes (12), then all queues reach overflow
together, while growing at rate a5, . In this case, note that there is
no restriction on e, which explains why /V is always included
in the candidate index set Z*.

A. llustrative Examples With Bernoulli Traffic

In this section, we obtain the LQF exponents explicitly for
a system with symmetric Bernoulli inputs to each queue. We
deal with N = 2 and N = 3, since these cases are easily
visualized and elucidate the nature of the solution particularly
well. We begin by making the following elementary observation
regarding LQF scheduling and Bernoulli arrivals

Proposition 2: Under Bernoulli arrivals and LQF scheduling,
the system evolves such that the two longest queues never differ
by more than two packets.

Next, we state a well-known result regarding the rate function
A* (-} for a Bernoulli process.

Proposition 3: ForaBernoulli process of rate A, the rate func-
tion is given by

1—=

1=

A*(z) = D(z||\) := zlog ; +(1-=)log

where D(z||A) is the Kullback—Liebler divergence (or the rela-
tive entropy) between x and A.

The result is a consequence of Sanov’s theorem for finite al-
phabet [6, Th. 2.9].

Let us now consider a two-queue system with Bernoulli
arrivals. For this simple system, it turns out that the exponent
can be computed from first principles, without resorting to
sample path large deviations. First, the system exponent ©5
under Bernoulli arrivals can be computed either from (6), or
directly from the system occupancy Markov chain, yielding

1—A
Oy =2log ———.

The overflow behavior under LQF scheduling is derived from
first principles in the following proposition.
Proposition 4: Under LQF scheduling and Bernoulli arrivals,
the following statements hold for the case N = 2:
1) The most likely overflow trajectory is along the diagonal,
(Q1 = (J2)
iy BFQF = 20, = 410 152
Proof: Part (i) of the result is a simple consequence of
Proposition 2. Specifically, suppose that one of the queues (say
(21) overflows, so that ); > M. From Proposition 2, it follows
that Q2 > M — 2. Thus, when an overflow occurs in one queue,
the other queue is also about to overflow, so that the only pos-
sible (and thus the most likely) overflow trajectory is along the
diagonal.
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In order to show part (ii), we first argue that E;} QF > 205.
Indeed, when a buffer overflow occurs, the total system occu-
pancy is at least 20/ — 2. Thus, the buffer overflow probability is
upper-bounded by the probability of the total system occupancy
being at least 2M — 2:

P{Q:1 > M} <P{Q1+ Q2 >2M —2}.

We thus have,

LQF . 1
P2 Ly logP {Q1 = M}

M—oo

1
> lim —MlogP{Ql + Q2 > 2M — 2} = 20,,

where the last equality follows from the definition of ©5.

To show a matching upper bound, note that when the system
occupancy is 2M or greater, at least one of the queues will nec-
essarily overflow. Thus,

P{Q1+ Q2 >2M} <P {max(@1,Q2) > M}.
We can then argue as above that Eg’ QF < 205, O

Let us now analyze a system with three queues, fed by sym-
metric Bernoulli traffic. In this case, although the longest two
queues grow together, it is not immediately clear how the third
queue behaves during overflow. As before, the system occu-
pancy exponent ©3 can be obtained from (6) or directly from
the Markov chain to yield

24
(B-2C)+ /(B —20C)2 +41AC

O3 = log

where A = (1 — )3, B =3A%,and C = A3,

Let us use Theorem 1 to calculate the desired overflow ex-
ponent. Note first that ©; is infinite in this case, since a single
queue fed by Bernoulli inputs cannot overflow. Next, to decide
whether or not 2 is a candidate index for a given A, we see by di-
rect computation that a3 = 1/2— A. Thus, 2 is a candidate index
only for A < 1/4. Therefore, the exponent is min(26s, 303)
for A < 1/4, and 303 for A > 1/4.

Fig. 2 shows a plot of 205 and 3®3 as functions of the input
rate A on each queue. It is clear from the figure that for small
values of A, the exponent 205 dominates the overflow behavior.
In this regime, the most likely manner of overflow involves two
queues reaching overflow, while the third queue grows to ap-
proximately M 1/2% For larger values of A(> 0.07), the ex-
ponent is 303, and all three queues overflow together.

