
1316 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Optimal Control of Wireless Networks
With Finite Buffers

Long Bao Le, Member, IEEE, Eytan Modiano, Fellow, IEEE, and Ness B. Shroff, Fellow, IEEE

Abstract—This paper considers network control for wireless net-
works with finite buffers. We investigate the performance of joint
flow control, routing, and scheduling algorithms that achieve high
network utility and deterministically bounded backlogs inside the
network.Our algorithms guarantee that buffers inside the network
never overflow. We study the tradeoff between buffer size and net-
work utility and show that under the one-hop interferencemodel, if
internal buffers have size , then -optimal network
utility can be achieved, where is a control parameter and is
the number of network nodes. The underlying scheduling/routing
component of the considered control algorithms requires ingress
queue length information (IQI) at all network nodes. However, we
show that these algorithms can achieve the same utility perfor-
mance with delayed ingress queue length information at the cost
of a larger average backlog bound. We also show how to extend
the results to other interference models and to wireless networks
with time-varying link quality. Numerical results reveal that the
considered algorithms achieve nearly optimal network utility with
a significant reduction in queue backlog compared to existing al-
gorithms in the literature.

Index Terms—Delay control, finite buffer, flow control, network
control, routing, throughput region, utility maximization, wireless
scheduling.

I. INTRODUCTION

T HE DESIGN of wireless networks that efficiently utilize
network capacity and provide quality-of-service guaran-

tees for end-users is one of the most important problems in
network theory and engineering. Since the seminal paper of
Tassiulas and Ephremides [1], in which they proposed a joint
routing and scheduling algorithm that achieves the maximum
network throughput, significant efforts have been invested in
developing more efficient network control algorithms [2]–[22].
Most existing works, however, focus on achieving a guaranteed
fraction of the maximum throughput region with low commu-
nication and computation complexity.

Manuscript received March 03, 2011; revised August 18, 2011 and
November 07, 2011; accepted November 08, 2011; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor L. Andrew. Date of publication
November 30, 2011; date of current version August 14, 2012. This work was
supported by the ARO Muri under Grant W911NF-08-1-0238, the NSF under
Grant CNS-0626781, the DTRA under Grant HDTRA1-07-1-0004, an NSERC
postdoctoral fellowship, and an NSERC Discovery Grant. The preliminary
results of this paper were presented in part at the IEEE Conference on Computer
Communications (INFOCOM), San Diego, CA, March 15–19, 2010.
L. B. Le is with the INRS-EMT, University of Quebec, Montreal, QC H5A

1K6, Canada (e-mail: long.le@emt.inrs.ca).
E. Modiano is with the Laboratory for Information and Decision Systems

(LIDS), Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: modiano@mit.edu).
N. B. Shroff is with the Department of Electrical and Computer Engineering

and the Department of Computer Science and Engineering, The Ohio State Uni-
versity, Columbus, OH 43210 USA (e-mail: shroff@ece.osu.edu).
Digital Object Identifier 10.1109/TNET.2011.2176140

In addition, most papers on network control assume that all
buffers in the network are infinite, so buffer overflow never oc-
curs. In practice, network buffers are finite. Therefore, sizing
buffers such that buffer overflow inside the network can be
alleviated or completely avoided is an important engineering
problem. Moreover, buffer sizing should be performed in such
a way that network capacity is not wasted. In fact, networks
with finite buffers may suffer from significant throughput loss
if they are not designed appropriately (e.g., see [23] and refer-
ences therein).
There have been some recent papers that analyze delay

performance of cross-layer scheduling algorithms [24]–[28].
In particular, it was shown that the well-known maximum
weight scheduling algorithm achieves order-optimal delay in
the uplink–downlink of cellular networks [24] and in most
practical large-scale multihop wireless networks [25]. Other
works on delay analysis for different scheduling algorithms
in wireless networks can be found in [27] and [28]. In [4],
[26], [29], and [30], it was shown that by combining the
principle of shortest-path routing and differential backlog
routing, end-to-end delay performance can be improved.
In [15] and [32], the virtual queue technique was used to
improve network delay performance. In [33], it was shown
that it is possible to achieve a guaranteed stability region with
bounded information delay if we allow a small reduction in
achievable network utility. These existing works, however,
do not consider the problem of providing backlog or delay
performance guarantees.
In this paper, we employ flow controllers to deterministically

bound queue backlogs inside the network. Specifically, we
combine the Lyapunov optimization technique of [2], [3],
and [30] and the scheduling mechanism proposed in [6] to
construct joint flow control, routing, and scheduling algorithms
for wireless networks with finite buffers. Note that in [2], [3],
and [30], the problem of network utility maximization is con-
sidered assuming that all buffers in the network are infinite. The
authors of [6] proposed scheduling algorithms for networks
with finite buffers. However, this work does not consider
flow control or dynamic routing and requires that the traffic
arrival rates are strictly within the feasible throughput region.
Moreover, [31] demonstrated that it is possible to achieve
deterministically bounded queue backlogs for the throughput
optimization problem (i.e., linear utility), without taking into
account general utility maximization. Our current paper con-
siders the general setting where traffic arrival rates can be either
inside or outside the throughput region, internal buffers in the
network are finite, and dynamic routing is used to achieve the
largest possible network throughput. Our contributions can be
summarized as follows.
• We consider control algorithms that achieve high network
utility and deterministically bounded backlogs for all

1063-6692/$26.00 © 2011 IEEE

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1317

buffers inside the network. Moreover, these algorithms
ensure that internal buffers never overflow.

• We demonstrate a tradeoff between buffer sizes and
achievable network utility under the one-hop interference
model.

