
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Tracking Drift-Plus-Penalty: Utility
Maximization for Partially Observable and

Controllable Networks
Bai Liu , Quang Minh Nguyen, Graduate Student Member, IEEE,

Qingkai Liang, and Eytan Modiano , Fellow, IEEE

Abstract— Stochastic network models with all components
being observable and controllable have been the focus of classic
network optimization theory for decades. However, in modern
network systems, it is common that the network controller can
only observe and operate on some nodes (i.e., overlay nodes),
and the other nodes (i.e., underlay nodes) are neither observable
nor controllable. Moreover, the dynamics can be non-stochastic
or even adversarial. In this paper, we focus on the network
utility maximization (NUM) problem for networks with overlay-
underlay structures. The network dynamics, such as packet
admissions, external arrivals and control actions of underlay
nodes, can be stochastic, non-stochastic or even adversarial.
We propose the Tracking Drift-plus-Penalty (TDP*) algorithm
that only operates on the overlay nodes and does not require
direct observations of the underlay nodes, and analyze the
tradeoffs between the average utility and queue backlog. We show
that as long as the peak queue backlog of the network is sublinear
in time horizon, TDP* can solve the NUM problem, i.e., reaching
the maximum utility while preserving stability.

Index Terms— Network control, resource allocation, routing,
queueing theory.

I. INTRODUCTION

NETWORK optimization has been an active research
area for decades. However, most classic control algo-

rithms like MaxWeight [1] and Drift-plus-Penalty [2] can
only be applied to networks in which the controllers have
instantaneous observations of the global network state (e.g.,
queue backlogs), and all nodes cooperatively execute the
control commands. Moreover, the network dynamics like the
external arrivals are usually restricted to be stochastic and
time-invariant.

However, with the rapid development of information tech-
nology, modern network systems are too complex to be
characterized by the aforementioned framework. For example,

Manuscript received 28 November 2022; revised 28 June 2023;
accepted 13 August 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor L. Huang. This work was supported in part by the
National Science Foundation (NSF) under Grant CNS-1524317, Grant CNS-
1907905, and Grant CNS-1735463; and in part by the Office of Naval
Research (ONR) under Grant N00014-20-12119. Part of the material in this
paper was presented at Proceedings of the Twentieth ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing, 2019. (Corresponding
author: Bai Liu.)

Bai Liu, Quang Minh Nguyen, and Eytan Modiano are with the Laboratory
for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: bailiu@mit.edu).

Qingkai Liang is with Celer Network, Mountain View, CA 94043 USA.
Digital Object Identifier 10.1109/TNET.2023.3307684

due to security or economic concerns, many network sys-
tems do not offer full observation and control access to the
controllers [3]. Such networks can be modeled by an overlay-
underlay framework, where the controller can only observe
and control the overlay nodes, with the underlay nodes being
“black boxes” that cannot be directly observed or controlled.
The underlay nodes may apply non-stochastic policies, which
leads to challenges in the design and analysis of overlay
optimal policies. Another example is computer security, where
some nodes may be hijacked by an adversary and become
unobservable and uncontrollable. Even worse, to maximize
the damage, the adversary may change its actions dynamically
according to the controller’s actions [4], [5], [6].

In this paper, we focus on the network utility maxi-
mization (NUM) problem. Specifically, we aim to maximize
the average network utility while preserving queue stability
for networks with unobservable and uncontrollable nodes.
Moreover, the dynamics, such as packet admissions, exter-
nal arrivals and control actions of underlay nodes, can be
stochastic, non-stochastic or even adversarial. We propose an
algorithm named Tracking Drift-plus-Penalty (TDP*),1 which,
to the best of our knowledge, is the first control algorithm
to solve NUM problems under such challenging network
settings.

The major technical challenges addressed in this work are
three-fold: 1) underlay nodes are unobservable and uncon-
trollable, 2) the external arrivals and underlay policies can
be stochastic, non-stochastic or even adversarial, and 3)
the controller aims to maximize general network utilities
instead of merely stabilizing the network. In the follow-
ing we briefly discuss prior works pertaining to the above
challenges.

Control algorithms for overlay-underlay networks include
the Threshold-based Backpressure (BP-T) algorithm [7], the
Overlay Backpressure (OBP) algorithm [8], the Optimal
Overlay Routing Policy (OORP) algorithm [9] and the
Tracking-MaxWeight (TMW) and Truncated Upper Confi-
dence Reinforcement Learning (TUCRL) algorithms [10].
These algorithms apply the Lyapunov optimization framework
and only need to control the overlay nodes. However, they
all require instantaneous observations and can only optimize
the network throughput instead of general network utilities.

1We use TDP* to distinguish from our earlier version of TDP that required
instantaneous observation of uncontrollable nodes.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3950-4965
https://orcid.org/0000-0001-8238-8130

2 IEEE/ACM TRANSACTIONS ON NETWORKING

An alternative model of the overlay-underlay framework is
a Partially Observable Markov Decision Process (POMDP).
POMDPs seek to optimize general objectives with some
system states being unobservable and uncontrollable. However,
most works on POMDP focus on heuristic algorithms and
lack theoretical performance guarantees. Theoretical studies on
POMDPs [11], [12], [13], [14], [15], [16] apply value iteration
or policy search, yet are only practical for networks of small
size.

There has been a significant number of studies on net-
works with non-stochastic and adversarial dynamics. The
work of [17] proposed the Adversarial Queueing Theory
(AQT) framework, which introduced the “W constraint” that
restricts the volume of external arrivals during a certain
time window. Using the W constraint to characterize the
network dynamics, the algorithms proposed in [18] and [19]
can stabilize single-hop wireless communication systems. The
work of [20] proposed the Tracking Algorithm (TA) that can
stabilize general multi-hop networks, under a more relaxed
constraint named “VT constraint”. The VT constraint only
requires the peak queue backlog under the optimal policy to
be constrained to VT . However, the aforementioned works all
require instantaneous observations of the underlay dynamics.
The work of [21] proposed the MaxWeight for Networks with
Unobservable Malicious Nodes (MWUM) algorithm, which
is a throughput-optimal algorithm that can be applied to
partially observable and controllable networks. However, the
MWUM algorithm cannot optimize general network utilities.
Note that the W and VT constraints are conditions for the
whole network, i.e., all external arrivals and underlay actions
generated by the network should satisfy the constraints.

Classic algorithms for NUM problems [2], [22], [23], [24]
require stochastic dynamics. The work of [25] extended the
classic Drift-plus-Penalty algorithm and Tracking Algorithm
(TA) to networks with adversarial dynamics. However, both
algorithms require full observability and controllability. The
conference version of this paper, [26], proposed a preliminary
version of the Tracking Drift-plus-Penalty (TDP) algorithm for
partially controllable networks with adversarial dynamics. This
paper further extended TDP to partially observable settings,
and applied the VT constraint to further relax the constraints
on the underlay dynamics.

Our main contributions are summarized below.
We first propose TDP*, which uses estimates of the state

of the underlay nodes instead of direct observations and only
requires to control the overlay nodes. We show that as long
as the NUM problem has at least one solution satisfying
the VT constraint, TDP* can achieve maximum utility while
preserving stability. Note that this condition is non-trivial for
partially controllable networks, since the uncontrollable nodes
may admit an excessive number of packets such that no overlay
policy can stabilize the system.

We also rigorously derive the upper bounds for the gap to
maximum utility and the queue backlogs, under stochastic,
non-stochastic and adversarial dynamics. The bounds explic-
itly reveal the trade-off between the utility gap and the queue
backlog, through a parameter V .

Furthermore, tuning the value of V requires the value of
time horizon T in advance. In practice, such information may
not be available. Thus, we extended TDP* so that the value
of V is updated in an online manner during the operation.

The rest of this paper is organized as follows. We introduce
the network model and discuss different types of network
dynamics in detail in Section II. We introduce TDP* in
Section III. In Section IV, we derive the bounds to the
utility gap and queue backlog under TDP*, and show that
TDP* solves the NUM problem as long as the network
is stabilizable. Section VI presents simulation results and
Section VII concludes the paper.

II. MODEL

We consider a multi-hop network with N nodes and denote
the set of nodes by N . The nodes are classified into two types:
the set of overlay nodes O and the set of underlay nodes U .
The network has K classes of data and the data of class k is
destined for sink dk. The set of data classes is denoted by K.
The link capacity between node i and j is Cij . We assume
that time is slotted and the time horizon is T .

At the beginning of time slot t, a node i ∈ N has
Qik(t) buffered packets of class k and receives aik(t) external
packets of class k. For simplicity, we assume that Qik(0) =
0 for each i and k. The controller then admits γik(t) ∈[
0, aik(t)

]
packets of flow k to node i. We denote the set

of γik(t) as γ(t), which can be decomposed into overlay
admissions γo(t) and underlay admissions γu(t). We assume
that we have instantaneous observations of γu(t). Denote by
U

(
γ(t)

)
=

∑
i,k Uik

(
γik(t)

)
the network utility function,

where each Uik

(
γik(t)

)
is the utility gained by admitting

γik(t) ∈
[
0, aik(t)

]
packets of flow k to node i. Common

network utilities include:
• Total throughput: U

(
γ(t)

)
=

∑
i,k γik(t).

• Proportional fairness: U
(
γ(t)

)
=

∑
i,k log

(
1 + γik(t)

)
.