IV. LQF VERSUS QUEUE-BLIND POLICIES

In this section, we compare the performance of LQF sched-
uling with that of queue-blind policies. We only consider a two-
queue system, since the large deviation behavior of PS and RS
is difficult to characterize for N > 2. The following result for
PS follows from [1].
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Fig. 2. Exponent behavior for N = 3 under Bernoulli traffic.

Proposition 5: The buffer overflow exponent for a two-queue
system under PS is given by

PS_ . 1|, 1 L
EPS = inf — |A S+ A (D).
2o = b 7 A e+ )+ A(G)

(13)

The most likely manner of overflow under PS is as follows.
Suppose it is the first queue that overflows. The second queue
receives traffic at rate 1/2, which is also its service rate. Thus,
the second queue does not overflow, and grows to at most o{ M ).
The first queue receives service at rate 1/2 and input traffic at
rate ay, + 1/2, where aj,, optimizes (13). Thus, ay,, is the most
likely rate of overflow of the first queue.

Next, we present the exponent for RS.

Proposition 6: The buffer overflow exponent for a two-queue
system under RS is given by

1
= inf — inf

ERS
a>0 @ $€(0,1)

N{a+1- )+ A0+ D)
(14)

The proof is outlined in Appendix B. We now describe the
most likely overflow event. Suppose queue 1 overflows. The pa-
rameter ¢ that appears in the inner infimization in (14) denotes
the empirical fraction of service received by queue 2. In other
words, the “fair” coin tosses that decide which queue to serve
when both queues are nonempty, “misbehave” statistically. The
exponent corresponding to this event is given by D(¢||%) If
¢* is the optimal value of ¢ in (14), the second queue receives
traffic at rate ¢* and, therefore, grows to an o(M) level. The
first queue receives traffic at rate a;,, + 1 — ¢*, where a, is the
optimizing value of ¢ in (14).

It has been shown that LQF has the best buffer overflow ex-
ponent among a fairly general class of scheduling policies [14].
We, therefore, expect the exponent under LQF scheduling to be
larger than under queue-blind policies. The following result es-
tablishes the order among the overflow exponents for the three
policies considered in this paper.

Proposition 7: 1t holds that E§S < E;S < Eg’QF.

Proof: To see the first inequality E§S < E; S, note that
substituting ¢ = 1/2 into the RS exponent (14) yields the PS
exponent. To prove the second inequality, it suffices to show that
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Fig. 3. Comparison of LQF, PS and RS exponents for a two-queue system,
under (a) Bernoulli arrivals and (b) Poisson arrivals.

EQPS < ©; and EQPS < 20,. First note that for all « > 0, we
have A*(a + 1/2) > A*(1/2) since the input rate A is less than
1/2. Thus, for alla > 0,

At 1/2) 2
a

Q| =

[A*(a+ 1/2) + A*(1/2)].

Taking infimum on both sides, we have E’%) S < 20,. Similarly,
forall @ > 0, it can be shown that A*(a + 1) > A*(a +1/2) +
A*(1/2), using the fact that A*(-) is an increasing convex func-
tion, for arguments greater than A. Dividing the preceding in-
equality by a and taking infimum, it follows that E2P S <0:;.0

In Fig. 3, we plot the exponents corresponding to LQF, PS,
and RS for a two-queue system, as a function of the arrivals
rate A. Fig. 3(a) corresponds to having Bernoulli arrivals in each
time slot, while in Fig. 3(b), the number of arrivals in each slot
is a Poisson random variable. The first observation we make
from Fig. 3 is that, for a given arrival rate, the exponent values
for a given policy are generally larger under Bernoulli traffic.
This is because Poisson arrivals have a larger potential for being
more bursty, and hence, the overflow probability is larger (and
the exponent smaller) for a given average rate. Next, notice that
the LQF exponent under Poisson traffic [see Fig. 3(b)] exhibits
acusp at A = 0.27. This is because under Poisson traffic, we
have two competing exponents &, and 203, corresponding re-
spectively to one queue and both queues overflowing. For A
below the cusp, ©; dominates, and vice-versa. On the other
hand, under Bernoulli traffic, ©; is infinite. Thus, the LQF ex-
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Fig.4. Ratio of LQF exponent to PS and RS exponents for (a) Bernoulli arrivals
and (b) Poisson arrivals.

ponent is given by 205, which is a smooth curve as shown in
Fig. 3(a).