• We show that delayed ingress queue information does not
affect the utility of the control algorithms albeit at the cost
of a larger backlog bound.

• We extend the obtained results to other interference models
and to wireless networks with time-varying link quality.

• We show via simulations that the considered control algo-
rithms perform very well in both the under- and overloaded
traffic regimes. Specifically, they achieve nearly optimal
utility performance with very low and bounded backlogs.

The remainder of this paper is organized as follows. The
system model is described in Section II. In Section III, we an-
alyze the performance of the control algorithm in the heavy
traffic regime. Section IV focuses on the performance analysis
of the control algorithm for arbitrary traffic arrival rates. Some
extensions are presented in Section V. Numerical results are pre-
sented in Section VI, followed by the conclusion in Section VII.

II. SYSTEM MODEL

We consider a wireless network that is modeled as a graph
, where is the set of nodes and is the set of links.

Let and be the number of nodes and links in the network,
respectively. We assume a time-slotted wireless system where
packet arrivals and transmissions occur at the beginning of time
slots of unit length. There are multiple network flows in the net-
work, each of which corresponds to a particular source–desti-
nation pair.
Arrival traffic is stored in input reservoirs, and flow con-

trollers are employed at source nodes to determine the amount
of traffic to admit from input reservoirs into the network in each
time slot. Let be the source node and be the destination
node of flow . We will refer to the queue at the source node ,
which “stores” admitted traffic of flow as an ingress buffer.
It is worth emphasizing that we do not need physical buffers
to implement these ingress queues in practice. Specifically, the
backlog values of these ingress buffers can be simply main-
tained by software counters while all data packets are physically
stored in the input reservoirs.
All other buffers storing packets of flow inside the net-

work are called internal buffers. Let be the amount of
traffic of flow injected from the input reservoir into the net-
work at node in time slot . Note that a particular node can
be a source node for several flows. Let be the set of flows
whose source node is . Hence, for any flow , its source
node is node . It is assumed that ,
where the parameter can be used to control the burstiness
of admitted traffic from node into the network. Let

, which will be used in the analysis. Let de-
note the total number of flows in the network.
Each internal node maintains multiple finite buffers (one per

flow), while ingress buffers at all source nodes are assumed to be
unlimited. This implies that the input reservoirs are unlimited in
size because data packets at source nodes are physically stored
in the input reservoirs. This assumption is justified by the fact
that in many wireless networks (e.g., wireless sensor networks)
buffer space is limited. However, buffers in ingress routers or

Fig. 1. Wireless network with finite internal buffers.

devices are relatively large. Moreover, since input buffers only
need to store traffic from a small number of end-users, they can
be made large enough to accommodate all incoming traffic with
high probability.
Let be the size of the internal buffer used to store packets

of flow at each network node. We denote the queue length1 of
flow at node at the beginning of time slot by . Note
that data packets of any flow are delivered to the higher layer
upon reaching the destination node, so . Assume
that the capacity of any link is one packet per time slot. In addi-
tion, let be the number of packets of flow transmitted
over link in time slot . Therefore, if we
transmit a packet of flow over link , and
otherwise. In the following, we will use or to de-
note the number of packets transmitted over link or link ,
respectively (i.e., network links can be represented by the cor-
responding transmitting and receiving nodes or just by a single
letter). Let and be the set of incoming and outgoing
links at node . The network model is illustrated in Fig. 1. For
notational convenience, when there is no ambiguity, we omit the
time index in related variables.
We assume that the traffic of any flow is not routed back to its

source node. Therefore, we have . It is clear
that this restriction does not impact the achievable throughput
of the considered control algorithms. We assume that a node
can communicate with (i.e., transmit or receive) at most one
neighboring node. Any link can be activated as long as no node
is involved inmore than one transmission or reception (i.e., node
exclusive interference constraints).2

We further assume that node will not transmit data of flow
along any link whenever (i.e., a node will not
transmit traffic of any flow if the corresponding queue does not
have enough data to fill the link capacity). Under this assump-
tion, the queue evolutions can be written as

(1)

where and . Note that

only if and one of the outgoing links of node
is activated for flow . Let be the time-average rate of

1To be precise, is a virtual queue length because it can take real num-
bers for source buffers.
2This assumption is made for simplicity of the derivations. Extensions to

other interference models (e.g., -hop interference model) are discussed later
in Section V. Note that the -hop interference model implies that no two links
within hops of each other can be simultaneously active. The node exclusive
interference model corresponds to the one-hop interference model.

1318 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

admitted traffic for flow at the corresponding source node
up to time , that is

(2)

The long-term time-average admitted rate for flow is defined
as

(3)

Now, we recall the definitions of network stability and the
maximum achievable throughput region (or throughput region
for brevity) [1], which will be used in our analysis. A queue
for a particular flow at node is called stable if its average
backlog is bounded. In addition, the network is called stable if
all individual queues in the network are stable. The maximum
achievable throughput region of a wireless network with un-
limited input and internal buffers is the set of all traffic arrival
rate vectors for which there exists a network control algorithm
to stabilize all individual queues in the network.
Note that when internal buffers are finite, stability corre-

sponds to maintaining bounded backlogs in ingress buffers
(since internal buffers are finite by design, the issue of stability
does not arise there). In this context, it is necessary to devise a
control algorithm that achieves high throughput and/or utility
without any overflow at internal buffers.