• Power allocation: U
(
γ(t)

)
= −

∑
i,k Pik

(
γik(t)

)
, where

Pik(·) is the power cost function.
For an overlay node i ∈ O, we denote by fijk(t) the number

of packets of class k transmitted to a neighbor j as decided
by the network controller under a given policy. The set of all
fijk(t) at time t is denoted by f(t). However, there may not
be enough buffered packets (i.e., Qik(t) + aik(t)) to support
the planned transmissions, and the actual number of packets
transmitted, denoted by f̃ijk(t), might be less than fijk(t).
In this case, the controller can decide the actual transmissions
arbitrarily, as long as the following constraint is satisfied.

∑
j∈N

f̃ijk(t) = Qik(t) + aik(t)

0 ⩽ f̃ijk(t) ⩽ fijk(t).

For an underlay node i ∈ U , we denote by µijk(t) the
number of packets of class k transmitted to a neighbor j from
an underlay node i ∈ U under a given underlay policy and the
actual number of packets transmitted by µ̃ijk(t). The set of all
µijk(t) at time t is denoted by µ(t). The network controller
cannot directly observe Qik(t) or implement control policies
at the underlay. We assume that by applying network inference

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 3

methods (e.g., probing [27], [28]), the network controller can
obtain estimates Q̂ik(t) of underlay queue backlog Qik, and
that such estimates are only available sporadically. We denote
by Γi the set of time slots when estimates are made for node
i. In other words, for an underlay node i ∈ U , the network
controller only has an estimate Q̂ik(t) of queue backlog Qik(t)
for t ∈ Γi. We denote τik(t) as the time slot when the most
recent state estimate of class k at node i is obtained, i.e.,

τik(t) = max
τ∈Γik:τ⩽t

τ,

with which we define L(t) ≜ maxi

(
t−τik(t)

)
, which denotes

the largest delay in underlay observations at time t and assume
that the average observation delay is sublinear in the time
horizon T , i.e.,

T−1∑
t=0

L(t)
T

= o(T). (1)

This assumption is needed to control the impact of outdated
underlay observations, and is not hard to satisfy. If the obser-
vations of underlay nodes occur with fixed interval, then it
is easy to show that

∑T−1
t=0 L(t)/T = O(1). More generally,

the condition is met as long as the kth observation interval
of underlay nodes grows slower than the order of kα where
α ⩾ 0.

The estimate can be erroneous. For an underlay node i ∈ U
and t ∈ Γik, we define the error as ϵik(t) ≜ Q̂ik(t)−Qik(t).
Our algorithm is robust to estimation errors. To guarantee the
desired performance, we only need to assume that the errors
grow sublinearly in time, i.e.,

|ϵik(t)| = o(t). (2)

We further assume the system dynamics to be bounded, i.e.,

0 ⩽ aik(t), Uik

(
γik(t)

)
, fijk(t), µijk(t) ⩽ D, ∀i, j, k, t (3)

for some constant D ⩾ 0.
Mathematically, the queue backlogs evolve according to the

following rule (we use the operator [x]+ ≜ max{x, 0})

Qik(t + 1)

=



[
Qik(t) + γik(t)−

∑
j∈N

fijk(t)
]+

+
∑

j∈O
f̃jik(t) +

∑
j∈U

µ̃jik(t), i ∈ O[
Qik(t) + γik(t)−

∑
j∈N

µijk(t)
]+

+
∑

j∈O
f̃jik(t) +

∑
j∈U

µ̃jik(t), i ∈ U .

We use the network event sequence of external arrivals,
underlay admissions and underlay transmissions, i.e.,{
a(t),γu(t), µ(t)

}
0⩽t⩽T−1

, to characterize the underlay
behaviors. The policy taken by the network controller can
be characterized by a function π that maps a network event
sequence to an overlay action sequence, i.e.,

π :
{
a(t),γu(t), µ(t)

}
0⩽t⩽T−1

→
{
γo(t), f(t)

}
0⩽t⩽T−1

.

Note that this definition is equivalent to policies that make
decisions based on queue backlogs, since the action sequence

determines the queue backlogs. It is also worthwhile to empha-
size that the underlay actions γu(t) are unobservable to the
controller.

The packet admissions, external arrivals and control actions
of underlay nodes are generated differently under different
network dynamics. The dynamics can be classified into three
categories: stochastic dynamics, non-stochastic dynamics and
adversarial dynamics, as introduced below.

A. Stochastic Dynamics

Under stochastic dynamics, the external arrivals aik(t)’s
are i.i.d across time. We assume that control policies of the
underlay nodes are queue agnostic (i.e. the actions are inde-
pendent of the queue backlogs), such as randomized routing
and shortest path protocols.

Our goal is to design an algorithm that maximizes the
average network utility while keeping the network rate stable,
i.e.,

max
π

lim
T→∞

E
[∑T−1

t=0 U
(
γπ(t)

)]
T

s.t. lim
T→∞

E
[∑

i∈N ,k Qπ
ik(T)

]
T

= 0 (4)

where we use superscript π to distinguish the variables under
policy π. (e.g., Qπ

ik(t) is the queue backlog of class k data
at node i at t under policy π). We use mean rate stability
to characterize the stability constraint, which implies that as
t → ∞, the expected queue backlog grows up to a sublinear
function of t and the arrival rate is no greater than the service
rate.

We assume that there exists a policy π∗ that solves (4).
If there are multiple policies satisfying the conditions, we arbi-
trarily select any one of them to be π∗. We define VT as the
maximum queue backlog under π∗ during the whole process,
i.e.,

VT ≜ E
[

max
0⩽t⩽T

∑
i∈N ,k

Qπ∗
ik (t)

]
.

We assume that VT is sublinear in time horizon T , i.e., VT =
o(T).

For any policy π, we use utility regret to characterize the
accumulated gap between the utilities under π and π∗, defined
as follows.

Definition 1: The utility regret achieved by applying policy
π is defined to be

Rπ
T = E

[
T−1∑
t=0

U
(
γπ∗(t)

)
−

T−1∑
t=0

U
(
γπ(t)

)]
.

It is straightforward to see that maximizing utility is equivalent
to minimizing the utility regret. If an algorithm obtains the
performance of Rπ

T = o(T), then its average utility converges
to the maximum utility asymptotically.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

B. Non-Stochastic Dynamics

Under non-stochastic dynamics, the external arrivals and
underlay actions are generated arbitrarily and cannot be cap-
tured by a stochastic process. Instead, we aim to solve

max
π

lim
T→∞

∑T−1
t=0 U

(
γπ(t)

)
T

s.t. lim
T→∞

∑
i∈N ,k Qπ

ik(T)
T

= 0 (5)

for any occurred network event sequence.
We assume that, there exists a policy π∗ such that for each

possible network event sequence, the overlay action sequence
generated by π∗ solves (5). If there are multiple policies
satisfying the conditions, we arbitrarily select any one of them
to be π∗. We define VT to be the worst-case peak total queue
backlog under π∗ across network event sequences, i.e.,

VT ≜ max
{a(t),γu(t),µ(t)}0⩽t⩽T−1

max
0⩽t⩽T

∑
i∈N ,k

Qπ∗
ik (t).

We assume that VT is sublinear in time horizon T , i.e., VT =
o(T). The definition of VT can also be regarded as a constraint
on network dynamics: the network should be benign such that
the peak total queue backlog under π∗ is always bounded
by VT .

We define the utility regret in a worst-case manner, i.e.,
Definition 2: The utility regret achieved by applying policy

π is defined to be

Rπ
T = max

{a(t),γu(t),µ(t)}0⩽t⩽T−1

T−1∑
t=0

U
(
γπ∗(t)

)
−

T−1∑
t=0

U
(
γπ(t)

)
.

Since Rπ
T is the worst-case regret, if an algorithm obtains

Rπ
T = o(T), then for each possible network event sequence,

it converges to the maximum utility corresponding to the
network event sequence.

C. Adversarial Dynamics

Under non-stochastic dynamics, network event sequences
can be arbitrary but are independent of the controller’s actions.
However, under adversarial dynamics, the underlay nodes are
controlled by an intelligent adversary, who can change packet
admissions, external arrivals and control actions of underlay
nodes according to the control actions up to time t − 1 to
maximize the impact on the achieved utility. For instance,
in Denial-of-Service (DDoS) attack, the attacker hijacks and
takes control of multiple machines in the network by planting
Trojans or scanning for security holes [4]. The adversary may
consider the past queue backlogs and transmission history and
send a large number of requests to the most vulnerable nodes.

Similar to Section II-B, we assume that for each possible
network event sequence, (5) always has a solution, and con-
tinue using the definitions of VT and Rπ

T of Section II-B.
However, under adversarial dynamics, the coupling between

the controller and adversary brings significant challenges in
solving the NUM problems formulated as (5). As analyzed
in Section IV, we can calculate an optimal action sequence
that maximize average utility while preserving rate stability for
any given network event sequence. However, under adversarial

TABLE I
VARIABLE NOTATIONS

dynamics, when the optimal action sequence is applied to
the system, the adversary may adjust future network events
so that the optimal action sequence no longer maximizes
the average utility. Coping with the coupling issue remains
an open problem and is beyond the scope of this paper.
Nonetheless, we can show that, no matter how malicious the
adversary is, for any realized network event sequence, the
TDP* algorithm is guaranteed to maximize the utility.

For readers’ convenience, we summarize the variable nota-
tions in Table I.

III. OUR APPROACH

The key challenges in solving the NUM problem are
two-fold. First, the partial observability and controllability
make classical algorithms such as MaxWeight [1] unusable.
Second, the external arrivals and the routing actions taken
by the underlay nodes may not be cooperative and may
even impact the utility and destabilize the network. While
some existing works attempts to solve NUM problems in
partially controllable or adversarial settings, no algorithm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 5

is capable of handling unobservability, uncontrollability, and
non-stochastic/adversarial dynamics together.