A. Buffer Scaling Comparison

It is well known that large deviation exponents have direct
implications on the buffer size required in order to achieve a cer-
tain low probability of overflow. We now compare LQF sched-
uling with the two queue-blind policies in terms of the buffer
scaling required to guarantee a given overflow probability.

In Fig. 4, we plot the ratio of the LQF exponent to the PS and
RS exponents. This ratio is related to the savings in the buffer
size that one can expect from using LQF scheduling, as opposed
to using one of the queue-blind policies. For example, consider
the ratio of the LQF exponent to the RS exponent, when the
traffic is relatively heavy (say A > 0.3). This is the regime
where overflows are most likely to occur. We see that under both
Bernoulli and Poisson traffic, the LQF exponent is roughly 1.8
times the RS exponent. In the very large-buffer regime, this in-
dicates that in order to achieve a certain order of magnitude of
overflow probability, the LQF policy requires only about 55%
of the buffer size required under RS in heavy traffic. In realistic
scenarios, however, the actual buffer savings may also be af-
fected by pre-exponential terms, which are not captured by the
LD exponents, and must be estimated numerically.

V. SCHEDULING WITH INFREQUENT QUEUE
LENGTH INFORMATION

We have seen that the LQF policy has a superior buffer over-
flow performance compared to queue-blind policies. This is be-
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cause the queue-blind policies cannot discern and mitigate large
build-up on one of the queues, whereas the LQF policy tries to
achieve a more balanced set of queues by serving the longest
queue in each slot. On the other hand, the scheduler needs to
know queue length information in every slot in order to per-
form LQF scheduling. In this section, we will show that the
buffer overflow performance of LQF scheduling can be main-
tained even if we allow for arbitrarily infrequent queue length
information to be conveyed to the scheduler.

The basic idea is that it is sufficient to serve the longest
queue only when the queues are large. When the queue lengths
are all small, we can save on the queue length information
by adopting a work-conserving, but queue-blind scheduling
strategy. To achieve this, we suggest the following scheduling
policy which is a “hybrid” version of the queue-blind RS, and
the LQF policy.

Hybrid Scheduling: Let K < M be a given queue length
threshold. In each slot, if all queues are smaller than K, then
serve any occupied queue at random. If at least one queue ex-
ceeds K, serve the longest queue in that slot.

The following theorem asserts that the hybrid policy achieves
the same buffer overflow exponent as LQF scheduling, while re-
quiring queue length information in a vanishingly small fraction
of slots.

Theorem 2: For the hybrid scheduling policy proposed
above, the following statements hold.

i) The fraction of slots in which queue length information
is required can be made arbitrarily small.

ii) The buffer overflow exponent of hybrid scheduling is

equal to EkQF, as long as K = o(M).

Observe that queue length information is required only in time
slots when the longest queue in the system is longer than K.
Since RS is a stabilizing policy, the steady-state probability that
the longest queue exceeds K approaches zero as K becomes
large. (In fact, this probability goes to zero exponentially in K.)
Therefore, the fraction of slots in which queue length informa-
tion is required can be made arbitrarily small. On the other hand,
the overflow exponent remains the same as in the LQF case. This
is because the hybrid policy differs from LQF scheduling only
in a “small” neighborhood around the origin. We relegate the
proof to Appendix C.

Remarks:

1) Throughout the paper, we have assumed that queue-blind
policies know whether each queue is empty or not empty.
This assumption ensures that the queue-blind policies are
work-conserving. Indeed, it is easy to see that a scheduling
policy which does not have any knowledge about empty
queues will waste some time slots by allocating service to
them.

2) Inorder to better understand the amount of queue length in-
formation required to operate a scheduling policy, consider
a wireless uplink system with multiple users being served
by a base station. To perform LQF scheduling, each user
would have to quantize and encode its own queue length#
and transmit it to the base station, along with the payload.
This would require a variable number of bits per time slot

40r equivalently, the queue length differential from the previous slot.
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depending on the longest queue. Further, since the queue
lengths are unbounded, there is a need for a dynamic quan-
tization scheme that necessitates further coordination be-
tween the nodes and the base station. Thus, LQF sched-
uling leads to significant control overheads. On the other
hand, a single-bit suffices to obtain empty/nonempty in-
formation. In practice, this can be accomplished using an
explicit reservation request packet, or a pilot symbol.