III. NETWORK OPTIMIZATION IN THE HEAVY TRAFFIC REGIME

We start by considering the case where all sources are con-
stantly backlogged. We seek a balance between optimizing the
total network utility and bounding total queue backlog inside
the network. Specifically, we want to solve the following opti-
mization problem:

maximize (4)

subject to (5)

and (6)

where are assumed to be nonnegative, increasing,
and strictly concave utility functions, is the time-av-

erage admitted rate for flow at node ,

is the time-average admitted rate

vector, denotes the vector transposition, and is the
internal buffer size. Here, utility functions express the level
of satisfaction of users with respect to admitted rates. Con-
straint (6) ensures that the backlogs in internal buffers are finite
and bounded by at all times.
To quantify the performance of the control algorithms, we

need some more definitions. First, let us define the -stripped
throughput region as follows:

(7)

where . Also, let
be an -optimal solution of a general network optimization

problem, which is defined as the solution of the following
optimization problem:

maximize (8)

subject to (9)

(10)

where is the average traffic
arrival rate vector. We will quantify the performance of the
considered control algorithms in terms of .3 Note
that tends to the optimal solution as ,
where is the optimal solution of the optimization
problem (8)–(10) where is replaced by (i.e., the original
throughput region). Also, for constantly backlogged sources,
the constraints on traffic arrival rates (10) are not needed.
In [3] and [30], the corresponding problem without the

buffer limit is considered. As a result, queue backlogs inside
the network at internal buffers can be very large (although with
bounded expectations). The large backlog accumulation inside
the network is not desirable because it can lead to increased
delays, buffer overflows, and throughput reduction due to
retransmission of lost packets. Now, consider the following
algorithm that provides a feasible solution for the problem
formulated in (4)–(6).
Algorithm 1: Constantly Backlogged Sources:
1) Flow Control: Each node injects an amount of traffic
into the network that is equal to where
is the solution of the following optimization problem:

maximize

subject to (11)

where is a controlled parameter.
2) Routing/Scheduling: Each link calculates the dif-
ferential backlog for flow as follows:

if

if
(12)

Then, link calculates the maximum differential
backlog as follows:

(13)

Let be the schedule where its th component if
link is scheduled, and otherwise. The schedule
is chosen in each time slot as follows:

(14)

where is the set of all feasible schedules as determined
by the underlying wireless interference model. We will not

3Note that the -optimality notion in this paper may not be the same with that
used in optimization theory literature.

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1319

schedule any link with . For each scheduled link,
one packet of the flow that achieves the maximum differ-
ential backlog in (12) is transmitted if the corresponding
buffer has at least one packet waiting for transmission.

Before investigating the performance of this algorithm, we
would like to make some comments. First, it can be observed
that the flow controller of this algorithm admits less traffic of
flow if the corresponding ingress buffer is more congested
(i.e., large). Also, a larger value results in higher achiev-
able utility albeit at the cost of larger queue backlogs. More-
over, the routing component of this algorithm (12) is an adap-
tation of the differential backlog routing [1] to the case of fi-
nite buffers [6]. The scheduling rule (14) is the well-known
max-weight scheduling algorithm.
In fact, the flow controller of this algorithm is the same as

that proposed in [3], [30] while the differential backlog in (12)
is the same as that in [6]. However, [3], [30] assume that all net-
work buffers are infinite while [6] assumes that traffic arrival
rates are inside the corresponding throughput region and static
routing. In contrast, we consider dynamic routing to achieve
the largest possible network throughput. Also, we consider both
heavy traffic and arbitrary arrival rates and employ flow con-
trollers to control the utility-backlog tradeoff.
The differential backlog in (12) ensures that internal buffers

never overflow. In fact, the differential backlog of any source
link , given by , bounds the back-
logs of all internal buffers by . The differential backlogs

of all other links , given by ,
is essentially the multiplication of the standard differential
backlog from [1] and the normalized ingress

queue backlog . Incorporating ingress queue backlog
into the differential backlog in (12) prioritizes the flow whose
ingress queue is more congested. This helps stabilize ingress
queues because the scheduling component of Algorithm 1 still
has the “max-weight” structure as that proposed in [1].
Assume that for each flow , each wireless node maintains

a buffer space of at least packets. Assume that all buffers in
the network are empty initially. Then, the queue backlogs in all
internal buffers for flow are always smaller than or equal to .
That is

and (15)

To see this, note that all internal buffers in the network al-
ways have an integer number of packets. This is because the
scheduler of Algorithm 1 does not transmit a fraction of packet
from any ingress buffer to the corresponding internal buffer. Be-
cause at most one packet can be transmitted from any queue in
one time slot, buffer overflow can only occur at a particular in-
ternal buffer if the number of packets in that buffer is and
it receives one more packet from one of its neighboring nodes.
We will show that this could not happen by considering the fol-
lowing cases.
• Consider any link for a particular flow . It can be
observed that if , then the buffer at node for
flow will never receive any more packets from node .
This is because the differential backlog of link in

this case is . Therefore,

link is not scheduled for flow .

• Consider any link for . Suppose the first
buffer overflow event in the network occurs at node
for flow . Right before the time slot where this first
buffer overflow occurred, we must have .
However, consider the differential backlog of any
link in this previous time slot, we have

. This

means any such link will not be scheduled for
flow . Therefore, overflow could not occur at node .

Therefore, we have deterministically bounded backlogs inside
the network at all times. Now, we are ready to state one of the
main results of this paper.
Theorem 1: Given , if the internal buffer size satisfies

(16)

then we have the following bounds for utility and ingress queue
backlog:

(17)

(18)

where recall that is an -optimal solution, which is an
optimal solution of the optimization problem (8)–(10),

is a finite number, is the
number of flows in the network, is the maximum amount
of traffic injected into the network from any node, is a design
parameter that controls the utility and backlog bound tradeoff,

is the largest number such that where
is a column vector with all elements equal to ,

and

(19)

(20)

Proof: The proof is given in Appendix A.
Here, we would like to make some comments. First, as

, the total utility achieved by the time-average admitted

rate is lower-bounded by that due to from
(8)–(10). This lower bound is parameterized by the design
parameter , which in turn determines the queue backlog bound
in all internal buffers as given by (16). Specifically, suppose we
choose as suggested by (16). Then, when
is larger, the buffer size is smaller, but the utility lower

bound achieved by is also smaller as given in (16).

