
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023 1997

Optimal Routing to Parallel Servers With Unknown
Utilities—Multi-Armed Bandit With Queues

Xinzhe Fu and Eytan Modiano, Fellow, IEEE

Abstract— We consider the optimal routing problem in
a discrete-time system with a job dispatcher connected to
M parallel servers. At every time slot, the job dispatcher sends
the incoming jobs to a server for execution, with each server
having a queue that stores the jobs. The arrival process of
incoming jobs, and the service processes of the servers are
stochastic with unknown and possibly heterogeneous rates. Each
server sm is associated with an underlying utility vm that is
initially unknown. Whenever server sm completes a job, a utility
of vm is obtained and a noisy observation of vm is received.
The goal is to design a policy that makes routing decisions to
maximize the total utility obtained by the end of a finite time
horizon T . The performance of policies is measured in terms
of regret, which is the additive difference between the expected
total utility obtained by the policy and the supremum of the
expected total utility over all the policies. The optimal routing
problem can be interpreted as a problem of multi-armed bandit
with queues where each server is viewed as an arm and the
completion of a job is viewed as a pull of an arm. The key
distinction between the optimal routing problem and traditional
multi-armed bandit problems is in the queueing dynamics at the
server, which arises due to the stochastic nature of the arrival and
service processes. Our results combine techniques from control of
stochastic queueing systems and stochastic multi-armed bandits
to provide insights to the design and analysis of policies for the
optimal routing problem. We first present analytical bounds that
link the regret to the utilization and queue length of servers. Next,
we start by assuming that the ordering of the underlying utilities
is known and introduce the Priority-K routing policy which
makes priority-based routing decisions that send the incoming
jobs to the server of the highest underlying utility with queue
length no larger than a threshold K . We prove that Priority-K
achieves O(log T )-regret with an appropriately chosen K . Next,
removing the assumption of known utility ordering, we pro-
pose the Upper-Confidence Priority-K policy, which essentially
combines the Priority-K policy with the ordering based on
the upper-confidence bounds of the underlying utilities, and
establish that the Upper-Confidence Priority-K policy achieves
an instance-dependent O(log3 T )-regret. Finally, we extend our
results to the a generalized version of the optimal routing
problem with multiple job dispatchers in a bipartite network.
Our theoretical results are also validated by simulations.

Index Terms— Queueing analysis, optimization methods.

Manuscript received 4 April 2022; revised 24 August 2022 and
21 November 2022; accepted 30 November 2022; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor S. Magnusson. Date of publication
8 December 2022; date of current version 17 October 2023. This work
was supported in part by the Office of Naval Research (ONR) under Grant
N00014-20-1-2119 and in part by NSF under Grant CNS-2148128 and Grant
CNS-2148183. (Corresponding author: Xinzhe Fu.)

The authors are with the Laboratory for Information and Decision Systems,
MIT, Cambridge, MA 02139 USA (e-mail: xinzhe@mit.edu).

Digital Object Identifier 10.1109/TNET.2022.3227136

I. INTRODUCTION

CONSIDER a system consisting of a job dispatcher and
parallel servers. Incoming jobs arrive at the job dis-

patcher and get immediately routed to a server where they
get queued up for execution. Such system model captures a
wide range of applications in communication networks [1], [2],
production lines [3], and web server farms [4], and there
has been extensive research on the routing problem under
this model. Previous works have proposed and analyzed
routing policies that aim at optimizing delays [5], minimiz-
ing holding costs [6], or achieving desirable load balancing
properties [7], [8].

In this paper, we consider the routing problem for parallel
servers from the perspective of optimizing system utility.
We study the setting where a certain utility is obtained when
a server finishes executing a job and the goal is to design a
routing policy that maximizes the total obtained utility. The
utility associated with each server is unknown apriori but can
be learned through the completion of jobs. Such a utility model
can represent server-dependent performance measures, such as
quality-of-service [9] and energy consumption [10], which the
system operator initially has no access to, but can obtain via
feedback after job completions.

Specifically, we consider a discrete-time system with a job
dispatcher connected to a set of M parallel servers. Jobs
arrive at the dispatcher following a stochastic process with
an unknown arrival rate. At each time slot, the dispatcher
sends each incoming job to one of the servers for execution.
Each server sm has a queue that buffers incoming jobs.
The offered service of server sm at each time slot, i.e.,
the number of jobs sm can complete, follows a stochastic
process with an unknown service rate. Each server sm is
associated with an underlying utility vm, and a utility of vm

is attained when sm completes a job. The underlying utilities
are unknown in advance, but for each job completed at sm,
a noisy observation v̂m with E[v̂m] = vm is received. Our
goal is to design routing policies for this system of parallel
servers that seek to maximize the utility obtained by the end
of a finite time horizon T . We adopt regret as the performance
measure, which is defined as the additive difference between
the supremum of expected total utilities over all the policies,
including the ones that have access to the underlying utilities
and network statistics, and the expected total utility of the
proposed policy. An important distinction to be made is that
we consider an output-queue system, where the incoming jobs
are immediately routed to the servers and cannot be held up
at the job dispatcher [15], which is in contrast to input-queue

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4425-3881


1998 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

systems [18], where the queue is associated with the dispatcher
instead of the servers and the jobs are sent to servers when
the servers become available. The output-queue architecture
is more suitable for applications where the job dispatcher is
not co-located with the servers [16], since the output-queue
architecture can effectively reduce the impact of propagation
delay on the total turnaround time of jobs and help maintain
high system utilization by buffering incoming jobs [17].