A. Overview

The core of our algorithm is to “track” the underlay dynam-
ics (i.e., the queue backlog and service of the underlay nodes)
and solve the NUM problem based on the tracked information.

Specifically, the controller constructs an “imaginary” system
with the same topology as the real system, yet all nodes
are fully observable and controllable. The actions of each
underlay node i ∈ U in the imaginary system can be decided
by the controller, and we use gijk(t) to denote the number
of packets of class k transmitted to neighbor j. However,
gijk(t) may differ from the actual underlay action µijk(t), thus
causing gaps in queue backlogs between the imaginary system
(denoted by Xik) and the real system (still denoted by Qik).
Meanwhile, the controller directly observes the overlay queue
backlogs in the real system, and enforce them as the overlay
queue backlog in the “imaginary” system, so that each overlay
node i ∈ O is always synchronized with the real system, i.e.,
the queue backlogs Qik and the action γik and fijk at overlay
nodes are the same across the imaginary system and the real
system.

We define the gap between Qik and Xik by Yik ≜ Qik −
Xik. The queue backlog in the real system can be decomposed
into the queue backlog in the imaginary system and the queue
backlog gap between the two systems, i.e.,∑

i∈N ,k

Qik(t)︸ ︷︷ ︸
backlog in the real system

=
∑

i∈O,k

Qik(t) +
∑

i∈U,k

Xik(t)︸ ︷︷ ︸
backlog in the imaginary system

+
∑

i∈U,k

Yik(t)︸ ︷︷ ︸
gap between systems

. (6)

Since the imaginary system is easier to control, our approach
is to solve the NUM problem for the imaginary system, while
controlling the gap between the two systems.

B. Algorithm

The Tracking Drift-plus-Penalty (TDP*) algorithm enhances
the classical Drift-plus-Penalty algorithm [2] and can be
applied to stochastic dynamics, non-stochastic dynamics and
adversarial dynamics. To minimize the queue backlog and to
maximize the utility simultaneously in the imaginary system,
we aim at minimizing the following Lyapunov function

Φ(t) ≜
1
2

∑
i∈O,k

Q2
ik(t) +

1
2

∑
i∈U,k

X2
ik(t)

+
1
2

∑
i∈U,k

Y +2
ik (t) − V ·

t−1∑
τ=0

U
(
γ(τ)

)
. (7)

where Y +
ik (t) = max{Yik(t), 0} and V is a parameter that will

be used to tune the utility-backlog trade-off.

To control the growth of (7), we minimize the Lyapunov
drift ∆Φ(t) ≜ Φ(t + 1) − Φ(t) during each time slot. It can
be shown that minimizing ∆Φ(t) is equivalent to minimizing∑

i∈O,k

Qik(t)δQik(t) +
∑

i∈U,k

Xik(t)δXik(t)

+
∑

i∈U,k

Y +
ik (t)∆Y +

ik (t) − V · U
(
γπ(t)

)
, (8)

where δQik(t), δXik(t) and ∆Yik(t) are defined as

δQik(t) ≜ γik(t)−
∑

j∈N
fijk(t) +

∑
j∈O

fjik(t)

+
∑

j∈U
µ̃jik(t), i ∈ O

δXik(t) ≜ γik(t)−
∑

j∈N
gijk(t) +

∑
j∈O

fjik(t)

+
∑

j∈U
gjik(t), i ∈ U

∆Yik(t) ≜ Yik(t + 1)− Yik(t), i ∈ U .

The proof can be found in Appendix B and C. Note that we
use δ instead of ∆ for δQik(t) and δXik(t) because they are
not the actual one-slot changes (using f̃ijk and g̃ijk) but the
planned one-slot changes (using fijk and gijk).

However, for an underlay node i ∈ U , the network controller
does not have instantaneous access to its queue backlog Qik(t)
and thus the value of Yik(t) is unavailable to the network
controller. As discussed in Section II, the network controller
can obtain estimates of Qik at certain time slots Γi. Therefore,
the network controller can use the most recently estimated
(possibly erroneous) Q̂ik(t) to estimate Yik(t), i.e.,

Ŷik(t) = Q̂ik(τi(t))−Xik(t), (9)

where τi(t) is the most recent time when an estimation of Qik

was made, i.e., τi(t) ≜ maxτ∈Γi:τ⩽t τ . By replacing Y +
ik (t)

with Ŷ +
ik (t) and discarding uncontrollable variables including

aik and µijk, Eqn (8) can be fomulated as (10), shown at the
bottom of the next page, where the solution is denoted by
γπT

o (t), fπT (t) and gπT (t).
For each time slot, the network controller solves (10) and

applies γπT
o (t) and fπT (t) to the overlay nodes in the real

network, meanwhile using fπT (t) and gπT (t) to update
Xik(t) for all underlay nodes i ∈ U , according to

Xik(t + 1) =
[
Xik(t) + γik(t)−

∑
j∈N

gijk(t)
]+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

gjik(t), (11)

where, for technical reasons, we assume that in the imaginary
network, underlay nodes can transmit dummy packets when
the allotted packets to be transmitted are less than the queue
backlog (i.e., g̃ijk ≡ gijk for i ∈ U). This assumption does
not affect the performance of the algorithm, as analyzed in the
next section.

The complete algorithm is given in Algorithm 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 The TDP* Algorithm
1: Input: T , Qik(0), Γi for i ∈ U
2: Initialization: Xik(0) ← Qik(0) for i ∈ N , Ŷik(0) ←

0 for i ∈ U
3: for t← 0, 1, · · · , T − 1 do
4: Obtain Qik(t) and aik(t) for i ∈ O, γik(t) and Xik(t)

for i ∈ U
5: for i ∈ U do
6: if t ∈ Γi then
7: Obtain an estimation Q̂ik(t) for k
8: end if
9: Update Ŷik(t) using Eqn (9) for k

10: end for
11: Solve Eqn (10) and obtain γπT

o (t), fπT (t) and gπT (t)
12: Implement γπT

o (t) and fπT (t) to overlay nodes O in
the real network

13: Update Xik(t + 1) using Eqn (11) for i ∈ U and k
14: end for
15: Output: action sequence for overlay nodes fπT (t) for

t = 0, · · · , T − 1, i.e., πT

IV. PERFORMANCE ANALYSIS

We derive the following universal bounds for stochastic,
non-stochastic and adversarial dynamics, using VT in Theo-
rem 1. For conciseness, we use QπT

T to denote the expected
total queue backlog at T for stochastic dynamics, and to denote
the worst-case total queue backlog at T for non-stochastic and
adversarial dynamics, under policy TDP*.

Theorem 1: Under the TDP* algorithm, we have the fol-
lowing performance bounds:

RπT

T = O
(V

1/2
T T 3/2 + σ(L, ϵ)

V

)
QπT

T = O
(
V

1/4
T T 3/4 +

√
TV +

√
σ(L, ϵ)

)
where σ(L, ϵ) characterizes the impact caused by sparse
observations on underlay nodes and estimation errors, and is
upper bounded by

σ(L, ϵ) = O
(T−1∑

t=0

L(t) +
T−1∑
t=0

∑
i∈U,k

|ϵik(τik(t))|
)

.

Proof: For conciseness, we use superscript π to denote
the variables that are obtained under policy π. For example,
ΦπT (T) denotes the Lyapunov value at T under TDP*, and∑

i,k Qπ∗
ik (T) denotes the total queue backlog at T under

policy π∗.

The outline of the proof is as follows. We first bound the
queue backlog. By Lemma 1, bounding the queue backlog
can be achieved by bounding the Lyapunov value ΦπT (T).
To bound ΦπT (T), we use Lemma 2, 3 and 4 to bound the
one-slot drift ∆ΦπT (t). By summing up ∆ΦπT (t) over time
and using Lemmas 5 and 6, we bound ΦπT (T) and thus
bound the queue backlog. We then bound the utility regret
by rearranging the result in Lemma 4 and reusing Lemmas 5
and 6.

We assume the occurred network event sequence to be
an arbitrary sequence

{
a(t), γu(t), µ(t)

}
0⩽t⩽T−1

. We denote
the corresponding overlay action sequence under TDP* by{
γπT

o (t), fπT (t)
}

0⩽t⩽T−1
, and the overlay action sequence

under π∗ by
{
γπ∗

o (t), fπ∗(t)
}

0⩽t⩽T−1
.

To prove Theorem 1, we first prove the upper bound on the
queue backlog at T . With the following lemma (see Appendix
A for the proof), to bound the queue backlog, it suffices to
bound ΦπT (T).

Lemma 1:∑
i,k

QπT

ik (T) ⩽
√

2KNΦπT (T) + 2K2N2DV T .

To bound ΦπT (T), we start by bounding ∆ΦπT (t).
We upper bound Q2

ik(t+1)−Q2
ik(t), X2

ik(t+1)−X2
ik(t) and

Y +2
ik (t + 1) − Y +2

ik (t) in Lemmas 2 and 3, respectively (see
Appendices B and C for the proof).