This achievable admitted rate vector is illustrated in
Fig. 2. Second, the inequality (18) gives the upper bound for
the total ingress queue backlog, which is controlled by another
design parameter . In particular, when increases, the utility
lower bound in (17) also increases, but the upper bound on the
total ingress queue backlog becomes larger.
Remark 1: Without flow control, [6] has shown how to

choose the internal buffer size to stabilize the input buffers.

1320 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Fig. 2. Geometric illustration of optimal rate and lower bound of achievable
rate in the heavy load regime.

However, this chosen buffer size depends on the relative dis-
tance between the traffic arrival rate vector and the boundary
of the throughput region. In practice, it is not easy to deter-
mine this distance parameter. Moreover, input queues will
become unstable when the traffic arrival rate is outside the
throughput region. In contrast, by appropriately designing a
flow controller, our cross-layer algorithm can always stabilize
the ingress queues. In addition, the internal buffer size in our
design depends on a tunable design parameter , which only
impacts the utility lower bound and does not depend on the
traffic itself.
Remark 2: Given , if we choose the smallest possible buffer

size suggested by Theorem 1 (i.e.,), the
backlog bound becomes

(21)

Taking , we have a backlog bound of same form as that
derived in [3].

IV. NETWORK OPTIMIZATION WITH ARBITRARY ARRIVAL
RATES

Now, we consider the more general case where traffic arrival
rates can be inside or outside the maximum throughput
region. In this case, the long-term time-average admitted rates
should be constrained to be smaller than the average traffic ar-
rival rates. For this case, our objective is to solve the following
stochastic optimization problem:

maximize (22)

subject to (23)

(24)

and (25)

In this network setting, because the traffic arrival rates may
be inside the throughput region, we rely on newly introduced
variables that capture “virtual queues backlogs” to per-
form flow control. These virtual queues track the difference be-
tween the instantaneous admitted traffic rates and the
“potential” admitted rates . In particular, we consider the
following control algorithm.

Algorithm 2: Sources With Arbitrary Arrival Rates:
1) Flow Control: Each node injects an amount of traffic of
flow into the network , which is the solution of
the following optimization problem:

maximize

subject to

(26)

where is the backlog of the input reservoir,
is the number of arriving packets in time slot , and
represents “backlog” in the virtual queue that has the fol-
lowing queue-like evolution:

(27)

where are auxiliary variables that are calculated
from the following optimization problem:

maximize

subject to (28)

We then update the virtual queue variables according
to (27) in every time slot. We update by decreasing
it by and then increasing it by the number of ar-
riving packets for flow in time slot .

2) Scheduling and routing are performed as in Algorithm 1.
The flow controller in this algorithm is the same as that in [2].

Its operation can be interpreted intuitively as follows. The auxil-
iary variables play the role of in Algorithm 1 for
the heavy traffic regime. In fact, the optimization problem (28)
from which we calculate is similar to the one in (11)
where is replaced by . Hence, represents the po-
tential rate that would have been admitted if sources were back-
logged. The virtual queue captures the difference be-
tween the potential admitted rate and the actual admitted
rate based on which the flow controller determines the
amount of admitted traffic from (26). Here, the “vir-

tual differential backlogs” determine fromwhich
flow to inject data into the network.
In addition, it can be observed that (27) captures the dy-

namics of a virtual queue with service process and ar-
rival process . Hence, if these virtual queues are stable,
then the time-average rates of are equal to the time-av-
erage of . That means we must have , where

denotes the time-average of .
It can be verified that the amount of admitted traffic

calculated from (26) only takes integer values assuming that
are integers. Specifically, the solution of (26) can be cal-

culated as follows. First, we sort the quantities
for all flows whose source nodes are node . Then, starting
from the flow with the largest positive value in the sorted list,
we admit the largest possible amount of traffic considering the

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1321

Fig. 3. Geometric illustration of optimal rate and lower bound of achievable
rate in the low load regime.

constraints in (26). Because , , and are all inte-

gers, will take integer values. Because are inte-
gers, each ingress buffer is either empty or contains an integer
number of packets. Assume that packet arrivals are i.i.d. over
time slots,4 we state the performance of Algorithm 2 in the fol-
lowing theorem.
Theorem 2: Given , if the internal buffer size satisfies

(29)

Then, we have the following bounds for utility and ingress
queue backlog:

(30)

(31)

where again is the -optimal solution, which is an op-
timal solution of the optimization problem (8)–(10), and

is a finite number.
Proof: The proof is given in Appendix B.

Note that when , we have

where is the average traffic arrival rate vector. There-

fore, we have as in this case. That
means we can achieve optimal utility in this case by letting

. This observation is illustrated in Fig. 3. Otherwise, if

, then we return to the heavy traffic case consid-
ered in the previous section. In this case, the lower bound on the
achieved utility depends on the chosen parameter .

V. FURTHER EXTENSIONS

In this section, we show how to extend the results obtained
in the previous sections in two important directions, namely
the impact of delayed ingress queue length information (IQI)
and extensions to other interference models and to wireless net-
works with time-varying link quality.