The stochastic multi-armed bandit framework [19], [20]
studies a system of M arms with each arm associated with
an unknown reward. When an arm is played, we obtain and
receive a noisy and unbiased observation of the reward of
the arm. Viewing each server as a bandit arm, the underlying
utilities of the servers as the rewards of the arms, and the exe-
cution of a job as a pull of arm, our optimal routing problem
motivates a new class of multi-armed bandit problems where
the arms have queues. The stochasticity in the arrival and
service processes and the presence of queues fundamentally
reshape the structure of the problem. First, the queues enable
the jobs queued up at servers to be completed in a future time
slot. Therefore, the arm-playing (job-completion) process is
not made deterministically, once every time slot, as in the
multi-armed bandit literature [20], [21], [22], [23], [24], [25],
[27], [28], [29], but jointly determined by the routing decisions
and the stochastic queueing dynamics at the arms. Second, the
utility is only obtained upon the completion of jobs. Hence,
the unfinished jobs in the queues at the end of the time
horizon T , about which the routing decisions have been made,
do not contribute to the cumulative utility. This is in stark
contrast with the traditional multi-armed bandit framework
where the reward is obtained immediately after making a
decision [19], [25], [26].

With the new structure of the optimal routing, the theoretical
nature of the problem has also changed as the problem
is not only about learning the underlying utilities but also
leveraging the stochastic queueing dynamics. In the traditional
multi-armed bandit framework, the best static policy knowing
the underlying utilities (e.g. pulling the arm or the set of
arms with the highest rewards) is often optimal and thus
the regret is defined with respect to that policy [20], [26].
However, in the optimal routing problem, the best static policy
(or any static policy) is provably sub-optimal since it does not
take into consideration the queue backlogs (See Section II-C
for details). Moreover, the optimal routing problem has
unique dimensions of exploration-exploitation trade-offs. The
exploration-exploitation trade-off in the traditional framework
would only involve exploring the arms sufficiently through
routing enough jobs to each server and converging quickly to
the servers with high utilities. In our setting, as often the arrival
rate is greater than the service rate of any single server, the
incoming jobs need to be served by multiple servers, i.e., one
server may not be able to satisfy all of the demand. Therefore,
the problem goes beyond learning the underlying utilities
and identifying servers with high utilities. It requires making
intelligent routing decisions to prevent service opportunities of
the high-utility servers from being missed due to their queues
being empty, while at the same time avoid overloading the
servers since unfinished jobs in the queues at the end of the
time horizon do not contribute to the total utility. Finally,
we note that the queueing dynamics in our problem is different

from a recent string of works called “queueing bandit” [30],
[31], [32], in which essentially still one arm is played at each
time, while the cumulative reward is measured by the queue
length, and the goal is to minimize the queue length.

Our main results are to develop analytical bounds and rout-
ing policies for the optimal routing problem that combine the
techniques from control of stochastic queueing networks and
stochastic multi-armed bandits. Specifically, we first establish
an upper bound on the regret in terms of of utilization and
queue lengths of the servers with high underlying utilities,
which reflects the aforementioned exploration-exploitation
trade-offs. Next, we propose a routing policy named
Priority-K , that essentially routes the incoming jobs to the
server with the highest utility whose queue length is no larger
than a pre-specified threshold K . When the ordering of the
servers’ underlying utility is known, we show that Priority-K
enjoys O(log T )-regret. We then introduce the policy Upper-
Confidence Priority-K , that combines the Priority-K policy
with the utility ordering derived from the upper-confidence
bounds of the underlying utilities. The Upper-Confidence
Priority-K policy enjoys O(log3 T )-regret through achieving a
desirable exploration-exploitation trade-off. Finally, we extend
our results to a more general setting where the jobs are coming
from multiple job dispatchers, which form a general bipartite
topology with the parallel servers.

Note that the optimal routing problem can be subsumed in
the framework of network utility maximization with unknown
utility functions recently proposed in [11] and [12]. However,
using the methods proposed in [11] and [12] cannot achieve
logarithmic regret since those methods seek to converge to
the best static policy which has a Θ(

√
T )-gap to the optimal

as will be discussed in Section II-C, while the policies we
propose achieve logarithmic regret. Furthermore, the optimal
routing problem can also be formulated as a Markov Decision
Process with unknown parameters, and thus can be considered
as a reinforcement learning problem [33], [34], [35]. How-
ever, existing results on reinforcement learning cannot handle
problems with countably infinite state-space. Also, as they
cannot exploit the special structure of the optimal routing
problem [33], [34], [35], applying the results in reinforcement
learning will lead to sub-optimal policies.

The rest of the paper is organized as follows. In Section II,
we present the model and problem formulation of the optimal
routing problem. In Section III, we establish preliminary upper
bounds on the regret. The Priority-K policy and the Upper-
Confidence Priority-K policy are introduced and analyzed
in Section IV. We evaluate the empirical performance of
our policies via simulations in Section V. We further extend
our results to the case with multiple job dispatchers in a
general bipartite network in Section VI. Finally, in Section VII,
we conclude the paper.

II. MODEL AND PROBLEM FORMULATION

A. System Model

Consider a server farm that operates in discrete time with
one job dispatcher and M parallel servers. At each time slot t,
there are a(t) jobs that arrive at the dispatcher. The arrivals
a(t)’s are independent random variables with unknown mean
(arrival rate) E[a(t)] = λ. The dispatcher routes each job to a

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 1999

Fig. 1. Illustration of the model.