3) Along similar lines, in order to operate the hybrid policy,
the base station can learn that the longest queue in the
system is larger than the threshold K by having each user
transmit a predesignated pilot symbol. After transmitting
the pilot symbol, the subset of users with queue length
greater than K can quantize and encode their queue length
and transmit it to the base station. We have shown that
the fraction of time slots when this queue length signaling
must take place goes to zero under the hybrid policy. The
problem of designing optimal quantization schemes for the
users to report potentially unbounded queue lengths is an
interesting problem for future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the buffer overflow probabilities in a
system of parallel queues, under some well-known scheduling
policies. We showed that under max-weight (or LQF) sched-
uling and symmetric traffic on all the queues, the large devia-
tion exponent of buffer overflow probability is purely a function
of the total system occupancy exponent. We also showed that
queue length blind policies such as PS have a smaller overflow
exponent (and hence larger buffer size requirements) than max-
weight scheduling. Finally, we showed that the superior buffer
overflow performance of LQF policy can be preserved even
under arbitrarily infrequent queue length information. However,
the problem of designing optimal quantization and encoding
schemes for reporting potentially unbounded queue lengths is
an interesting avenue for future work.

APPENDIX

1) Proof of Theorem 1: The proof consists of two parts.
The first part involves showing that the queue length process
under LQF scheduling satisfies an LDP, whose rate function is
given by the solution to a variational problem. The second step
involves solving the variational problem in the case of sym-
metric arrivals and proving that the optimal solution to the vari-
ational problem takes a simple form, as given by the theorem.
The existence of an LDP for the queue length process under
max-weight like policies has been shown under fairly general
conditions. For example, Stolyar and Ramanan [14] derives an
LDP under longest weighted waiting time as well as longest
weighted queue length scheduling. In [15], the LDP is extended
to more general convex rate regions. The LDP for the queue
length process can be shown on the space of cadlag functions
endowed with the uniform topology [14], or on a Skorokhod
space as done in [15]. Once the LDP for the queue length vector
is available, we can obtain the buffer overflow exponent by in-
voking a suitable contraction principle; see, for example, [15,
Corollary 3.1].
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Assuming without loss of generality that the first queue
overflows, the exponent is given by the following variational

problem:
a(t)eAénf . / [Z A*(a ] dt (15)
subject to
q:(—T) = 0,Vi
q1(0) =1,
T : free,

q;(0) : free for j > 1,

and the queue length trajectories ¢;(t) evolve according to (9).
In (15), the minimization is over the set .AC of all absolutely
continuous trajectories such that a(—7") = 0, and x,(?) is the
almost everywhere derivative of a;(t).

We focus on solving the above variational problem under the
symmetric traffic scenario. In (15), the empirical rates x,(t) are
the control variables, and the cost function is the exponent cor-
responding to the control variables, as given by Mogulskii’s the-
orem (8). In words, the variational problem is to find the set of
empirical rates which leads to the smallest exponent, and results
in the overflow of at least one queue. Note that the above is a
free time problem, i.e., the time 7" over which overflow occurs
is not constrained. Also, it is possible for queues other than the
first queue to reach overflow.

An important property which helps us solve (15) is given by
the following lemma, which states that when the queue lengths
are within one of the regions Rz, the empirical rates z;(t) can
be taken as constants, without loss of optimality.

Lemma 2: Fix a time interval [—7}, —75] and consider a
control trajectory z,;(t), = = 1,..., N, ¢t € [-T}, —T5], such
that the fluid limit of the queue lengths ¢;(¢), i = 1,..., N, t €
[—T1, —T>] stay within a particular region Rz. Define the av-
erage control trajectory Z; in the interval [—T4, —T5] as

1 =
T; x;(t)dt
=g |, w0

fori =1,...,N and 7 € [-T1, —T5]. Then, the queue lengths
under the average control trajectory Z; (#) lie entirely within Rz,
and satisfy the same initial and final conditions at # = —7} and
t = —T4, respectively. Furthermore, the cost achieved under
the (constant) control trajectory Z;(#) is not larger than the cost
achieved under x;(t).