A. Delayed Ingress Queue Length Information

Assume that the same scheduling/routing algorithm as
in Algorithm 1 is employed. However, only delayed IQI is

4While we assume i.i.d. arrivals for simplicity, the results can be extended to
more general arrivals that satisfy for any time slot . This
condition is required so that (80) in Appendix B holds. Therefore, the results in
Theorem 2 are valid for Markovian traffic.

available at all network nodes. Let be the time delay of
ingress queue length at all other network nodes (i.e,
only is available at other nodes in time slot). In
the following, we investigate the performance of Algorithm 1
when delayed IQI is used for scheduling. In particular, each
link and flow calculate the differential backlog in slot
as follows:

if

if

This differential backlog is used for routing/scheduling while
the same congestion controller as in Algorithm 1 is employed.
Note that the flow controller for flow at node only requires
its local ingress queue length information . Hence, this
queue length information is available without delay. We have
the following results for this cross-layer algorithm with delayed
IQI.
Theorem 3: If the buffer size satisfies

(32)

then we have the following bounds for utility and ingress queue
backlog:

(33)

(34)

where again is an -optimal solution, which is an op-
timal solution of the optimization problem (8)–(10), is a pre-
determined number, , and
is given in Theorem 1.

Proof: The proof is given in Appendix C.
This theorem says that the same network utility lower bound

as that in Algorithm 1 can be achieved under delay IQI at the
cost of a larger average backlog bound as . However,
the backlog upper bound in (34) is larger than that derived in
Theorem 1 as depends on .
It has been shown in [6] that a slightly larger buffer size is

required when scheduling is performed based on queue length
vector (for both ingress and internal buffers) with estimation er-
rors. In this theorem, we show that when only IQI is delayed
while internal queue information is available without delay, we
do not need a larger buffer size if an appropriate flow controller
is available. In addition, there are some other existing works
along this line in the literature [19], [20], where it has been
shown that infrequent or delayed channel estimation may re-
duce the maximum throughput region. However, delayed queue
backlog information does not decrease utility.
Remark 3: Although we have assumed that the IQI delay

value is the same for all nodes, the same utility performance
guarantee can be achieved even if routing and scheduling is
performed based on IQI with different delay values at different
nodes. This is because ingress backlogs can only be offset by
finite values in any finite time interval. Also, these offsets are
negligible if ingress backlogs become sufficiently large. There-
fore, the same utility performance can be achieved even under

1322 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

the heterogeneous delay scenario. In fact, we can modify the
proof in Appendix C to account for these heterogeneous delays
by changing constant factors in (92) and (94) accordingly.

B. Extensions to Other Interference Models

In this section, we extend the obtained results to a general
interference model. For brevity, we only consider the case of
constantly backlogged sources. Let be the maximum number
of links activated in any feasible schedule under the underlying
interference model. Then, given , the required buffer size
to achieve the backlog bound in Theorem 1 is

(35)

In addition, given this chosen buffer size, the total average
ingress backlog can be bounded as

(36)

where is defined in Theorem 1.
Proof: We can prove these results by using the Lyapunov

drift technique with the same Lyapunov function used in the
proof of Theorem 1. However, in deriving the Lyapunov drift,
we have a slightly different bound for (46). Specifically, we have

(37)
where the inequality in (37) holds because we have

(38)
This is because for any particular flow , each activated link
contributes at most 2 to the left-hand side (LHS) of (38), and
we can activate at most links in the network simultaneously.
Taking the same proof procedure as in Appendix A with this
new bound (37), we can obtain the desired results.
It can be observed that the required lower bound on internal

buffer sizes under a general interference model is smaller than
that under the one-hop interference model if
(i.e., the number of activated links in any feasible schedule
is small). This would be the case for stringent interference
models such as the -hop interference model with large , and
the signal-to-interference-plus-noise ratio (SINR) interference
model with large required SINR thresholds [34]. This result is
illustrated in the following example.
Example: Consider a line network with links and the
-hop interference model. The maximum number of links
that can be activated by any feasible schedule in this set-
ting is . Therefore, the required
lower bound for buffer size to achieve the -optimal utility is

. For large , this required
buffer size decreases by a factor of compared to
that derived under the one hop interference model. It can be
observed that this result for line networks is quite conservative.
In general, for wireless networks with richer connectivity,
would decrease much faster with , which therefore requires

Fig. 4. Simulation network with primary interference model.

much smaller buffer size. This would also intuitively hold
for the SINR interference model with large required SINR
thresholds [34].

C. Wireless Networks With Time-Varying Link Quality

We have assumed deterministic interference and channel
models in the previous sections. We now extend the obtained
results to wireless networks having links with time-varying
quality [21], [35]. Again, assume that allowable schedules
satisfy node exclusive interference constraints, and let denote
the set of allowable schedules. In addition, let denote
the channel state vector, which determines the probability of
successful transmissions in time slot . Given a particular link
activation set and channel state vector , we can
define the following probability of successful transmission for
link as follows [35]:

link succeeds (39)

Note that the maximum achievable throughput region under
this channel model is smaller than that assuming reliable
transmissions considered in the previous sections. Under this
channel and interference model, the same flow controller as
in Algorithms 1 and 2 can be employed along with the cor-
responding modified differential backlog metric. However,
link scheduling must take into account the time-varying link
reliability. Specifically, given the channel state vector , the
schedule is chosen in each time slot as follows:

(40)

For each scheduled link, one packet of the flow that achieves the
maximummodified differential backlog is transmitted if the cor-
responding buffer has at least one packet waiting for transmis-
sion. It can be shown that the same performance as presented in
Theorems 1 and 2 can be achieved for this modified algorithm.