server. Each server has a queue that stores incoming jobs and
employs an arbitrary work-conserving service discipline. For
a generic server sm, its offered service at time t is denoted by
cm(t), with cm(t)’s being independent random variables with
unknown mean (service rate) E[cm(t)] = μm. The offered
service cm(t) is equal to the maximum number of jobs that
sm can finish executing at time t. The arrival rate λ and the
service rates {μm} will be referred to as the network statistics.
After a job j finishes execution at server sm, we obtain
utility vm and receive a noisy utility observation vj

m with
vj

m = vm + �j where vm is the underlying utility associated
with server sm and �j represents an observation noise that is
a 1-sub-Gaussian random variable with E[�j ] = 0.1 The noise
values �j’s corresponding to different j’s are independent.
Note that the underlying utility vm of each server is unknown,
and that we can only observe vj

m’s of each job j. We assume
that the realized arrivals and offered service rates, i.e., a(t)’s,
cm(t)’s are all bounded by a constant C almost surely. We also
assume a(t) ≥ 1, cm(t) ≥ 1 to avoid unnecessary nuances in
the description and analysis of our results.2 Finally, let am(t)
be the number of jobs sent to server sm at time t by the
job dispatcher and Qm(t) be the queue length of server m
at t. The evolution of queue length can be written with the
Lindley recursion: Qm(t + 1) := [Qm(t) + am(t) − cm(t)]+,
where [·]+ = max{·, 0}. Figure 1 provides a schematic of our
model with four servers.

B. Problem Formulation

We study the problem of designing a routing policy with the
maximum utility. Specifically, our goal is to design a policy
that makes routing decisions (i.e. sending each incoming job
to a server) such that the expected utility obtained by the end
of the time horizon T is maximized. To make the problem
concrete, we first define the expected utility of a generic
policy π. Consider a sample path ω. Suppose on the sample
path ω, under the policy π by the end of the time horizon T ,
server sm completes Cπ

m(ω, T ) jobs. Then, the utility obtained
under π on the sample path ω is

∑M
m=1 vmCπ

m(ω, T ). The
expected utility of π over the time horizon is defined as
UT (π) = Eω [

∑M
m=1 vmCπ

m(ω, T )]. For ease of notation,
we will often omit the subscript ω when it is clear that the
expectation is taken over all the sample paths. Also, note that

1A random variable X is 1-sub-Gaussian if P{|X| ≥ t} ≤ 2 exp(− t2

2
),

i.e., its tail is dominated by a Gaussian distribution with variance 1.
2This assumption is to guarantee that there is at least one incoming job

at each time slot, and the server can receive at least one utility observation
at the time slot if its queue is not empty. Our results still hold without this
assumption.

only the jobs that are completed by T contribute to the total
utility while the jobs that are left in the queue at the end of the
time horizon T do not count towards the total utility. Let Π∗ be
the set of all policies including the ones with knowledge of
the underlying utilities and the network statistics or the non-
stationary policies. We define the regret of a policy π as
RT (π) = supπ∗∈Π∗ UT (π∗) − UT (π), i.e., the gap in the
expected utility between π and supremum over all policies
in Π∗. Note that as the set Π∗ contains all the policies, the
regret essentially characterizes the gap with respect to the best
we can hope for. In this paper, we pursue admissible policies
that make decisions only based on observable information but
not on the network statistics or the underlying utilities. We will
refer to the problem as the Optimal Routing Problem.

1) Assumptions on the Unknown Statistics: Borrowing the
terminology from the multi-armed bandit literature, we focus
on the instance-dependent regret bound, where there are
separations (i.e. constant gaps) between the unknown statistics.
Specifically we assume that there do not exists two servers
with equal underlying utility, i.e., ∀m, m′, vm �= vm′ . Based
on this, we will order the servers s1, . . . , sm based on the
underlying utility as v1 > . . . > vM . Furthermore, we assume
that there exists an integer L such that

∑L
m=1 μm < λ <∑L+1

m=1 μm, i.e., the arrival rate strictly lies between the total
service rates of the first L servers and the first L + 1 servers.
We will refer to L as the critical number of servers. The order-
ing of the servers and the critical number of servers are defined
only for the sake of analysis. The policy we propose for the
optimal routing problem does not rely on the knowledge of
the ordering nor the critical number of servers L. Finally,
we define the constant δ as min{λ−

∑L
m=1 μm,

∑L+1
m=1 μm−

λ, 1}, which will only be used as an auxiliary constant in the
analysis of our policies. Note that for the case of instance-
independent regret where the aforementioned gaps can scale
with the time horizon T or be zero, previous results on
multi-armed bandit [20] can easily be extended to the optimal
routing problem and show that no algorithm can achieve
a regret better than Θ(

√
T ). As such a Θ(

√
T )-regret can

already be achieved by existing techniques [12], [13], we do
not consider the instance-independent regret in this paper.

We close this section by giving an alternative interpretation
of the critical number of servers L. Consider the following
optimization problem P .

P : max
{xm}

M∑
m=1

vmxm (1)

s.t.
M∑

m=1

xm = λ, (2)

0 ≤ xm ≤ μm. (3)

P can be interpreted as a static version of the optimal
routing problem, where the optimization variables {xm} can
be considered as the steady-state rate of jobs that are sent to
each server. Due to the special structure of the optimal routing
problem, it is easy to see that the optimal solution {x∗

m} to
P is x∗

m = μm for m = 1, . . . , L, x∗
L+1 = λ −

∑L
m=1 μm,

and x∗
m = 0 for m = L + 2, . . . , M . Therefore, intuitively

speaking, a good policy for the optimal routing problem should
try to fully utilize the first L servers, send the remaining jobs
to the server sL+1 and avoid servers sL+2, . . . , sM .

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2000 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

C. Suboptimality of Static Policies

We show that static policies are strictly sub-optimal for the
optimal routing problem. The significance of such argument
is multi-fold: (i) it highlights the difference between the
optimal routing problem, which is a dynamic optimization
problem and its static counterpart P , (ii) it also justifies the
necessity to define the regret with respect to the supremum
over all policies instead of the best static policy that is
commonly used in the multi-armed bandit literature [20],
[28], [29], (iii) it precludes existing techniques for solving
optimization problems with unknown utility functions from
achieving superior performance as they focus on constructing
policies that converge to the static optimal solution to P .
An example is the recent works on network utility optimization
with unknown utility functions [11], [12], [13] where methods
for solving generalized version of the optimization problem P
(with unknown utility functions and constraint parameters) in
network settings were proposed. Finally, it also calls for new
techniques for performance analysis and policy design, which
we will present in this paper.