Proof: The proof is akin to the 2-D case treated in [1].
That the queue length trajectories under the average control ;
satisfy the initial and final conditions is easy to verify. Further,
the trajectory moves along a straight line, and therefore stays
entirely with Rz, due to the convexity of the region. Finally,
due to the convexity of A*(-), we have

/ TITQ [Z A*(i()

- N T
(Ty ;A <T1 ! TQ/ .q;i(t)dtﬂ =
N
ZA* (mi)] .

dt >

_TZ)

(11 = 1T3)
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This implies that the average control trajectory is not more
costly than the original control trajectory. O

Using Lemma 2, we next compute the exponents corre-
sponding to overflow trajectories that stay entirely within a
particular region R 7. Later, we will show that overflow trajec-
tories that traverse more than one region cannot have a strictly
smaller exponent than trajectories that stay within exactly one
of the regions. This will give us the result we want.

Consider an overflow trajectory that lies entirely within Rz,
where |Z;| = j for some 1 < j < N. In this case, the j queues
in the index set Z; reach overflow, while the other NV — 5 queues
are strictly smaller and, hence, receive no service. Due to the
symmetry of arrivals, we can compute the exponent assuming
that Z; = {1,...,7}, i.e., the first j queues overflow. Lemma
2 implies that the optimal empirical rates can be restricted to
constant valuesSz;, ¢ = 1,..., N for this particular overflow
event. Let « = 1/T denote the rate at which the first j queues
overflow. Since each queue k € {1,...,j} overflows at rate a,
the empirical input rate x; must be of the form z, = a + &,
where ¢, > 0 can be thought of as the rate at which queue %
receives service in the overflow interval. Since the first j queues
receive all the service, we have > 7 _; ¢ = 1. Next, for [ > j,
we need z; < a, since these queues are never the longest, and
hence get no service.

The optimization in (15) takes the following form when the
first 7 queues reach overflow:

J N
inf ~ inf AN{a+ ) + A (z). (16)
GO0 G203 en=1 ; l:%;rl
x<a, Vl>j

Let us now perform the inner minimization in (16). It is obvious
that the minimization over ¢, k£ < j and z;, [ > 7, can be
performed independently. Due to convexity of the rate function,
we have

Therefore, the optimal value of ¢ys is given by ¢, = 1/4, k <
7. Next, consider optimizing over x; for I > 7. We distinguish
two cases:
i) a > A: In this case, it is optimal to choose z; = A for
each ! > j, since A*(A) = 0.
ii) a < X:Inthis case, the constraint z; < a has to be active,
since forz < A, A*(x) is decreasing in 2. Thus, we have
T = a.
Putting the two cases together, we get from (16) the exponent
F; corresponding to exactly j queues overflowing, while the
trajectory stays inside Rz,.

E; = min(x;, &) (17)
with
x 1 e N
Xi = 0<Hal£>\ a JA(a+ )+ (N = j)A" ()| , and
1
&= int I (18)

a>A Q N

SFor simplicity of notation, we henceforth use ; in place of #;.
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The above expression holds for 1 < j < N. The exponent for
all the N queues overflowing is simpler to obtain; it is given by

N 1
Ex = inf —A*(a + N) = NOy, (19)

a>0 q

where the last equality follows by recalling (6). The optimal
exponent considering the set of all overflow trajectories that stay
inside any one of the regions Rz, T C {1,..., N} is obtained
by minimizing F; over 7 = 1,..., N.

At this point, we are two steps away from obtaining the
result. The first step involves showing that there is nothing
further to be gained by considering paths that traverse more
than one of the partitioning regions during the interval
(=T,0). This would imply that the optimal exponent is given
by minj<;<y £;. The second step involves showing that
minj<j<ny £; = minjez- jO,, where ©; is the system oc-
cupancy exponent of j parallel queues, defined in (10). The
following two lemmas establish what is needed.

Lemma 3: For every queue overflow trajectory that tra-
verses more than one of the regions Rz, Z C {1,..., N}, there
exists an overflow trajectory that lies entirely within one of the
regions, while achieving an exponent that is no larger.

Proof: We only rule out overflow trajectories that traverse
two regions; similar arguments can be successively used for tra-
jectories that visit more than two regions. Consider a trajectory
that starts out in a region Rz but reaches overflow in region
R 7, while staying in one of the two regions at every instant in
between. Note that the region R 7 is a convex set of dimension
N — 7] + 1.