Lemma 2: For each t = 0, · · · , T − 1, we have{
Q2

ik(t + 1)−Q2
ik(t) ⩽ 2Qik(t)δQik(t) + 6N2D2, i ∈ O

X2
ik(t + 1)−X2

ik(t) ⩽ 2Xik(t)δXik(t) + 6N2D2, i ∈ U

Lemma 3: For each i ∈ U , k and t = 0, · · · , T−1, we have

Y +2
ik (t + 1)− Y +2

ik (t)

⩽ 2Ŷ +
ik (t)∆Yik(t) +

(
8L(t) + 6

)
N2D2 + 4ND|ϵik(τik(t))|.

With Lemma 2 and Lemma 3, we can upper bound ∆ΦπT (t)
as follows,

∆ΦπT (t)

⩽
∑

i∈O,k

QπT

ik (t)δQπT

ik (t) +
∑

i∈U,k

XπT

ik (t)δXπT

ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆Y πT

ik (t)−V · U
(
γπT (t)

)
+ (4L(t) + 9)KN3D2 + 2KN2D|ϵik(τik(t))|. (12)

γπT
o (t), fπT (t), gπT (t)

= arg min
γo,f ,g

∑
i∈O,k

Qik(t) ·
[
γik +

∑
j∈O

fjik +
∑
j∈U

gjik −
∑
j∈N

fijk

]
+

∑
i∈U,k

Xik(t) ·
[∑

j∈O
fjik +

∑
j∈U

gjik −
∑
j∈N

gijk

]
+

∑
i∈U,k

Ŷ +
ik (t) ·

[
min

{ ∑
j∈N

gijk, Xik(t) + γik(t)
}
−

∑
j∈U

gjik

]
−V ·

∑
i∈O,k

Uik

(
γik

)
, (10)

s.t. 0 ⩽ γik ⩽ aik(t), fijk ⩾ 0,
∑

k fijk ⩽ Cij , gijk ⩾ 0,
∑

k gijk ⩽ Cij .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 7

For technical exposition, we consider the following quantities

∆Qπ∗
ik (t) ≜ γπ∗

ik (t)−
∑

j∈N
f̃π∗

ijk(t) +
∑

j∈O
f̃π∗

jik(t)

+
∑

j∈U
µ̃jik(t), i ∈ O

∆Xπ∗
ik (t) ≜ γik(t)−

∑
j∈N

µ̃ijk(t) +
∑

j∈O
f̃π∗

jik(t)

+
∑

j∈U
µ̃jik(t), i ∈ U

∆̃Y π∗
ik (t) ≜ min

{
Xπtik(t) + γik(t),

∑
j∈N

µ̃ijk(t)
}

−
∑

j∈N
µ̃ijk(t), i ∈ U .

Particularly, ∆Qπ∗
ik (t) and ∆Xπ∗

ik (t) are the actual one-slot
changes of the queue backlogs of both the real and imaginary
systems under the policy π∗. On the other hand, ∆̃Y π∗

ik (t)
captures the “hypothetical” one-slot change of the system gap
if, given the current state to be XπT

ik (t), the actions of π∗

are applied. To ease analysis, we replace the one-slot changes
δQπT

ik (t), δXπT

ik (t) and ∆Y πT

ik (t) in (12) with ∆Qπ∗
ik (t),

∆Xπ∗
ik (t) and ∆̃Y π∗

ik (t) using the following lemma (see
Appendix D for the proof). The intuition behind is that (10)
minimizes the drift.

Lemma 4:∑
i∈O,k

QπT

ik (t)δQπT

ik (t) +
∑

i∈U,k

XπT

ik (t)δXπT

ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆Y πT

ik (t)−V · U
(
γπT (t)

)
+

⩽
∑

i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆̃Y π∗

ik (t)−V · U
(
γπ∗(t)

)
.

With Lemma 4, ∆ΦπT (t) can be further upper bounded as

∆ΦπT (t)

⩽
∑

i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆̃Y π∗

ik (t)−V · U
(
γπ∗(t)

)
+ (4L(t) + 9)KN3D2 + 2KN2D|ϵik(τik(t))|. (13)

Summing up (13) from t = 0 to t = T−1 gives us an upper
bound to ΦπT (T). To assist the analysis, we prove Lemmas 5
and 6 (see Appendices E and F for the proof), as follows.

Lemma 5:

T−1∑
t=0

∑
i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

T−1∑
t=0

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

= O
((

max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/2

· T 3/2

)
.

Lemma 6:

T−1∑
t=0

∑
i∈U,k

Ŷ
πT +
ik (t)∆̃Y π∗

ik (t) ⩽ 0.

By summing up (13) from t = 0 to t = T − 1, inserting
Lemma 5 and 6, we have

ΦπT (T) = O
((

max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/2

· T 3/2 + σ(L, ϵ)
)

.

(14)

By inserting (14) into the result in Lemma 1, we show that∑
i,k

QπT

ik (T)

= O
((

max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/4

· T 3/4 +
√

TV +
√

σ(L, ϵ)
)

.

(15)

For stochastic dynamics, by taking expectation over the
network event sequences on both sides of (15), we have

E
[∑

i,k

QπT

ik (T)
]

=O
(
E

[(
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/4
]
· T 3/4+

√
TV +

√
σ(L, ϵ)

)

= O
(
E

[
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

]1/4

· T 3/4 +
√

TV +
√

σ(L, ϵ)
)

= O
(
V

1/4
T T 3/4 +

√
TV +

√
σ(L, ϵ)

)
, (16)

where the second equation holds by apply Jensen’s inequal-
ity and the last equation holds by the definition of VT in
Section II-A.

For non-stochastic and adversarial dynamics, we consider
the worst case of queue backlog, as

max
{a(t),γu(t),µ(t)}0⩽t⩽T−1

∑
i,k

QπT

ik (T)

= O
(

max
{a(t),γu(t),µ(t)}0⩽t⩽T−1

(
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/4

· T 3/4

+
√

TV +
√

σ(L, ϵ)
)

= O
(
V

1/4
T T 3/4 +

√
TV +

√
σ(L, ϵ)

)
, (17)

where the last equation holds by the definition of VT in
Section II-B.

Equations (16) and (17) complete the bound on the queue
backlog for all types of dynamics.

We now bound the utility regret. By rearranging the result
in Lemma 4, we have

V · U
(
γπ∗(t)

)
−V · U

(
γπT (t)

)
⩽

∑
i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆̃Y π∗

ik (t) −
∑

i∈O,k

QπT

ik (t)δQπT

ik (t)

−
∑

i∈U,k

XπT

ik (t)δXπT

ik (t) −
∑

i∈U,k

Ŷ πT +
ik (t)∆Y πT

ik (t),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

which, by inserting Lemma 2 and Lemma 3 to the last three
terms, can be further upper bounded as

V · U
(
γπ∗(t)

)
−V · U

(
γπT (t)

)
⩽

∑
i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

+
∑

i∈U,k

Ŷ πT +
ik (t)∆̃Y π∗

ik (t)

+
1
2

∑
i∈O,k

QπT

ik (t)2 − 1
2

∑
i∈O,k

QπT

ik (t + 1)2

+
1
2

∑
i∈U,k

XπT

ik (t)2 − 1
2

∑
i∈U,k

XπT

ik (t + 1)2

+
1
2

∑
i∈U,k

Y πT +
ik (t)2 − 1

2

∑
i∈U,k

Y πT +
ik (t + 1)2

+ (4L(t) + 9)KN3D2 + 2KN2D|ϵik(τik(t))|. (18)

Summing up (18) from t = 0 to time t = T − 1, applying
Lemma 5 and Lemma 6, we have

V · U
(
γπ∗(t)

)
−V · U

(
γπT (t)

)
= O

((
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/2

· T 3/2 + σ(L, ϵ)
)

+
1
2

∑
i∈O,k

QπT

ik (0)2 − 1
2

∑
i∈O,k

QπT

ik (T)2

+
1
2

∑
i∈U,k

XπT

ik (0)2 − 1
2

∑
i∈U,k

XπT

ik (T)2

+
1
2

∑
i∈U,k

Y πT +
ik (0)2 − 1

2

∑
i∈U,k

Y πT +
ik (T)2

⩽ O
((

max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t)

)1/2

· T 3/2 + σ(L, ϵ)
)

, (19)

where the inequality holds because we assume the initial queue
backlogs are zero.

For stochastic dynamics, similar to the analysis in bounding
the queue backlog, by dividing by V and taking expectation
over the network event sequences on both sides of (19),
applying Jensen’s inequality, and using Definition 1, we have
RπT

T = O
(
V

1/2
T T 3/2/V +σ(L, ϵ)/V

)
. For non-stochastic and

adversarial dynamics, also similar to the analysis in bounding
the queue backlog, by dividing by V on both sides of (19),
considering the worst case of network event sequences, and
using Definition 2, we also obtain RπT

T = O
(
V

1/2
T T 3/2/V +

σ(L, ϵ)/V
)

. Therefore, we obtain the bound on the utility
regret for all types of dynamics. □

With Theorem 1, we can easily derive that the TDP*
algorithm can solve the NUM problem, i.e., maximizing the
utility while keeping stable queues, as in Theorem 2.

Theorem 2: For a network with stochastic / non-stochastic
dynamics, the TDP* algorithm solves the NUM problem
defined by (4) / (5), respectively.

Proof: By the assumptions made in Section II, we have
VT = o(T). By (1) and (2), we have σ(L, ϵ) = o(T 2).
We assume that there exists a number 0 ⩽ α < 1 such that

VT = O(Tα) and σ(L, ϵ) = O(T 2α). We choose V = T β

with (1 + α)/2 < β < 1.
For stochastic dynamics, we have
RπT

T /T = O
(
T

1+α
2 −β + T 2α−β−1

)
E

[∑
i∈N ,k

Qπ
ik(T)

]
= O

(
T

3+α
4 + T

1+β
2 + Tα

)
= o(T),

(20)

which shows that as T → ∞, the average utility converges
to the maximum utility, while the queue backlog remains rate
stable. Thus TDP* solves (4) for stochastic dynamics.