For the rest of this section, we will give an intuitive
argument that the best static policy based on the optimal
solution to P leads to Θ(

√
T )-regret. In Appendix A, we will

show more formally a stronger result that there exist instances
of the optimal routing problem where any static policy has
Ω(

√
T )-regret. As the policy we will propose achieves loga-

rithmic regret, it outperforms any static policy. Note that this
includes static policies with access to the network statistics and
underlying utilities (as the one following the optimal solution
to P), while our policy does not rely on such knowledge.

Consider the following two-server example with M = 2,
v1 > v2 and λ = μ1 + μ2

2 . In this case, it is easy to see
that the optimal solution to P is x∗

1 = μ1, x
∗
2 = μ2/2. The

static policy that based on this solution will send a fraction of
μ1/λ of incoming jobs to server s1 and μ2/(2λ) of incoming
jobs to s2. Under this policy, the queue of s1 is critically
loaded. It follows that E[Q1(T )] = Θ(

√
T ), which means

that in expectation, there are Θ(
√

T ) incomplete jobs by
the end of the time horizon. If one can divert these jobs
to server s2, the increase in the obtained utility can reach
Θ(

√
T ). This is indeed achievable, for example, by the policy

we will propose. Hence, the two-server example shows that
the static policy based on the optimal solution to P is bound
to have a Θ(

√
T )-regret. Furthermore, it might be tempting

to think that a static policy that is a small distance away
from the optimal solution to P could achieve a better regret
by avoiding the Θ(

√
T ) queue backlog. We will show in

Appendix A that this is not the case, as a static policy that
is �-away from the optima of P would suffer a Θ(T �) loss
in cumulative utility. The combination of the utility loss and
queue backlog would lead to Ω(

√
T ) for any static policy

(even when � is taken as a function of T ). In contrast, the
policy we will propose achieves a superior O(log3 T )-regret.
The sub-optimality of static policies emphasize the need to
not only learn the underlying utilities but also leverage the
queueing dynamics in the optimal routing problem.

III. PRELIMINARY RESULTS

In this section, we introduce some preliminary bounds
on the expected utility and regret that are instrumental in

subsequent analysis. These bounds also reflect the exploration-
exploitation trade-off faced in the optimal routing problem.
We first establish sample path-wise bounds on the total utility
of any policy (Propositions 1 and 2), and then use the sample
path-wise bound to derive a regret bound (Proposition 3) that
links the expected regret to different aspects of the exploration-
exploitation trade-off.

On a sample path ω, let a(t, ω) be the number of jobs that
arrived at time t on the sample path, and cm(t, ω) be the
offered service of server m at time t on the sample path.
We first have the following upper bound on the total utility of
any policy on the sample path.

Proposition 1:

sup
π∗∈Π∗

UT (π∗, ω)

≤
L∑

m=1

T∑
t=0

cm(t, ω) · vm

+

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω)

]
· vL+1.

Proof: On the sample path ω, by the end of the time
horizon T , each server m can complete at most

∑T
t=0 cm(t, ω)

jobs, which would contribute utility of
∑T

t=0 cm(t, ω) · vm.
Since v1 > . . . > vM , the total utility of any policy on the
sample path ω is no larger than the case where a utility
of vm, m = 1, . . . , L is obtained for

∑T
t=0 cm(t, ω) jobs and a

utility of vm+1 is obtained for
∑T

t=0 a(t, ω) −
∑L

m=1

∑T
t=0

cm(t, ω) jobs. Note that the bound still holds for sample
paths where

[∑T
t=0 a(t, ω) −

∑L
m=1

∑T
t=0 cm(t, ω)

]
< 0.

The proposition immediately follows from this bound. �
Note that the bound in Proposition 1 is due to the physical

capacity constraints of the servers. Hence, it holds for all the
policies in Π∗ irrespective of the information that the policies
have access to when making decisions. Next, consider an arbi-
trary policy π. Let c̃π

m(t, ω) be the realized service of server sm

under policy π on sample path ω. More formally, due to work
conservation, c̃π

m(t, ω) = min{Qπ
m(t, ω), cm(t, ω)}, where

Qπ
m(t, ω) is the queue length of server sm under policy π

on sample path ω. Then, the following proposition follows
from the definition of the total utility.

Proposition 2:

UT (π, ω) =
M∑

m=1

T∑
t=0

c̃π
m(t, ω) · vm.

From Propositions 1 and 2, we obtain the following upper
bound on the regret of a policy on a sample path. Due to
space constraints, the proof of Proposition 3 is deferred to
Appendix B-A.

Proposition 3: For any policy π,

RT (π) ≤
T∑

t=0

L∑
m=1

P[Qπ
m(t) < C] · C2

+ E

[
M∑

m=L+2

T∑
t=0

aπ
m(t, ω)

]
· vL+1

+ E

[
L+1∑
m=1

Qm(T )

]
· vL+1. (4)

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2001

Remark: Proposition 3 essentially captures the aforemen-
tioned exploitation-exploration trade-off in the optimal routing
problem. As v1 > . . . > vM and

∑L
m=1 μm < λ <∑L+1

m=1 μm, the first L + 1 servers correspond to the notion of
“high utility servers”. In the long run, all the incoming jobs
can be served by these L + 1 servers. Hence, to maximize
the total obtained utility, we should try to identify the high
utility servers and take full advantage of the service capacity
of servers s1, . . . , sL and send the jobs that cannot be served
by the top L servers to server sL+1. We should also avoid
overloading the servers. The inequality (4) of Proposition 3
gives an analytical bound that exactly captures these trade-
offs. The term

∑T
t=0

∑L
m=1 P[Qπ

m(t) < C] correspond to
the cumulative idleness of the top L servers. The term
E

[∑M
m=L+2

∑T
t=0 aπ

m(t, ω)
]

represents the total number of
jobs sent to the servers with low utilities, which should
not be getting excessively many arrivals. Finally, the term
E

[∑L+1
m=1 Qm(T )

]
represents the total number of unfinished

jobs in the high utility servers at the end of the time horizon,
which is closely related to the (over)load of the servers.