VI. NUMERICAL RESULTS

We study the performance of the control algorithms using
computer simulations. We consider a simple network of six
nodes as shown in Fig. 4. All links are assumed to be bidi-
rectional, and the maximum weight scheduling algorithm is
invoked in each time slot assuming the node-exclusive (i.e.,
one-hop) interference model. We simulate four traffic flows
whose (source, destination) pairs are (1, 6), (3, 4), (6, 2), (5, 2).
We assume packet arrivals to all input reservoirs are Bernoulli
processes. The utility function is chosen to be
with , , (it is observed that
increasing further does not improve the utility performance
of the investigated algorithms).

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1323

TABLE I
OVERLOADED TRAFFIC FOR

TABLE II
UNDERLOADED TRAFFIC FOR

TABLE III
OVERLOADED TRAFFIC WITH DELAYED IQI FOR ,

For each set of simulation parameters, we obtained mean
queue length and admitted rates for different traffic flows by
averaging them over 10 time slots. We then repeated each sim-
ulation test 20 times. Results presented in section correspond to
sample means over 20 simulation runs. The absolute deviations
from the presented sample means of average queue length and
admitted rates for each of the 20 simulation runs are less than
1% of the sample means.
We compare the performance of Algorithm 2 with that of

Algorithm CLC2b proposed in [2], which assumed infinite in-
ternal buffer size (i.e., for all flows). We show time-av-
erage admitted rates for each of the flows, total admitted rate of
all flows , and the total average ingress and internal queue
length. Specifically, the total average ingress and internal queue
length are calculated as and

, where is the average queue length for
flow at node .
In addition, to illustrate the queue dynamics under our

proposed algorithms and Algorithm CLC2b, we present
the maximum average backlog and the maximum
sample standard deviation of queue backlogs over
all internal queues where and

where is the sample standard
deviation of queue backlog of flow at node . The minimum
values of average backlogs and sample standard deviation of
queue backlogs over internal buffers are very close to zero,
which are not presented for brevity.
We present the performance of Algorithm 2 for the over-

loaded case in Table I for different values of internal buffer
size. Recall that given the buffer size , Theorem 2 implies
that the lower bound of the network utility corresponds to a rate
vector that lies inside the -stripped throughput region where
is bounded above by as . To illus-

trate this performance bound, we also show the corresponding
values of for different values in Tables I–III.

Table I shows that this performance bound is quite conservative,
and that the proposed algorithm achieves utilities that are much
closer to optimal than this bound would indicate. In particular,
while results in a slightly smaller total admitted rate and
deviation from optimal rates, achieves time-average ad-
mitted rates that are very close to the optimal ones. For ,
the corresponding is .
However, the simulation results suggest that the actual loss in
utility is negligible in this case.
Also, Table I shows that our proposed algorithm achieves sig-

nificantly smaller average queue lengths in both ingress and
internal buffers compared to those due to Algorithm CLC2b
in [2]. For example, with , we can achieve admitted rates
very close to the optimal values while the average ingress queue
length is six times smaller, and the average total queue length
in internal buffers is about 150 times smaller than those due to
Algorithm CLC2b in [2]. It can also be observed that oversizing
the internal buffers does not change the total average ingress
queue length although it increases the total average internal
queue length. Moreover, Algorithm 2 achieves much smaller

and compared to those due to Algorithm CLC2b.
In particular, the values of for different values of are
negligible, which suggests very stable queue backlogs achieved
by Algorithm 2 in the highly loaded scenario.
We present numerical results for the underloaded traffic case

in Table II. This table shows that Algorithm CLC2b [2] may
achieve smaller average backlogs in ingress or internal buffers,
and our proposed algorithm has comparable performance with
Algorithm CLC2b for . For and ,
our proposed algorithm results in smaller compared
to Algorithm CLC2b. However, for and ,
Algorithm CLC2b achieves smaller and than those
due to our proposed algorithm.
In addition, it is shown that undersizing the internal buffers

results in significant increase in average ingress queue length.
Intuitively, this is because, with finite buffers, throughput is

1324 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

slightly reduced, leading to greater backlogs in ingress buffers.
Also, oversizing internal buffers improves queue length of
ingress buffers, but increases total queue length in internal
buffers. Finally, we show the performance of our algorithm
with delayed IQI for the overloaded traffic case, and
in Table III. This table shows that delayed IQI does not impact
the throughput performance, while it only results in marginal
increase in the total average queue length of internal buffers. It
can also be observed that and presented in Table III
are almost the same as those in Table I, which are achieved
without IQI delay.

VII. CONCLUSION

In this paper, we proposed and analyzed the performance
of control algorithms for wireless networks with finite buffers.
Two different algorithms were investigated for both scenarios of
heavy traffic and arbitrary traffic arrival rates. We also analyzed
the performance of the control algorithms with delayed IQI. Nu-
merical results confirm the superior performance of our pro-
posed algorithms in terms of the backlog-utility tradeoff com-
pared to existing algorithms in the literature. Our paper provides
a unified framework for the problems of utility maximization,
buffer sizing, and delay control in a very general setting. De-
veloping decentralized control algorithms for wireless networks
with finite buffers that achieve optimal buffer-utility tradeoff is
an open problem that will be considered in our future work.

APPENDIX A
PROOF OF THEOREM 1

Consider the following Lyapunov function:

(41)
Note that this is the same Lyapunov function as that proposed
in [6]. Now, consider the Lyapunov drift

(42)

Recall that because we do not
allow traffic of any flow to be routed back to the source
node . Hence, we have

(43)

Now, we find the drift for the first term in (41). Squaring both
sides of (43) and performing some manipulations, we obtain

(44)

where (44) holds because we have

Now, to find the drift for the second term in (41), we have

(45)

Note that we have

(46)

(47)

where the inequality in (42) holds because we have

(48)

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1325

Using the results in (46) and (47) to (45), we have

(49)

Using the drifts for the two terms of (41) derived in (44) and
(49), the Lyapunov drift can be written as

where is a finite number.