For non-stochastic dynamics, we have
RπT

T /T = O
(
T

1+α
2 −β + T 2α−β−1

)
max

{a(t),γu(t),µ(t)}0⩽t⩽T−1

∑
i,k

QπT

ik (T)

= O
(
T

3+α
4 + T

1+β
2 + Tα

)
= o(T),

(21)

which shows for any network event sequence, the average
utility converges to the maximum utility and the queue backlog
remains rate stable. Thus TDP* solves (5) for non-stochastic
dynamics. □

Theorem 2 presents a strong result that if a solution to NUM
problems (i.e., maximizing utility while preserving stability)
with stochastic or non-stochastic dynamics exists, the TDP*
algorithm is almost equivalent to the optimal policy. For
adversarial dynamics, the results in (21) still holds. The queue
backlog always remains rate stable. However, the average
utility only converges to the maximum utility for a given
network event sequence. Due to the coupling between the
controller and adversary, when TDP* is actually applied to
the system, the adversary may change the incoming network
events to undermine the utility achieved by TDP*. Nonethe-
less, the results in (21) show that, no matter how malicious
the adversary is, for any realized network event sequence, the
TDP* algorithm is guaranteed to maximize the utility.

V. ONLINE TDP*

If the time horizon T is unknown, it is hard set up an
appropriate static V . The controller can dynamically estimate
the time horizon using the doubling trick: in the beginning
the time horizon estimate is T̂ = T0. Every time the actual
time elapsed exceed T̂ , the controller doubles the estimate,
i.e., T̂ ← 2T̂ . Meanwhile, the controller uses the estimated
T̂ to decide the value of V dynamically. As defined in the
proof of Theorem 2, there exists a number 0 ⩽ α < 1 such
that VT = O(Tα). Given an estimate T̂ to the time horizon,
we choose V = T̂ β with (1 + α)/2 < β < 1. Under the
doubling trick, the value of T̂ at time t is

T̂ =

{
T0, 0 ⩽ t < T0

2kT0, 2k−1T0 ⩽ t < 2kT0, k ⩾ 1,
(22)

and the corresponding value of V at time t is

V (t) =

{
T β

0 , 0 ⩽ t < T0

2kβT β
0 , 2k−1T0 ⩽ t < 2kT0, k ⩾ 1.

(23)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 9

We replace the static V in (10) with V (t) defined in (23),
and all other operations of TDP* remain unchanged. We can
show that the online TDP* still solves the NUM problems,
as stated below.

Theorem 3: When applying the doubling trick to estimate
the time horizon T , the results in Theorem 2 still hold.

Proof: We first analyze the queue backlog. The analysis
for the queue backlog in the proof of Theorem 1 still holds,
with the only difference of replacing the static V in (15),
(16) and (17) with the largest V (t). From (22), for any real
time horizon T , the estimated time horizon T̂ is at most 2T .
Thus, the largest V (t) is bounded as O

(
T β

)
. By replacing

the V with T β and inserting VT = O(Tα) in (15), (16) and
(17), the bounds for queue backlogs in (20) and (21) still
hold. Therefore, TDP* stabilizes the system for all types of
dynamics.

We then analyze the utility regret. We consider an arbi-
tray network event sequence

{
a(t), γu(t), µ(t)

}
0⩽t⩽T−1

.
By replacing the V with V (t) in (18), summing it up from
t = 0 to time t = T − 1, and applying Lemma 5 and 6,
we have

T−1∑
t=0

V (t) ·
(

U
(
γπ∗(t)

)
−U

(
γπT (t)

))
⩽ C · V 1/2

T T 3/2

(24)

for any T > 0, where C is a constant. For concise-
ness, we define RπT

t0:t1 ≜
∑t1−1

t=t0

(
U

(
γπ∗(t)

)
−U

(
γπT (t)

))
.

By inserting V (t) defined in (23) into (24), we have for every
K ⩾ 1,

T β
0 ·R

πT

T0
+

K∑
j=1

(
2jT0

)β ·RπT

2j−1T0:2jT0

⩽ C · V 1/2

2KT0
·
(
2KT0

)3/2
. (25)

Since β < 1, for any 1 ⩽ k ⩽ K, we have

(
2KT0

)β = 2kβ ·
(
2K−kT0

)β
⩽ 2k ·

(
2K−kT0

)β
,

with which we can bound
(
2KT0

)β ·RπT

2KT0
(with K ⩾ 1) as

(
2KT0

)β ·RπT

2KT0

=
(
2KT0

)β ·RπT

T0
+

K∑
j=1

(
2KT0

)β ·RπT

2j−1T0:2jT0

⩽ 2K ·
(
T0

)β ·RπT

T0
+

K∑
j=1

2K−j ·
(
2jT0

)β ·RπT

2j−1T0:2jT0

=
K−1∑
k=0

2K−k−1 ·
(

T β
0 ·R

πT

T0
+

k∑
j=1

(
2jT0

)β ·RπT

2j−1T0:2jT0

)

+ T β
0 ·R

πT

T0
+

K∑
j=1

(
2jT0

)β ·RπT

2j−1T0:2jT0
. (26)

Fig. 1. The model of the 15-node network with stochastic dynamics.

By inserting (25) into (26), we have

(
2KT0

)β ·RπT

2KT0
⩽

K−1∑
k=0

2K−k−1 · C · V 1/2

2kT0
·
(
2kT0

)3/2

+ C · V 1/2

2KT0
·
(
2KT0

)3/2

⩽ 4C · V 1/2

2KT0
· (2KT0)3/2,

which leads to the result that for any T = 2KT0 with K ⩾ 1,
we have

RπT

T /T ⩽ 4C · V 1/2
T · T 1/2−β ⩽ C ′ · T

1+α
2 −β ,

where C ′ is a constant, and the second inequality holds by
using the fact that VT = O(Tα). We suppose the limit of
RπT

T /T exists as T →∞, then every subsequence converges
to the same limit. Since (1+α)/2−β < 0, the subsequence of
RπT

T /T with T = 2KT0 converges to zero. Therefore, RπT

T /T
also converges to zero. By applying similar analysis as the end
of the proof of Theorem 1, we can show that the average utility
regret converges to zero for all types of dynamics.

Combining the analysis on the queue backlog and the utility
regret, the TDP* algorithm solves the NUM problem for all
types of dynamics, thus completes the proof. □

VI. NUMERICAL EXPERIMENTS

We conduct numerical experiments on two network systems
to validate the performance analysis of TDP*. We study a
complex system of 15 nodes with stochastic dynamics and a
system of 12 nodes with adversarial dynamics to show the
performance of our algorithm under different dynamics.

A. 15-Node Network With Stochastic Dynamics

We study a 15-node queueing network as in Figure 1. The
system consists of 12 overlay nodes and 3 underlay nodes
(node 8, 9 and 13). All link capacities (including the links
5 → d, 11 → d and 15 → d) are 5. For simplicity, there
is only a single class of traffic, and all packets can leave the
system via any of the three sink nodes (5, 11 and 15) leading
to the destination d.

At the beginning of each time slot, external packets arrive
at nodes 1, 3 and 13 according to a uniform distribution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Queue backlog evolution under different policies for the 15-node
network with stochastic dynamics.

between 0 and 12, i.e.,

a1(t), a3(t), a13(t) ∼ Unif{0, · · · , 12}.

Node 1 and 3 are overlay nodes and their packet admis-
sions, denoted by γ1 and γ3 respectively, can be decided
by the controller. Node 13 is uncontrollable and applies a
greedy admission policy that admits all incoming packets, i.e.,
γ13(t) = a13(t).

The controller then decides, for all overlay nodes, which
neighbors to relay the buffered packets. The underlay nodes
8, 9 and 13 transmit packets on each outgoing link according
to a uniform distribution between 0 and 5, i.e.,

µ8→9(t), µ9→15(t), µ9→10(t),
µ13→9(t), µ13→12(t), µ13→14(t) ∼ Unif{0, · · · , 5}.

We aim to maximize the throughput, i.e.,
∑T−1

t=0

(
γπ
1 (t) +

γπ
3 (t) + γπ

13(t)
)
. The expected number of external arrivals at

each time slot is 12 × 0.5 × 3 = 18 (packets), while the
total service rate is C5→d + C11→d + C15→d = 15 (packets).
Therefore, to keep the entire network rate stable, the controller
cannot greedily admit packets.

In the simulation, we first compare the evolution of the
queue backlog. We implemented TDP* with different parame-
ter V ’s. We then implemented the online TDP* which uses the
doubling trick to adjust the value of V ’s dynamically. We also

Fig. 3. Utility evolution under TDP* for the 15-node network with stochastic
dynamics.

directly applied the traditional Drift-plus-Penalty algorithm
(with V = 10) to the overlay nodes as a baseline method.
The results are in Figure 2.

From Figure 2a, we can see that under the traditional
Drift-plus-Penalty algorithm, the average queue backlog grows
linearly in time. Therefore, traditional Drift-plus-Penalty might
not be capable of stabilizing the network. We then focus on
the performance of stabilizing policies in Figure 2b. It can be
seen that under different choice of V , all TDP* algorithms
stabilize the system. The larger V is, the greater the queue
backlog grows. For online TDP* with the doubling trick, the
value of V (t) grows when time elapsed doubles, which leads
to the step increase in the curve.