IV. ROUTING POLICIES

In this section, we introduce the policies we propose for
the optimal routing problem. We first consider the imaginary
case where we know the utility ordering v1 > . . . > vM and
propose a prototypical policy for this case. This policy for the
imaginary case will be a key building block in the policy we
propose for the original routing problem where the utilities are
unknown.

A. The Case of Known Utility Ordering

We start with the case where the ordering of the underlying
utilities is known. From the preceding discussion, we know
that to achieve low regret, we need to reduce the idleness
of the top L servers. As the utilities are known, a natural
idea is to prioritize the top L servers when making routing
decisions for the incoming jobs. However, this idea is not
feasible since we do not know the arrival rate and the service
rates, and thus have no prior information on the critical number
of servers L. In what follows, we show that there exists a
policy that achieves logarithmic regret through a utility-based
priority routing scheme without the need to know L or the
arrival and service rates. We will refer to the policy as the
Priority-K policy, with the details shown in Algorithm 1.

The Priority-K policy takes a parameter K as input. At each
time slot, it inspects the queue length of each server following
the decreasing order of utility, i.e., from s1 to sM . It sends all
the incoming jobs at the current time slot to the first server with
queue length no larger than K (Line 6). If all the servers have
queue length larger than K , then it sends all the incoming
jobs to the last server sM (Line 8).3 As its name suggests,
priority-K is essentially a priority-based routing policy with a
queue length threshold of K , where the priority is determined
by the servers’ underlying utilities.

3As we will show that the probability of all servers have queue length larger
than K is in O(1/T ), the routing decision in this case can be arbitrary and
does not affect the analysis.

Algorithm 1 The Priority-K Policy
Require: Parameter K
1: Initialize: Qm(0) = 0 for each m.
2: for t = 0, 1, . . . , do
3: am(t) := 0 for each m.
4: for m = 1, 2, . . . , M do
5: if Qm(t) ≤ K then
6: am(t) := a(t).
7: End for loop.
8: end if
9: end for

10: aM (t) := a(t) if Qm(t) > K for all m = 1, 2, . . . , M .
11: Update Qm(t) for each m.
12: end for

The rationale behind Priority-K is that using a
priority-based routing policy can effectively reduce the
idleness of the servers with high underlying utilities.
However, a pure priority-based policy without taking into
consideration the service capacities will result in large queue
backlogs at the servers at the end of the time horizon,
resulting in high regret. Thus, the Priority-K policy uses a
threshold K to prevent overloading the servers. Note that
the threshold K needs to be set appropriately: if K is too
large, then it will fail to serve the purpose of avoiding
overloading; if K is too small, it will result in excessive
idleness in the servers with high utilities since their queues
will frequently become empty as there are insufficient jobs
buffered in the queues. In Theorem 1, we will show that
Priority-K achieves logarithmic regret when the threshold K
is appropriately chosen. Recall that δ > 0 is a constant such
that δ = min{λ −

∑L
m=1 μm,

∑L+1
m=1 μm − λ, 1}.

Theorem 1: Let C1 = 8CM/δ. The regret of the Priority-
K policy is in O(log T ), and is achieved with K = C1 log T .

Proof: Motivated by Proposition 3, we will bound the
regret of Priority-K via analyzing

∑T
t=0 P[QπPK

m (t) < C] for

m = 1, . . . , L and the terms E

[∑M
m=L+2

∑T
t=0 aπPK

m (t, ω)
]

and E

[∑L+1
m=1 Qm(T )

]
. For ease of notation, we will omit

the superscript πPK in QπPK

m (t), aπPK

m (t, ω) c̃πPK

L+1 (t, ω) in the
rest of the proof, as the context is clear that they are under the
policy πPK . Note that our choice of C1 = 8CM/δ requires
the knowledge of δ. We will comment at the end on how to
choose C1 without the knowledge of δ.

We begin by giving an outline of the proof that consists of
two main steps. The first step is to show that

∑T
t=0 P[Qm(t) ≤

C] is in O(log T ) for m = 1, . . . , L. The intuition is that
considering any m ≤ L and the set of servers {s1, . . . , sm},
as λ >

∑m
i=1 μi, the incoming jobs will be sent to the set

as long as one of the servers has queue length no larger
than K , which means that the arrival rate is greater than
the total service rate of {s1, . . . , sm}. Therefore, if K is
large enough, the queue backlog of servers s1, . . . , sL will
be maintained at a certain relatively high level and rarely
drop below C. The second step is to bound the terms
E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
and E

[∑L+1
m=1 Qm(T )

]
. The

term E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
is the cumulative arrivals

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2002 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

to the servers sm with m = L + 2, . . . , M . Under Priority-
K , those servers will only receive incoming jobs when the
queue lengths of s1, . . . , sL+1 are all greater than K . Whereas
λ <

∑L+1
m=1 μm, i.e., the total capacity of servers s1, . . . , sL+1

is greater than the arrival rate, so if K is large enough, the
event s1, . . . , sL+1 having queue lengths all greater than K

will happen with low probability. The term E

[∑L+1
m=1 Qm(T )

]
is the total queue lengths of the top L + 1 servers at the end
of the time horizon, which is deterministically bounded by
O(LK) under Priority-K . Note that the three terms we seek
to bound project the aforementioned exploration-exploitation
trade-off onto choosing the value of K in the context of
Priority-K . The first two terms rely on K being large while
the third term relies on K being small. Taking K to be in
O(log T ) (more specifically, K = 4CM log T/δ) gives us the
desirable trade-off for Priority-K to achieve O(log T )-regret.