There are three possibilities: Z C 7, J C Z, or neither.

First, suppose Z C J. Consider a trajectory that remains in
Rz during the interval (—T', —T1), and stays in R 7 during the
interval [—77, 0), until overflow at ¢ = 0. Intuitively, the queues
g;, © € 1 start out growing together. At time —77, the queues
gi, © € J—1 ‘catchup’, and overflow occurs in all the queues in
the index set 7 .Fig. 5(a) depicts a 2-D example corresponding
to this scenario, where the second queue catches up with the first
queue, and the two queues reach overflow together.

Since constant empirical input rates are optimal inside each
partition region (Lemma 2), the arbitrary trajectory in Rz can
be replaced at no further cost by a straight segment that has the
same end points. To be more precise, for an arbitrarily small
e > 0, the trajectory in Rz during the interval [—-T 4 ¢, — T} — €]
can be replaced by a straight segment joining the corresponding
end points. This segment lies entirely inside Rz, but is arbi-
trarily close to the region R . Next, due to continuity, the cost
of this replaced segment as ¢ | 0 is not lower than the optimal
trajectory in R 7 with the same boundary conditions as the orig-
inal trajectory. Finally, the part of the original trajectory from
t = —T until over flow at £ = 0, can again be replaced by
the optimal trajectory in K 7 with the corresponding end points.
Thus, overall, the cost of the original trajectory is greater than
or equal to that of the optimal trajectory in R 7 with the same
boundary condition at £ = 0.

Next, consider the case Z O 7. Intuitively, this case cor-
responds to the queues ¢;, ¢ € I, starting to grow together.
At some time instant, the queues ¢;, ¢ € Z — 7, start “losing
out,” and overflow occurs within R 7. Fig. 5(b) depicts a 2-D
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Fig. 5. Two-dimensional example to illustrate the trajectories considered in
the proof of Lemma 3. (a) depicts the case where the second queue catches
up with the first to overflow together. In scenario (b), the two queues start out
growing together, but the second queue loses out and only the first queue reaches
overflow.

example, where both queues start out growing together, but the
second queue loses out and only the first queue reaches over-
flow.

The arbitrary trajectories in each of the regions can be re-
placed with an optimal segment in each of the regions, with the
same boundary conditions at no added cost. The cost of this re-
placed trajectory is a convex combination of the optimal over-
flow trajectories in regions R 7 and Rz, and hence cannot be
smaller than the smaller of the two costs.

Finally, consider the third case, i.e., 7 1¢, J and J g Z.In
this case, it can be shown that a trajectory that starts out in Rz to
reach overflow in R ;7 has to traverse at least one more region.
In particular, we will argue that such a trajectory must traverse
R, for some K O 7 U J. To see this, suppose on the contrary
that q(—t1) € Rz, q(—12) € R, but there is no time instant
in the interval (—#;, —t2) when the system is in R ic. This would
imply that the arrival trajectory a(t) contains a discontinuity in
the interval (—%7, —t2), since the service process is determin-
istically bounded. Recall that we are optimizing only over ab-
solutely continuous arrival trajectories, and that discontinuities
in a(t) correspond to an infinite cost, according to the LDP of
the arrival process. Thus, when the system is driven by abso-
lutely continuous arrival trajectories, the queue trajectory must
traverse at least three regions. Such a trajectory can be shown
to be suboptimal by considering the regions pairwise and using
arguments similar to the other two cases. (]

Lemma 4: nlilllgjg_r\w Ej = minjep 7(‘)1
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Proof: We first prove that x; > Ex forall j < N. First,
using convexity of A*(-), we can write

J ax 1L N—j.. « (7 . N—yj
Ao+ = ) > “(a+ -~ ,
NA (a+j)+ v Aa)y > A (N(a+j)+ N
1
=A*(a+ =) 2
(0+N) (20)

We now have

=it a2+ (V=A%)
z;ggbmw+l><w—ﬁmmﬂ

(@)
> inf —A*(a +

et = EN~
a>0 @

N)
The inequality (a) follows from (20). It is now clear that the x ;s
are irrelevant, as they are always dominated by £y = NOy.
Taking £ = N©®py, we next write the following series of equal-
ities that imply the lemma:

-1, NOy)

min F; = min(&q,...
1<G<N Y &,

Inln
1<F<N &

= min §;
JEL* I

= min 30,.
JEL*

1)
(22)

In the above, equality (22) follows from the definition of A
and (21) is shown as follows. Using the fact that A*(a + )
convex in a, it can be shown that 2A*(a + 7 1) is 1ncreas1ng for
all @ > a}. Now, consider some 7 ¢ 7%, so that ] < A. The
definition of &;(18) involves taking the mﬁmum over a > A.
Since ¢ < A, the infimum in (18) is attained at ¢ = A. In this
case, it is easy to show that {x < &;. Indeed, fori ¢ Z*, we
have
i 1
= —A*(A+ =
&= A0+ 7)
i 1 N —i
=N+ -
A z) T
O N
A (A
> A

> g.Nv

AT(M)
N)

where step (b) is due to convexity. Thus, we have shown (21).
O

2) Proof Outline of Proposition 6: Let ®;[t] € {0,1} de-
note the i.i.d. fair “coin tosses” that decide which queue to serve
when both queues are occupied. If ®;[t] = 1, then the second
queue is served if occupied in slot ¢; if ©;[¢] = 0, the first queue
is served if occupied. Define ®[~T,¢] = S3'_ . ®;[r], and
oMty = LO[-MT, |Mt]], t € [-T,0]. The sequence
&) (1) satisfies an LDP with rate function

0= [ pewia

for absolutely continuous trajectories ®(), with ®(—T) = 0,

and ¢(t) is the almost everywhere derivative of ® (7).
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The dynamics of the fluid queue length processes under RS
is given by

G (t) =21 (t) = (1 = o(1))
Ga(t) = za(t) — (1),

whenever ¢ (t) and g2(#) are nonzero. If either ¢ ()
q2(t) = 0, then

g1(t) + G2(t) = z1(t) + z2(t) — 1.

Here, x1(t) and z2(t) are the empirical rates of the input pro-
cesses.

Using a result analogous to Lemma 2, we can show that con-
stant empirical rates for the inputs as well as the coin tosses is
optimal, within each of the regions (i) ¢1(¢) > 0, q2(t) > 0
(i) q1(f) > 0, g2(t) = 0, and (iii) ¢1(£) = 0, g2(¢) > 0. For
a given empirical rate ¢, the problem can be mapped to an in-
stance of GPS, as treated in [1]. The result follows by applying
the GPS exponent results to our symmetric case, and noting that
the rate function corresponding to the fair coin tosses is given
by D(-[11/2).

3) Proof of Theorem 2: Let us first prove part (i), which
is quite straightforward. Given & > (), suppose that we wish to
make the fraction of slots in which queue length information is
required less than é. Since the hybrid policy is work-conserving
for every K, the steady-state probability of the largest queue ex-
ceeding K approaches zero as K becomes large. In other words,
we can choose a K5 such that for any K > Kj, the probability
of the longest queue exceeding K is less than 4. It is now clear
that a hybrid policy with K > K will achieve what we want,
since the hybrid policy requires queue length information only
in slots when the longest queue exceeds K.

We now proceed to show part (ii) of the theorem. For any
fixed parameter K of the hybrid policy, we will show that the
overflow exponent remains the same as that of the LQF policy.
We first prove an elementary lemma, which asserts that given
two systems with different initial queue occupancies, the LQF
policy does not allow the queue evolution trajectories to “di-
verge,” when the two systems are fed by the same input process.

Definition 1: For any two vectors X,y € Z7, define
d(x,y) = max;—1,~ |2 — Uil

Lemma 5: Consider two fictitious systems U and V, in
which the initial queue lengths (at time zero) are given by
Q(L 0], i = 1,. NandQ )[], ¢ =1,...,N, respec-
tively. Let A= d(Q )[0], Q(V [on). Suppose that

a) The same input sample path Aft], t = 1,...

both systems for 7}, time slots, and that

b) LQF scheduling is performed (with the same tie breaking

rule) on both the systems fort = 1,...,7}.
Then, for any input sample path and T,
dQW[T], QM [T)]) < A.