Subtracting from both sides, we
have

(50)

Now, we define the following quantities:

(51)

(52)

Then, the inequality (50) can be rewritten as

(53)

It can be verified that

(54)

Hence, the routing/scheduling and flow control components of
Algorithm 1maximize and , respectively. Strictly
speaking, the routing/scheduling component of Algorithm 1
maximizes only for because we do
not transmit any traffic of flow over any link if

. Given defined before, we have

. Hence, there exists a stationary and ran-

domized policy that chooses a link rate vector that
satisfies for all time slot [4]

(55)

(56)

Recall that the routing/scheduling and flow control components
of Algorithm 1 maximize and , respectively.
Hence, we have

(57)

(58)

where the constant in (57) accounts for the fact that we do
not transmit data of flow on any link if .
Specifically, when , we have

(59)

Using the results of (57) and (58) in (53), we have

1326 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

where is the constant given in Theorem 1. Taking the ex-
pectations over the distribution of and summing over

, we have

(60)

By arranging the terms of (60) appropriately and dividing both
sides by , we have

(61)

where we have used the fact that to obtain (61).
Given the value of that gives the desired utility reduction, and
recall we choose the buffer size that satisfies

(62)

Hence, we have

(63)

Now, due to Jensen’s inequality, we have

(64)

Using the results of (63) and (64) to (61), we have

(65)

Taking the limit in (65), we have

(66)

Therefore, we have proved the utility bound. To prove the
backlog bound, we arrange the inequality (60) appropriately
and divide both sides by , and we have

(67)

where we have used the fact that and

to obtain (67). From the definition of
, we have

(68)

Using this result to (67), we have

(69)

Note that the above inequalities hold for any .
Also, suppose we choose the same buffer sizes for different
flows that satisfy (62). By choosing and taking the
limit for in (69), we have

(70)

Therefore, we have proved the backlog bound.

APPENDIX B
PROOF OF THEOREM 2

Define and consider the following
Lyapunov function:

(71)

Consider the following one-step Lyapunov drift:

(72)

Note that the first two terms in the Lyapunov function (71) are
exactly the two terms in the Lyapunov function (41). Hence, the
drifts for these two terms are available in (44) and (49). Now,
we find the drift for the third term in (71). From (27), we have

(73)

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1327

Hence, we have

(74)

Using the results of (44) and (49), (74) in the Lyapunov drift
(72), we have

(75)

where is the constant given in Theorem 2. Subtracting
from both sides of this in-

equality, we have

(76)

Now, define the following quantities:

(77)

(78)

Then, the inequality (76) can be rewritten as follows:

(79)

where is defined in (51). It can be observed that the
flow control component of Algorithm 2 maximizes and

defined in (77) and (78), and the routing/scheduling
component maximizes . Now, recall the definition of

in (8)–(10). The rates can be achieved
by the following simple admission control rule for traffic
arrival rates inside or outside the throughput region. In each
time slot , admit all arriving traffic with proba-

bility . Under this admission control, we have

because arrivals are assumed to be i.i.d. over time slots. Let
. Then, from Algorithm 2, we have

(80)

(81)

(82)

Note that there is no constant in (80) because only
take integer numbers in this case (i.e., they are either zero or at
least one). This is because the flow controller in Algorithm 2
only injects an integer number of packets into the network at all
times. Using these results in (79), we have

(83)

Using the same technique in the proof of Theorem 1, we can
obtain the desired results.

APPENDIX C
PROOF OF THEOREM 3

Consider the same Lyapunov function as in the proof of
Theorem 1. However, we employ the conditional Lyapunov
drift over
in this proof. Then, we have

(84)

where . Recall that we have
defined

Now, let us define corresponding to with
delayed IQI as follows:

1328 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

(85)

Now, we compare the second term of and .
First, note that

(86)

because at most one packet can be transmitted from a queue in
one time slot. Hence

(87)

where (87) holds because

Hence

where this inequality holds because we can activate at most
links whose ends are not the source node due

to the node exclusive assumption. Using (87) in (85), we have

(88)

where this inequality holds because the first terms of
and are the same. Given , which is the op-
timal traffic admitted rate lying inside the -stripped throughput
region, there exists a stationary and randomized policy that
chooses a link rate vector that satisfies for all time
slot [4]

(89)

(90)

Then, due to the operation of our routing/scheduling policy we
have

(91)

Using this result in (88), we have

(92)

Note that we have

(93)

because the maximum amount of traffic injected into the net-
work from any node is . Using this result in (92) and using
the fact that , we have

(94)

Also, due to the operation of our flow controller we have

(95)

Using the results in (95) and (94) to (84), we have

where . Using the same
technique as in the proof of Theorem 1, we can get the desired
results.

LE et al.: OPTIMAL CONTROL OF WIRELESS NETWORKS WITH FINITE BUFFERS 1329

REFERENCES
[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no.
12, pp. 1936–1948, Dec. 1992.

[2] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, 2006.

[3] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic con-
trol for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16, no.
2, pp. 396–409, Apr. 2008.

[4] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[5] H.-W. Lee, E. Modiano, and L. B. Le, “Distributed throughput maxi-
mization in wireless networks via random power allocation,” in Proc.
WiOpt, 2009, pp. 1–9.

[6] P. Giaccone, E. Leonardi, and D. Shah, “Throughput region of finite-
buffered networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 2,
pp. 251–262, Feb. 2007.

[7] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proc. ACM SIGMETRICS, 2006,
pp. 27–38.

[8] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling
with constant overhead,” in Proc. ACM SIGMETRICS, Jun. 2007, pp.
313–324.