We proceed to the details of the proof. From the construction
of Priority-K , we have the following observation:

∀m = 1, . . . , M − 1, ∀t, Qm(t) ≤ K + C. (5)

(5) holds since for m = 1, . . . , M − 1, am(t) = 0 whenever
Qm(t) > K , and when Qm(t) ≤ K , am(t) is bounded by C
as the number of incoming jobs a(t) is bounded by C.

The first step: assuming without loss of generality that
L ≥ 2, we start by bounding

∑T
t=0 P[Qm(t) < C] for m = 1

(in Lemma 1) and then for m = 2, . . . , L (in Lemma 2).
Lemma 1:

∑T
t=0 P[Qm(t) < C] = O(1).

Proof of Lemma 1: For server s1, define Z1(t) = K +
C − Q1(t). It follows from definition that P[Z1(t) > K] =
P[Q1(t) < C]. We further show that Z1(t) can be interpreted
as a potential function with negative one-slot drift when its
value becomes larger than C. By definition, we have Z1(t) ≥
C if and only if Q1(t) ≤ K , and |Z1(t + 1) − Z1(t)| ≤ C
with probability 1. Furthermore, under the priority-K policy,
by (5), we have Z1(t) ≥ 0 for all t. And when Z1(t) ≥ C,
which is equivalent to Q1(t) ≤ K , we have a1(t) = a(t).
It follows that

E[Z1(t + 1) − Z1(t) | Z1(t) ≥ C]
≤ E[−a1(t) + c1(t) | Q1(t) ≤ K] = −(λ − μ1) < 0.

(6)

From the above reasoning, we have that Z1(t) has negative
drift when it exceeds C. Therefore, we should be able to bound
the probability of {Z1(t) > K}, which is the same as the
probability of {Q1(t) < C}. In what follows, we make this
idea concrete.

From (6), taking r = δ
4C , we can prove the following

recursive inequality (7) on Z1(t). The detailed derivation of (7)
is shown in Appendix B-B.

E[erZ1(t+1)] ≤
[
1 − (λ − μ1)r

2

]
· E[erZ1(t)] + e2rC . (7)

Iterating over inequality (7) and noting that Z1(0) = K + C,
we obtain that for any t,

E[erZ1(t)] ≤ 2e2rC

(λ − μ1)r
+
[
1 − (λ − μ1)r

2

]t

er(K+C). (8)

It follows that

P[Z1(t) > K] = P[erZ1(t) ≥ erK ] ≤ E[erZ1(t)]
erK

(9)

≤ 2er(2C−K)

(λ − μ1)r
+

[
1 − (λ−μ1)r

2

]t
er(K+C)

erK
,

(10)

where we have used Markov’s inequality in (9). Plugging in
the values r = δ

4C and K = C1 log T = 4C log T/δ, we have

P[Z1(t) > K] ≤ 8e1/2

(λ−μ1)δT +
[
1 − (λ−μ1)δ

8C

]t
eδ/4. (11)

Summing (11) over t = 0, . . . , T ,we have
∑T

t=0 P[Q1(t) <

C] =
∑T

t=0 P[Z1(t) > K] = O(1). �
Lemma 2:

∑T
t=0 P[Qm(t) < C] = O(log T ) for m =

2, . . . , L.
Proof of Lemma 2: We will only show the details for m = 2,

as the proof for other m ≤ L is essentially the same. For
the server s2, we would need a more sophisticated argument
that that for s1 since the arrival to s2 depends on the queue
length of s1 while the arrival to s1 is not affected by the
queue length of any other servers under Priority-K . Define
Z2(t) := 2(K +C)−Q1(t)−Q2(t). We start by establishing
some elementary results on Z2(t) that show that Z2(t) can be
used to bound

∑T
t=0 P[Q2(t) < C].

First, we show that a bound on P[Q2(t) < C]
can be obtained by analyzing P[Z2(t) > K]. Indeed,
as Q1(t), Q2(t) ≤ K + C, we again have Z2(t) ≥ 0 for
all t. Also, as Q1(t) ≤ K + C with probability 1, we have

{Q2(t) < C} ⊆ {Q1(t) + Q2(t) ≤ K + 2C} = {Z2(t) > K},
which implies that P[Q2(t) < C] ≤ P[Z2(t) > K]. Hence,
an upper bound on P[Z2(t) > K] will lead to an upper bound
on P[Q2(t) < C].

Second, we establish that Z2(t) also satisfies a similar drift
condition as Z1(t). Note that {Z2(t) ≥ 2C} = {Q1(t) +
Q2(t) ≤ 2K} ⊆ {Q1(t) ≤ K or Q2(t) ≤ K}. Therefore,
conditioning on Z2(t) ≥ 2C, under Priority-K , we have that
a1(t) = a(t) or a2(t) = a(t) as either server s1 or server
s2 has queue backlog no larger than K . We thus have E[Z2(t+
1) − Z2(t) | Z2(t) ≥ 2C] ≤ −(λ − μ1 − μ2) < 0. Hence
following a similar analysis as for Z1(t), taking r = δ

8C ,
we have inequality (12) which is proved in Appendix B-C.