We then compare the utility evolution in Figure 3.
Since the aggregated service capability is 15 packets per

time slot, the maximum throughput that still keeps rate stability
is also 15, which serves as an upper bound. From Figure 3,
we can see that larger average utility can be achieved by
choosing a larger V . If the time horizon T = 5000 is known
in advance, the controller can choose V = 25 and obtain an
almost optimal average utility. If the time horizon is unknown,
online TDP* can be applied. As can be seen from the figure,
online TDP* gradually converges to the maximum throughput.
Note that from Figure 2b, the queue backlog also grows larger
under online TDP*.

We finally study the trade-off between the queue backlog
and the utility. We conducted experiments under different
values of V , and obtained the final total queue backlog and the
average utility for each V . The results are in Figure 4. From
Figure 4, to achieve a greater utility, the controller needs to
choose a larger V , which leads to larger queue backlog, which
matches the results in Theorem 1.

B. 12-Node Network With Adversarial Dynamics

We study a 12-node queueing network as in Figure 5. The
system consists of 8 overlay nodes and 4 underlay nodes (node
2, 3, 4 and 6). All link capacities (including the links 9 → d
and 12→ d) are 5. For simplicity, there is only a single class
of traffic, and all packets can leave the system via either of
the two sink nodes (9 and 12) leading to d.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 11

Fig. 4. The relationship between the queue backlog and the utility under
TDP* for the 15-node network with stochastic dynamics.

Fig. 5. The model of the 12-node network with adversarial dynamics.

At the beginning of each time slot, external packets arrive
at nodes 1, 4 and 10 according to uniform distributions of

a1(t) ∼ Unif{0, · · · , 10}
a4(t) ∼ Unif{0, 1, 2}
a10(t) ∼ Unif{0, · · · , 6}

Node 1 and 10 are overlay nodes and their packet admissions,
denoted by γ1 and γ10 respectively, can be decided by the
controller. Node 4 is uncontrollable and applies a greedy
admission policy that admits all incoming packets, i.e., γ4(t) =
a4(t). Moreover, an adversary attempts to inject at each time
slot a′ = 2 packets into the network through node 1, 4 or 10.
In an attempt to destabilize the network, the adversary chooses
to inject the a′ packets into the node with the largest queue.

The controller then decides, for all overlay nodes, which
neighbors to relay the buffered packets. Meanwhile, the
underlay nodes, controlled by an adversary, try their best to
destabilize the network. Node 4 and 6 apply the “join the
longest queue” (JLQ) policy that transmits 5 packets to the
neighboring node with the larger queue size and transmits
nothing to the other neighboring node. JLQ, in contrast to the

Fig. 6. Queue backlog evolution under different policies for the 12-node
network with adversarial dynamics.

stabilizing “join the shortest queue” (JSQ) policy, is adversar-
ial since the node with the larger queue is more heavily loaded
and hence, easier to destabilize. Node 3 simply transmits
5 packets to node 7 at each time slot. Node 2 transmits
5 packets to node 3 for the first T/2 time slots, but starting
at T/2, it only transmits 1 packet to node 3.

The expected number of external arrivals at each time slot
is 10× 0.5 + 2× 0.5 + 6× 0.5 + a′ = 11 (packets), while the
total service rate is C9→d +C12→d = 10 (packets). Therefore,
to keep the entire network stable, the controller cannot greedily
admit packets. Moreover, starting at T/2, the service rate of
node 2 drops sharply, which requires the algorithm to sense
the change in time and alter the policy accordingly.

In the simulation, we first compare the evolution of the
queue backlog. Similar to Section VI-A, we implemented
TDP* with different parameter V ’s, the online TDP* which
uses the doubling trick to adjust the value of V ’s dynamically,
and the traditional Drift-plus-Penalty algorithm (with V = 10)
to the overlay nodes. The results are shown in Figure 6.

From Figure 6, we can see that directly applying the
traditional Drift-plus-Penalty algorithm cannot stabilize the
network. Among the stability policies shown in Figure 6b,
larger V ’s lead to larger queue backlogs.

We then compare the utility evolution in Figure 7. Since
the aggregated service capability is 10 packets per time slot,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Utility evolution under TDP* for the 12-node network with adversarial
dynamics.

Fig. 8. The relationship between the queue backlog and the utility under
TDP* for the 12-node network with adversarial dynamics.

the maximum throughput that still keeps rate stability is also
10, which serves as an upper bound. From Figure 7, larger
throughput can be achieved by selecting larger V ’s. For the
given time horizon T = 5000, an almost optimal throughput
can be achieved by choosing V = 25. Similar to the result in
Section VI-B, online TDP* also converges to the maximum
throughput.

We finally study the relationship between queue backlog
and utility by collecting the final total queue backlog and
the average utility under different values of V , as depicted
in Figure 8. From Figure 8, we can conclude that choosing
larger value of V improves the utility, yet the queue backlogs
also grow larger, which matches the results in Theorem 1.

VII. CONCLUSION

In this paper, we focus on networks with unobservable
and uncontrollable nodes, under stochastic, non-stochastic and
adversarial dynamics. We propose the TDP* algorithm that
only needs to operate on overlay nodes with indirect state
information. We rigorously derive the bounds on the utility
gap and queue backlog, which explicitly reveal the trade-offs
between utility and queue backlog. We further show that as
long as the NUM problem is solvable, TDP* can maximize
the network utility while keeping the queue backlogs stable.

A possible direction for future work is to focus on net-
work inference, i.e., how can the controller develop general
methods to estimate the states of the underlay nodes (e.g.,
queue backlog) more accurately and efficiently. Moreover,
as a function of only network admissions, the network utility
is a relatively limited objective. To optimize more general
objective functions for networks (e.g., ones that capture certain
end-to-end performance objectives) may be an interesting and
important direction.

APPENDIX A
PROOF OF LEMMA 1

We have∑
i,k

QπT

ik (T)

=
∑

i∈O,k

QπT

ik (T) +
∑

i∈U,k

XπT

ik (T) +
∑

i∈U,k

Y πT

ik (T)

⩽
∑

i∈O,k

QπT

ik (T) +
∑

i∈U,k

XπT

ik (T) +
∑

i∈U,k

Y πT +
ik (T)

⩽
√

KN + K|U|

·
√ ∑

i∈O,k

QπT 2
ik (T) +

∑
i∈U,k

XπT 2
ik (T) +

∑
i∈U,k

Y πT +2
ik (T)

=
√

KN + K|U| ·

√√√√2ΦπT (T) + 2V ·
T−1∑
t=0

U
(
γ(t)

)
⩽

√
2KNΦπT (T) + 2K2N2DV T , (27)

where the second inequality utilizes Cauchy–Schwarz inequal-
ity, the second equation holds by inserting the definition of
Φ(T) as in (7), and the last equation holds by using |U| ⩽ N
and Uik(t) ⩽ D.

APPENDIX B
PROOF OF LEMMA 2

We first upper bound Q2
ik(t+1)−Q2

ik(t) for i ∈ O. Writing
down the update rule for Q2

ik(t), we have that

Qik(t + 1) =
[
Qik(t) + γik(t)−

∑
j∈N

fijk(t)
]+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

µ̃jik(t)

⩽

[
Qik(t) + γik(t)−

∑
j∈N

fijk(t)
]+

+
∑
j∈O

fjik(t) +
∑
j∈U

µ̃jik(t).

It is easy to show that for x, y, z ⩾ 0, the inequality(
[x− y]+ + z

)2
⩽ x2 + y2 + z2 + 2x(z − y)

holds. By replacing x with Qik(t) + γik(t), y with∑
j∈N fijk(t) and z with

∑
j∈O fjik(t) +

∑
j∈U µ̃jik(t),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 13

we upper bound Q2
ik(t + 1) as

Q2
ik(t + 1) ⩽ Q2

ik(t) +
(∑

j∈N
fijk(t)

)2

+
(∑

j∈O
fjik(t) +

∑
j∈U

µ̃jik(t)
)2

+ 2γik(t)δQik(t) + 2Qik(t)δQik(t)

⩽ Q2
ik(t) + 2Qik(t)δQik(t) + 6N2D2, (28)

where the last inequality holds by utilizing (3).
We then upper bound X2

ik(t + 1)−X2
ik(t) for i ∈ U . With

Xik(t + 1) =
[
Xik(t) + γik(t)−

∑
j∈N

gijk(t)
]+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

gjik(t)

⩽

[
Xik(t) + γik(t)−

∑
j∈N

gijk(t)
]+

+
∑
j∈O

fjik(t) +
∑
j∈U

gjik(t),

by applying similar techniques as (28), we have

X2
ik(t + 1) ⩽ X2

ik(t) + 2Xik(t)δXik(t) + 6N2D2. (29)

APPENDIX C
PROOF OF LEMMA 3

and the erroneous estimates of Yik(t) as Ỹik(t) = Ŷik(t) +
ϵik(τik(t))

To avoid confusion, we define that ∆Y +
ik (t) ≜ Y +

ik (t +
1) − Y +

ik (t). Both ∆Yik(t) and ∆Y +
ik (t) are bounded as the

following lemma (see Appendix G for the proof).
Lemma 7: For each i ∈ U , t = 0, · · · , T−1 and k, we have

−2ND ⩽ ∆Yik(t), ∆Y +
ik (t) ⩽ 2ND,

Since Y +2
ik (t + 1)− Y +2

ik (t) can be decomposed as

Y +2
ik (t + 1)− Y +2

ik (t)

=
(

Y +
ik (t) + ∆Y +

ik (t)
)2

− Y 2+
ik (t)

= 2Y +
ik (t)∆Y +

ik (t) +
(

∆Y +
ik (t)

)2

, (30)

upper bounding Y +
ik (t)∆Y +

ik (t) suffices and we have that

Y +
ik (t)∆Y +

ik (t)
⩽ Y +

ik (t) ·max{∆Yik(t),−Y +
ik (t)}

= Y +
ik (t)∆Yik(t) + max{0,−Y +2

ik (t)− Y +
ik (t)∆Yik(t)}

⩽ Y +
ik (t)∆Yik(t) + max{0,−Y +2

ik (t) + 2NDY +
ik (t)}

= Y +
ik (t)∆Yik(t) + max{0,−(Y +2

ik (t)−ND)2 + N2D2}
⩽ Y +

ik (t)∆Yik(t) + N2D2, (31)

where the first inequality comes from the fact that Y +
ik (t) ⩾

0 and ∆Y +
ik (t) ⩽ max{∆Yik(t),−Y +

ik (t)}. The second
inequality holds because Y +

ik (t) ⩾ 0 and ∆Yik(t) ⩾ −2ND.