[9] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on
cross-layer congestion control in wireless networks,” IEEE/ACM
Trans. Netw., vol. 14, no. 2, pp. 302–315, Apr. 2006.

[10] P. Charporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” IEEE Trans. Inf. Theory,
vol. 54, no. 2, pp. 572–594, Feb. 2008.

[11] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial complexity
algorithms for full utilization of multi-hop wireless networks,” in Proc.
IEEE INFOCOM, 2007, pp. 499–507.

[12] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless net-
works,” in Proc. IEEE INFOCOM, Apr. 2008, pp. 1103–1111.

[13] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling
for distributed throughput maximization in wireless networks,” in
Proc. IEEE INFOCOM, Apr. 2008, pp. 1139–1147.

[14] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” in Proc. IEEE INFOCOM,
2007, pp. 19–27.

[15] R. Li, L. Ying, A. Eryilmaz, and N. B. Shroff, “A unified approach to
optimizing performance in networks serving heterogeneous flows,” in
Proc. IEEE INFOCOM, 2009, pp. 253–261.

[16] A. Stolyar, “Large deviations of queues sharing a randomly
time-varying server,” Queue. Syst., vol. 59, no. 1, pp. 1–35, 2008.

[17] L. Bui, A. Eryilmaz, R. Srikant, and X.Wu, “Asynchronous congestion
control in multi-hop wireless networks with maximal matching-based
scheduling,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 826–839,
Aug. 2008.

[18] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length-based scheduling and congestion control,”
IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[19] L. Ying and S. Shakkottai, “Scheduling in mobile ad hoc wireless net-
works with topology and channel-state uncertainty,” in Proc. IEEE IN-
FOCOM, 2009, pp. 2347–2355.

[20] K. Kar, X. Luo, and S. Sarkar, “Throughput-optimal scheduling in
multichannel access point networks under infrequent channel measure-
ments,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2619–2629,
Jul. 2008.

[21] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466–478, Mar. 1993.

[22] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queue. Systems., vol. 50, no. 4, pp.
401–457, Aug. 2005.

[23] A. Baron, R. Ginosar, and I. Keslassy, “The capacity allocation
paradox,” in Proc. IEEE INFOCOM, 2009, pp. 1359–1367.

[24] M. Neely, “Order optimal delay for opportunistic scheduling in multi-
user wireless uplinks and downlinks,” IEEE/ACM Trans. Netw., vol.
16, no. 5, pp. 1188–1199, Oct. 2008.

[25] L. B. Le, K. Jagannathan, and E. Modiano, “Delay analysis of max-
imum weight scheduling in wireless ad hoc networks,” in Proc. CISS,
Mar. 2009, pp. 389–394.

[26] W. Khan, L. B. Le, and E. Modiano, “Autonomous routing algorithms
for networks with wide-spread failures,” in Proc. IEEEMILCOM, Oct.
2009, pp. 1–6.

[27] M.Neely, “Delay analysis for maximal scheduling in wireless networks
with bursty traffic,” in Proc. IEEE INFOCOM, 2008, pp. 385–393.

[28] G. R. Gupta and N. B. Shroff, “Delay analysis for multi-hop wireless
networks,” in Proc. IEEE INFOCOM, 2009, pp. 2356–2364.

[29] L. Ying, S. Shakkottai, and A. Reddy, “On combining shortest-path
and back-pressure routing over multihop wireless networks,” in Proc.
IEEE INFOCOM, 2009, pp. 1674–1684.

[30] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 2003.

[31] M. J. Neely, “Energy optimal control for time varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934, Jul.
2006.

[32] L. Bui, R. Srikant, and A. Stolyar, “Novel architecture and algorithms
for delay reduction in back-pressure scheduling and routing,” in Proc.
IEEE INFOCOM, 2009, pp. 2936–2940.

[33] T. Lan, X. Lin, M. Chiang, and R. B. Lee, “Stability and benefits of
suboptimal utility maximization,” IEEE/ACM Trans. Netw., vol. 19,
no. 4, pp. 1194–1207, Aug. 2011.

[34] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff, “Longest-queue-first
scheduling under SINR interference model,” in Proc. ACM MobiHoc,
Sep. 2010, pp. 41–50.

[35] M. J. Neely, “Delay-based network utility maximization,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

Long Bao Le (S’04–M’07) received the Ph.D. de-
gree in electrical engineering from the University of
Manitoba, Winnipeg, MB, Canada, in 2007.
He is currently an Assistant Professor with

INRS-EMT, University of Quebec, Montreal, QC,
Canada. His research interests include cognitive
radio, wireless protocol engineering and resource
allocation, stochastic control, and cross-layer design
for communication networks.

Eytan Modiano (S’90–M’93–SM’00–F’12) re-
ceived the Ph.D. degree in electrical engineering,
from the University of Maryland, College Park, in
1992.
Since 1999, he has been on the faculty at the

Massachusetts Institute of Technology (MIT), Cam-
bridge, where he is a Professor with the Department
of Aeronautics and Astronautics and the Laboratory
for Information and Decision Systems (LIDS).
His research is on communication networks and
protocols with emphasis on satellite, wireless, and

optical networks.

Ness B. Shroff (S’91–M’93–SM’01–F’07) received
the Ph.D. degree in electrical engineering from Co-
lumbia University, New York, NY, in 1994.
He currently holds the Ohio Eminent Scholar

chaired professorship in Networking and Com-
munications in the Departments of Electrical
and Computer Engineering (ECE) and Computer
Science and Engineering at the Ohio State Univer-
sity, Columbus. He is interested in investigating
fundamental problems in the design and control
of communications, cyber-physical, and social

networks.