E[erZ2(t+1)] ≤
[
1 − (λ − μ1 − μ2)r

2

]
· E[erZ2(t)] + e4rC .

(12)

Since Z2(0) = 2(K + C), we have

E[erZ2(t)]

≤ 2e4rC

(λ−μ1−μ2)r +
[
1 − (λ−μ1−μ2)r

2

]t
e2r(K+C). (13)

Similarly as in (10), we have

P[Z2(t) > K] = P[erZ2(t) ≥ erK ] ≤ E[erZ2(t)]
erK

(14)

≤ 2er(4C−K)

(λ − μ1 − μ2)r

+

[
1 − (λ−μ1−μ2)r

2

]t
e2r(K+C)

erK
. (15)

Again, plugging in the value of r and K , we have that
there exists a constant C2 such that for t ≥ C2 log T ,

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2003

�
1− (λ−μ1−μ2)r

2

�t
e2r(K+C)

erK =
[
1 − (λ−μ1−μ2)r

2

]t
er(K+2C) =

O(1/T ). Combining this with 2er(4C−K)

(λ−μ1−μ2)r = O(1/T ), it fol-
lows that,

T∑
t=0

P[Q2(t) < C] ≤
T∑

t=0

P[Z2(t) > K]

≤
C2 log T∑

t=0

P[Z2(t) > K]

+
T∑

t=C2 log T+1

P[Z2(t) > K]

≤
C2 log T∑

t=0

P[Z2(t) > K]

+ O(1) = O(log T ).

Using the same reasoning, we have
∑T

t=0 P[Qm(t) ≤ C] =
O(log T ) for all m ≤ L, where the constructed potential
function for server sm is Zm(t) = m(K+C)−

∑m
i=1 Qi(t). �

The second step: Next, we proceed to the second
step and analyze the terms E

[∑L+1
m=1 Qm(T )

]
and

E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
, For E

[∑L+1
m=1 Qm(T )

]
,

as mentioned in the preceding discussion, by the
construction of Priority-K , we have E

[∑L+1
m=1 Qm(T )

]
≤

(L + 1)(K + C) = O(log T ).
For the term E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
, we have the

following lemma.
Lemma 3: E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
= O(1).

Proof of Lemma 3: We start by noting that

E

[
M∑

m=L+2

T∑
t=0

am(t, ω)

]

≤ E

[
T∑

t=0

�{Q1(t, ω) > K, . . . , QL+1(t, ω) > K}
]

(16)

≤
T∑

t=0

P

{
L+1∑
m=1

Qm(t) > (L + 1)K

}
, (17)

where (16) follows from the construction of the Priority-K
policy and (17) holds as {Q1(t, ω) > K, . . . , QL+1(t, ω) >

K} implies
{∑L+1

m=1 Qm(t, ω) > (L + 1)K
}

.

Consider the function ZL+1(t) =
∑L+1

m=1 Qm(t). We again
show that ZL+1(t) can serve as a potential function that
satisfies a negative drift condition. As Qm(t) ≤ K + C,
we have {ZL+1(t) ≥ LK + (L + 1)C} ⊆ {∀1 ≤ m ≤
L+1, Qm(t) ≥ C}. Therefore, under the condition ZL+1(t) ≥
LK +(L + 1)C, the realized services of servers s1, . . . , sL is
equal to the offered services. It follows that

E[ZL+1(t + 1) − ZL+1(t) | ZL+1(t) ≥ LK + (L + 1)C]

≤ E[a(t) −
L+1∑
m=1

cm(t)] = λ −
L+1∑
m=1

μm < 0.

(18)

Following a similar argument and taking r = δ1
4(L+1)C ,

we establish the following recursive inequality for ZL+1(t)
with the derivation deferred to Appendix B-D.

E[erZL+1(t+1)]

≤
[
1 −

(
L+1∑
m=1

μm − λ

)
r

]
· E[erZL+1(t)] + er(2(L+1)C+LK).

(19)

As ZL+1(0) = 0, similarly to the analysis of Z1(t) and Z2(t),
we have

P[ZL+1(t) > (L + 1)K] ≤ er(2(L+1)C−K)(∑L+1
m=1 μm − λ

)
r

+
1

er(L+1)K
. (20)

Plugging in the value of r and k, we have that∑T
t=0 P{ZL+1(t) > (L+1)K = O(1). Therefore, from (17),

we have E

[∑M
m=L+2

∑T
t=0 am(t, ω)

]
= O(1). �

Combining the analysis of the two steps and Lemmas 1, 2,
and 3, we have RT (πPK) = O(log T ) and conclude the
proof of the theorem. From the proof, we can see that the
hidden factor in the O(log T ) regret bound is proportional to
M
δ where M is the number of servers and δ = min{λ −∑L

m=1 μm,
∑L+1

m=1 μm − λ, 1} > 0.
Choice of K: from the preceding analysis we can see that

to achieve O(log T )-regret, it suffices to choose K = C1 log T
where C1 is a constant greater than 4CM/δ. Therefore, we do
not have to know the exact value but only a lower bound of δ.
An alternative way to choose K that does not depend any
information on δ is to set K = log T · log log T . As T goes to
infinity, log log T is guaranteed to be larger than any constant
independent of T , and going through the same proof, it can be
shown that the Priority-K policy with K = log T · log log T
achieves O(log T · log log T )-regret. In practice, using a good
estimation of the lower bound of δ would often lead to a less
conservative choice of K and better performance.