By inserting (31) into (30) and utilizing Lemma 7, we have
that

Y +2
ik (t + 1)− Y +2

ik (t)

⩽ 2Y +
ik (t)∆Yik(t) +

(
∆Y +

ik (t)
)2 + 2N2D2

⩽ 2Y +
ik (t)∆Yik(t) + 6N2D2

= 2Ŷ +
ik (t)∆Yik(t) + 6N2D2 + 2

(
Y +

ik (t)− Ŷ +
ik (t)

)
·∆Yik(t)

⩽ 2Ŷ +
ik (t)∆Yik(t) + 6N2D2

+ 2
(
(t− τik(t)) · 2ND + |ϵik(t)|

)
· 2ND

⩽ 2Ŷ +
ik (t)∆Yik(t) +

(
8L(t) + 6

)
N2D2 + 4ND|ϵik(τik(t))|,

which completes the proof.

APPENDIX D
PROOF OF LEMMA 4

Since πT is obtained by solving (10), i.e. (γo, f ,g) =
(γπT

o (t), fπT (t),gπT (t)) minimizes (10), substituting
(γo, f ,g) = (γπ∗

o (t), f̃π∗(t), µ̃(t)) would result in sub-
optimal objective. That is:∑
i∈O,k

QπT

ik (t) ·
[
γπT

ik (t)−
∑
j∈N

fπT

ijk(t) +
∑
j∈O

fπT

jik(t)

+
∑
j∈U

µ̃jik(t)
]

+
∑

i∈U,k

XπT

ik (t) ·
[∑

j∈O
fπT

jik(t) +
∑
j∈U

gπT

jik(t)−
∑
j∈N

gπT

ijk(t)
]

+
∑

i∈U,k

Ŷ
πT +
ik (t) ·

[
min

{
XπT

ik (t) + γik(t),
∑
j∈N

gπT

ijk(t)
}

−
∑
j∈U

gπT

jik(t)
]
−V · U(γπT (t))

≤
∑

i∈O,k

QπT

ik (t) ·
[
γπ∗

ik (t)−
∑
j∈N

f̃π∗
ijk(t) +

∑
j∈O

f̃π∗
jik(t)

+
∑
j∈U

µ̃jik(t)
]

+
∑

i∈U,k

XπT

ik (t) ·
[∑

j∈O
f̃π∗

jik(t) +
∑
j∈U

µ̃jik(t)−
∑
j∈N

µ̃ijk(t)
]

+
∑

i∈U,k

Ŷ
πT +
ik (t) ·

[
min

{
XπT

ik (t) + γik(t),
∑
j∈N

µ̃ijk(t)
}

−
∑
j∈U

µ̃jik(t)
]
−V · U(γπ∗(t)). (32)

We now conduct the following operations on both
sides of (32):

• Add
∑

i∈U,k XπT

ik (t) · γik(t)
• Add

∑
i∈U,k Ŷ

πT +
ik (t) ·

(∑
j∈U µ̃jik(t)−

∑
j∈N µ̃ijk(t)

)
After the operations, by using the notions of
δQπT

ik (t), δXπT

ik (t) and ∆Y πT

ik (t) defined in Section III-B,
and ∆Qπ∗

ik (t), δXπ∗
ik (t) and ∆̃Y π∗

ik (t) defined in Section IV,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

the inequality (32) is equivalent to∑
i∈O,k

QπT

ik (t)δQπT

ik (t) +
∑

i∈U,k

XπT

ik (t)δXπT

ik (t)

+
∑

i∈U,k

Ŷ
πT +
ik (t)∆Y πT

ik (t)−V · U(γπT (t))

⩽
∑

i∈O,k

QπT

ik (t)∆Qπ∗
ik (t) +

∑
i∈U,k

XπT

ik (t)∆Xπ∗
ik (t)

+
∑

i∈U,k

Ŷ
πT +
ik (t)∆̃Y π∗

ik (t)−V · U(γπ∗(t)),

which completes the proof.

APPENDIX E
PROOF OF LEMMA 5

From the queue dynamics and the definitions of ∆Qπ∗
ik (t)

and ∆Xπ∗
ik (t) in Section IV, we have for i ∈ O:

Qπ∗
ik (t + 1) =

(
Qπ∗

ik (t) + γπ∗
ik (t)−

∑
j∈N

fπ∗
ijk(t)

)+

+
∑
j∈O

f̃π∗
jik(t) +

∑
j∈U

µ̃jik(t)

= Qπ∗
ik (t) + γπ∗

ik (t)−
∑
j∈N

f̃π∗
ijk(t)

+
∑
j∈O

f̃π∗
jik(t) +

∑
j∈U

µ̃jik(t)

= Qπ∗
ik (t) + ∆Qπ∗

ik (t), (33)

and for i ∈ U ,

Qπ∗
ik (t + 1) =

(
Qπ∗

ik (t) + γik(t)−
∑
j∈N

µijk(t)
)+

+
∑
j∈O

f̃π∗
jik(t) +

∑
j∈U

µ̃jik(t)

= Qπ∗
ik (t) + γik(t)−

∑
j∈N

µ̃ijk(t)

+
∑
j∈O

f̃π∗
jik(t) +

∑
j∈U

µ̃jik(t)

= Qπ∗
ik (t) + ∆Xπ∗

ik (t). (34)

We define M ≜ T mod H and there exists an integer J
such that T = JH + M . Next, we provide bounds on the
multi-slot changes of the queue backlogs under π∗.

From (33) and by telescoping, we have for i ∈ O:

(j+1)H−1∑
t=jH

∆Qπ∗
ik (t) = Qπ∗

ik ((j + 1)H)−Qπ∗
ik (jH),

which leads to

|
(j+1)H−1∑

t=jH

∆Qπ∗
ik (t)| ⩽ max

{
Qπ∗

ik ((j + 1)H), Qπ∗
ik (jH)

}
(35)

⩽ max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t). (36)

Similarly, from (34) and by telescoping, we have for i ∈ U :

|
(j+1)H−1∑

t=jH

∆Xπ∗
ik (t)| ⩽ max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t). (37)

Now, back to the main proof, we have the following
decomposition for i ∈ O and k ∈ K,

T−1∑
t=0

QπT

ik (t)∆Qπ∗
ik (t)

=
J−1∑
j=0

[
QπT

ik (jH)
(j+1)H−1∑

t=jH

∆Qπ∗
ik (t)

+
(j+1)H−1∑

t=jH

(
QπT

ik (t)−QπT

ik (jH)
)
·∆Qπ∗

ik (t)

]

+
T−1∑

t=JH

QπT

ik (t)∆Qπ∗
ik (t)

⩽
J−1∑
j=0

[
2NDT

(j+1)H−1∑
t=jH

∆Qπ∗
ik (t)

+
(j+1)H−1∑

t=jH

2NDH · 2ND

]
+ M · 2NDT · 2ND

(36)

⩽
J−1∑
j=0

2NDT · max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t) + 8N2D2HT

= 2JNDT max
0⩽t⩽T

∑
i,k

Qπ∗
ik (t) + 8N2D2HT

⩽
2NDT 2

H
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t) + 8N2D2HT, (38)

where inequalities hold by using (3), and the fact that M ⩽ H
and J ⩽ T/H .

Similarly, we show that for i ∈ U and k ∈ K,

T−1∑
t=0

XπT

ik (t)∆Xπ∗
ik (t)

⩽
2NDT 2

H
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t) + 8N2D2HT. (39)

Summing up (38) and (39) over all nodes and traffic classes,
we have

T−1∑
t=0

∑
i∈O,k

QπT

ik (t)δQπ∗
ik (t) +

T−1∑
t=0

∑
i∈U,k

XπT

ik (t)δXπ∗
ik (t)

⩽
4KN2DT 2

H
max

0⩽t⩽T

∑
i,k

Qπ∗
ik (t) + 16KN3D2 HT.