Proof: The queue lengths in the two systems after the
arrivals during the first time slot are given by BZ-(D ) [1]
Q1) + AQ1)i = 1,....N, and BY[1] = Q0] +
A;[l],4 = 1,...,N. At the end of the first time slot, LQF
scheduling is performed based on these queue lengths. We will
consider the following exhaustive possibilities and show that

dQ[1],Q"1]) < A,

= 0 or

, Ty feeds

we have
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i) Ifthe LQF policy chooses the same queue to serve in both
system, it is clear that d(Q()[1], Q()[1]) = A
ii) Suppose the LQF policy chooses queue u in system U
and queue v in sgrstem V, with u # v. This implies that
B > B[] and BY[1) < BEY[1]. The fol-
lowmg subca}ses arise: )
Gia) B[] > BY[1] and B[] > BY).
In this case, after the LQF policy finishes service,

Q) - V1l = 1070] - 0,70l - 1
for i = wu, v, and |Q )[] Q(‘ [1]]
|Q(D [0] Q(V)[OH 1 # wu,v. Thus, in this case,
HQO[], QM) < A.

(iib) One of the 1nequa11t1es in (iia) fails to hold.
Suppose B¢ >[1! < B [g This implies that
B <. By <, BYn) <. BV
We can assume that at least one of the inequal-
ities ¢ and c is strict, for if not, there is a tie in
both systems between queues w and v, and this
case is covered under (i). It is then clear that
Q7101 - @)l > 18700 — QW)L
Since only one packet can depart durlng a
time slot we have |Q,,U)[] Q,,V 1) =
QL 10) - [o1|+1< IQ”[O] V0] < A
and|QF’>[ 1 Q1) = o) - @] -
Thus, d(Q[1], Q(VI[1]) < A in this case too.
Iterating over time slots, it can be shown that
dQUH], QM) < A, forallt > 1. O
Let us now show that the overflow exponent under hybrid

scheduling is greater than or equal to E]\TQF We prove this
by showing that for every input sample path that leads to a
buffer overflow under hybrid scheduling, the LQF policy also
gets close to overflow. Specifically, let Af¢], ¢ = 1,...,T, be
an input sample path which leads to a buffer overﬂow at tlme T
under hybrid scheduling. Thus, Q [ | > M, forsome: < N.
(We use the superscript H to denote queue lengths under hy-
brid scheduling, and L for LQF scheduling). Let 7 < T denote
the last time that all the queues were less than or equal to K.
Thus, Q7] < K.j = 1,...,N. Now, since both hybrid
scheduhng and LQF schedulmg are work-conserving, the total
number of packets in the system is conserved. Thus, if the same
input sample path were to feed a system with LQF scheduling in
each slot, we would have } . QE-L) [r] =22, Qg—H)[T] < NK,
from which it is immediate that

d(QM[7],Q™M[r]) < NK. (23)

Observe that by the definition of 7, the hybrid policy actually
performs LQF scheduling during the time slots 7 + 1,...,7.
Thus, we have two systems which start with different initial
queue lengths Q) [r] and Q") [r]. However, they are both fed
by the same input sample path and are served according to the
LQF policy for ¢ > . Lemma 5 now applies, and we can con-
clude that d(QF) [T ] QUT)) < d(QUH)[r], QU [r]). When
combined with (23), this yields d(Q)[T], QY [T]) < NK.
Thus, QEL) [T] > M — NK, whenever QEH) [T] > M. This
shows that for every input sample path that leads to an overflow
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under Hybrid scheduling, the LQF policy is also close to over-
flow.

Since this is true for every overflow sample path, we have the
steady-state relation

P {HIE_LX(QEH) > LM} <P {III@XQEL) > M — NK} ,

from which it follows that EH > ELQF Next, in order to

show that B8 < FE NQF, we can argue as above that every
input sample path that leads to overflow under LQF scheduling,
also leads “close” to an overflow under hybrid scheduling. We
have shown that for a fixed K, the hybrid scheduling policy has

overflow exponent equal to EI\?QF It is not difficult to see that
if K increases sublinearly in M, i.e., K = o(M), the expo-
nent would still remain the same. This implies that by scaling
K sublinearly in the buffer size M, the rate of queue length in-
formation can be sent to zero, while still achieving the exponent
corresponding to LQF scheduling. O
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