Taking H = c

√
T ·max0⩽t⩽T

∑
i,k Qπ∗

ik (t)

ND where c is any
positive constant that makes H an integer completes the proof.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TDP*: UTILITY MAXIMIZATION FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 15

APPENDIX F
PROOF OF LEMMA 6

From the definition of ∆̃Y π∗
ik (t) in Section IV, we have for

i ∈ U ,

∆̃Y π∗
ik (t) = min

{
XπT

ik (t)+γik(t),
∑
j∈N

µ̃ijk(t)
}
−

∑
j∈N

µ̃ijk(t)

⩽
∑
j∈N

µ̃ijk(t)−
∑
j∈N

µ̃ijk(t) = 0

Therefore, we have for i ∈ U ,

Ŷ
πT +
ik (t)∆̃Y π∗

ik (t) ⩽ 0

Summing up the above inequality from t = 0 to T over
i ∈ U and k ∈ K completes the proof.

APPENDIX G
PROOF OF LEMMA 7

Here we fix an i and a t arbitrarily. We first discuss the
range of ∆Yik(t). From the definition of ∆Yik(t), we have

∆Yik(t)
= Qik(t + 1)−Qik(t)−

(
Xik(t + 1)−Xik(t)

)
= aik(t)−

∑
j∈N

µ̃ijk(t) +
∑
j∈O

f̃jik(t) +
∑
j∈U

µ̃jik(t)

−aik(t) +
∑
j∈N

g̃ijk(t)−
∑
j∈O

f̃jik(t)−
∑
j∈U

gjik(t)

=
∑
j∈U

µ̃jik(t)−
∑
j∈N

µ̃ijk(t) +
∑
j∈N

g̃ijk(t)−
∑
j∈U

gjik(t).

By applying (3), we have

−2ND ⩽ ∆Yik(t) ⩽ 2ND. (40)

With (40) at hand, we first have

∆Y +
ik (t) = max{Yik(t + 1), 0} − Y +

ik (t)
= max{Yik(t + 1)− Y +

ik (t),−Y +
ik (t)}

⩽ max{Yik(t + 1)− Yik(t),−Y +
ik (t)}

= max{∆Yik(t),−Y +
ik (t)} ⩽ 2ND. (41)

For the lower bound Y +
ik (t), we have

∆Y +
ik (t) = Y +

ik (t + 1)−max{Yik(t), 0}
= min{Y +

ik (t + 1)− Yik(t), Y +
ik (t + 1)}

⩾ min{Yik(t + 1)− Yik(t), Y +
ik (t + 1)}

= min{∆Yik(t), Y +
ik (t + 1)} ⩾ −2ND. (42)

Combining (40), (41) and (42) completes the proof.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in Proc. 29th IEEE Conf. Decis. Control,
Dec. 1990, pp. 2130–2132.

[2] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[3] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Overlay
networks: An Akamai perspective,” Adv. Content Del., Streaming, Cloud
Services, vol. 51, no. 4, pp. 305–328, 2014.

[4] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, Apr. 2004.

[5] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mecha-
nisms: Classification and state-of-the-art,” Comput. Netw., vol. 44, no. 5,
pp. 643–666, Apr. 2004.

[6] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL-injection
attacks and countermeasures,” in Proc. IEEE Int. Symp. Secure Softw.
Eng., Mar. 2006, vol. 1, pp. 13–15.

[7] G. S. Paschos and E. Modiano, “Throughput optimal routing in overlay
networks,” in Proc. 52nd Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Sep. 2014, pp. 401–408.

[8] N. M. Jones, G. S. Paschos, B. Shrader, and E. Modiano, “An over-
lay architecture for throughput optimal multipath routing,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2615–2628, Oct. 2017.

[9] A. Rai, R. Singh, and E. Modiano, “A distributed algorithm for through-
put optimal routing in overlay networks,” in Proc. IFIP Netw. Conf.
(IFIP Networking), May 2019, pp. 1–9.

[10] Q. Liang and E. Modiano, “Optimal network control in partially-
controllable networks,” in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), Apr. 2019, pp. 397–405.

[11] E. J. Sondik, “The optimal control of partially observable Markov
processes over the infinite horizon: Discounted costs,” Oper. Res.,
vol. 26, no. 2, pp. 282–304, Apr. 1978.

[12] H.-T. Cheng, “Algorithms for partially observable Markov decision
processes,” Ph.D. thesis, Univ. British Columbia, 1988.

[13] N. L. Zhang and W. Liu, “Planning in stochastic domains: Problem
characteristics and approximation,” Hong Kong Univ. Sci. Technol.,
Tech. Rep. HKUST-CS96-31, 1996.

[14] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
nos. 1–2, pp. 99–134, May 1998.

[15] A. R. Cassandra, M. L. Littman, and N. Lianwen Zhang, “Incremental
pruning: A simple, fast, exact method for partially observable Markov
decision processes,” 2013, arXiv:1302.1525.

[16] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient
estimation,” J. Artif. Intell. Res., vol. 15, pp. 319–350,
Nov. 2001.

[17] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson,
“Adversarial queueing theory,” in Proc. 28th Annu. ACM Symp. Theory
Comput. (STOC), 1996, pp. 376–385.

[18] M. Andrews and L. Zhang, “Scheduling over nonstationary wireless
channels with finite rate sets,” in Proc. IEEE INFOCOM, Mar. 2004,
pp. 1694–1704.

[19] M. Andrews and L. Zhang, “Scheduling over a time-varying user-
dependent channel with applications to high-speed wireless data,”
J. ACM, vol. 52, no. 5, pp. 809–834, Sep. 2005.

[20] Q. Liang and E. Modiano, “Minimizing queue length regret under
adversarial network models,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 46, no. 1, pp. 31–32, Jan. 2019.

[21] B. Liu and E. Modiano, “Optimal control for networks with unobserv-
able malicious nodes,” ACM SIGMETRICS Perform. Eval. Rev., vol. 49,
no. 3, pp. 18–19, 2021.

[22] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecommun., vol. 8, no. 1, pp. 33–37, Jan. 1997.

[23] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control
for communication networks: Shadow prices, proportional fairness
and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252,
Apr. 1998.

[24] S. H. Low and D. E. Lapsely, “Optimization flow control. I. Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[25] Q. Liang and E. Modiano, “Network utility maximization in adversarial
environments,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 594–602.

[26] Q. Liang and E. Modiano, “Optimal network control with adversarial
uncontrollable nodes,” in Proc. 20th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., Jul. 2019, pp. 101–110.

[27] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay networks,”
in Proc. IEEE 24th Annu. Joint Conf. IEEE Comput. Commun. Societies,
Mar. 2005, pp. 2554–2565.

[28] Z. Li and P. Mohapatra, “QRON: QoS-aware routing in overlay net-
works,” IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 29–40,
Jan. 2004.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Bai Liu received the B.E. degree (Hons.) from
Tsinghua University, Beijing, China, in 2017, and
the M.S. degree from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 2019,
where he is currently pursuing the Ph.D. degree with
the Laboratory for Information and Decision Sys-
tems. His current research interests include learning
and control problems in networked systems, with
the application of reinforcement learning, stochastic
optimization, and inference methods.

Quang Minh Nguyen (Graduate Student Member,
IEEE) received the dual B.S. degree (Hons.) in
computer science and applied mathematics from
the National University of Singapore, Singapore,
in 2020, and the M.S. degree in electrical engineer-
ing and computer science from the Massachusetts
Institute of Technology, Cambridge, MA, USA,
in 2022, where he is currently pursuing the Ph.D.
degree with the Laboratory for Information and
Decision Systems. His current research interests
include the optimal control of networked systems,

with a focus on wireless scheduling and software-defined networking, machine
learning, information theory, and stochastic optimization.

Qingkai Liang received the B.E. degree (Hons.)
in electronic engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2013, and the M.S.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 2015 and
2018, respectively. He is currently the Co-Founder
of Celer Network. His current research interests
include learning and control problems that arise in
networked systems, especially on online learning
algorithms in adversarial networks, which have been
successfully applied in Raytheon BBN Technologies
and Bell Labs.

Eytan Modiano (Fellow, IEEE) received the B.S.
degree in electrical engineering and computer sci-
ence from the University of Connecticut, Storrs,
in 1986, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Maryland,
College Park, MD, USA, in 1989 and 1992,
respectively.

He is currently the Richard C. Maclaurin Professor
with the Department of Aeronautics and Astronau-
tics and the Laboratory for Information and Decision
Systems (LIDS), MIT. Prior to joining the Faculty at

MIT in 1999, he was a Naval Research Laboratory Fellow from 1987 to 1992,
a National Research Council Post-Doctoral Fellow from 1992 to 1993,
and a member of the Technical Staff with the MIT Lincoln Laboratory
from 1993 to 1999. His current research interests include the modeling,
analysis, and design of communication networks and protocols. He is an
Associate Fellow of AIAA. He had served on the IEEE Fellows Committee
in 2014 and 2015. He received the Infocom Achievement Award in 2020 for
contributions to the analysis and design of cross-layer resource allocation
algorithms for wireless, optical, and satellite networks. He was a co-recipient
of the 2018 Infocom Best Paper Award, the 2018 MobiHoc Best Paper
Award, the 2016 MobiHoc Best Paper Award, the 2013 Wiopt Best Paper
Award, and the 2006 Sigmetrics Best Paper Award. He was the Technical
Program Co-Chair for IEEE Wiopt in 2006, IEEE Infocom in 2007, ACM
MobiHoc in 2007, and DRCN in 2015. He was the General Co-Chair of
Wiopt in 2021. He was the Editor-in-Chief of IEEE/ACM TRANSACTIONS
ON NETWORKING from 2017 to 2020 and served as an Associate Editor
for IEEE TRANSACTIONS ON INFORMATION THEORY and IEEE/ACM
TRANSACTIONS ON NETWORKING.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:44:59 UTC from IEEE Xplore. Restrictions apply.