Instance-Independent Regret: when δ is 0 or can scale with
the time horizon T , we can set K to be

√
T log T . Following

the same analysis, it can be shown that the priority-K policy
achieves Õ(

√
T )-regret, which essentially recovers the same

regret bound achieved by the optimal static policy in instance-
independent cases. �

B. The Case of Unknown Utility Ordering

We now return to the original setting of the optimal rout-
ing problem where the ordering of the underlying utilities
v1, . . . , vM is unknown. We will propose a routing policy that
achieves O(log3 T )-regret, without relying on the knowledge
of the utilities. For the sake of analysis, the servers are still
ordered such that v1 > . . . > vM . However, our policy will
not make use of this ordering.

1) Concentration Inequalities and Upper-Confidence-
Bound: We start by introducing some concentration
inequalities and the upper-confidence bound that will be
used in subsequent analysis. For each server sm, we define
Nm(t) as the cumulative number of utility observations
(i.e., cumulative number of jobs completed) at time t, and

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2004 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

vm(t) as the empirical mean of the utility observations,
i.e., vm(t) = 1

Nm(t)

∑Nm(t)
j=1 vj

m. Since each observation
noise �j is independent and 1-sub-Gaussian, using Chernoff
bound [20], we have

P(vm − vm(t) ≥ �) ≤ exp{−Nm(t)�2/2} (21)

P(vm − vm(t) ≤ −�) ≤ exp{−Nm(t)�2/2}. (22)

Similar to the multi-armed bandit literature [20], we define
the upper-confidence-bound of underlying utility vm based on
its empirical mean as v̂m(t) := vm(t)+

√
4 ln T
Nm(t) . We first have

the following lemma, that shows that the upper-confidence-
bound of each server is greater than its underlying utility with
high probability.

Lemma 4: Let E1 be the event that for all t, m, v̂m(t) >
vm. P(E1) = 1 − O(1/T ).

Proof: Taking � =
√

4 ln T
Nm(t) . For each m, from (21),

we have P{v̂m(t) ≤ vm} ≤ 1/T 2. Therefore, by the union
bound, we have the probability of there exists a time t and
server sm such that v̂m(t) ≤ vm is in O(1/T ), from which
the lemma follows. �

Let Δm = vm−1 − vm and Δ = minm Δm > 0. Define
N̂ = 64 ln T

Δ2 . The next lemma shows that the upper-confidence-
bound of server sm will be no larger than the underlying utility
of the server sm−1 after a sufficient number (N̂ ) of utility
observations.

Lemma 5: Let E2 be the event that v̂m(t) < vm−1 for all
t, m such that Nm(t) ≥ N̂ . P(E2) = 1 − O(1/T ).

Proof: When Nm(t) ≥ N̂ , we have
√

4 ln T
Nm(t) ≤

√
4 lnT

N̂
≤

Δ
4 ≤ vm−1−vm

4 . It then follows from (22) that when Nm(t) ≥
N̂ , for all m,

P

{
v̂m(t) ≥ vm +

vm−1 − vm

2

}

≤ P

{
vm(t) ≥ vm +

vm−1 − vm

4

}

≤ exp

{
−Nm(t)

2

(
vm−1 − vm

4

)2
}

≤ 1
T 2

. (23)

Again, using a union bound and noting that vm−1 > vm +
vm−1−vm

2 the lemma follows. �
Combining Lemmas 4 and 5, we have Lemma 6.
Lemma 6: Let E3 be the event that when Nm(t) ≥ N̂ ,

v̂m(t) < vm′ for all m′ ≤ m − 1. P(E3) = 1 − O(1/T ).
2) The Upper-Confidence Priority-K Policy: In this section,

we present our policy for the optimal routing problem when
the utilities are unknown. An easy extension of the Priority-K
policy that can achieve logarithmic regret is one that starts
with a pure-exploration phased by first sending N̂ jobs to each
server, and then performs Priority-K for the rest of the time
horizon based on the ordering obtained from the utility obser-
vations from the first N̂ jobs at each server. However, such a
policy needs to know the value of N̂ , or equivalently to know
the minimum gap Δ between the underlying utilities. We will
propose a policy that dynamically interleaves exploration and
exploitation, thereby avoids the need to know N̂ or Δ, while
still achieves logarithmic regret. We will refer to our policy as
the Upper-Confidence Priority-K Policy (UCPK).

UCPK maintains an ordering O which basically reflects
the ordering of the upper-confidence-bounds of the underlying
utilities {v̂1(t), . . . , v̂M (t)}. The details of the UCPK policy
are presented in Algorithm 2.

Algorithm 2 The Upper-Confidence Priority-K Policy
Require: Parameter K
1: Initialize: O as an arbitrary ordering.
2: for t = 0, . . . , T do
3: if O has not changed then
4: Allocate servers to incoming jobs using Priority-K

based on O.
5: Update O based on {v̂1(t), . . . , v̂M (t)}.
6: else
7: For the next M time slots send jobs to each server in

a round-robin manner, i.e., send the incoming jobs at
time slot t + m − 1 to server sm, m ∈ {1, . . . , M}.

8: Update O based on {v̂1(t+M−1), . . . , v̂M (t+M−1)}.
9: end if

10: end for

In UCPK, the ordering O is initialized to an arbitrary order-
ing. UCPK has two modes. In the first mode (Lines 4 and 5),
when O has not changed from the update of the upper confi-
dence bounds, then UCPK makes routing decisions using the
Priority-K policy (Algorithm 1) with the priority {1, . . . , M}
replaced by O, i.e., it inspects the queues of the server and
sends the incoming jobs to the first server with queue length
no larger than K following the ordering O. If the ordering O
has changed, then UCPK goes into the second mode, where
it send the incoming jobs at each of the next M time slots
to each of the servers 1, . . . , M , and update O based on the
upper confidence bounds at the end of the next M time slots.
This mode can be considered as pure exploration, where the
policy ensures that we obtain at least one utility observation
from each server.

We now proceed to analyze the performance of the UCPK
policy. We show that it also achieves a logarithmic regret if
the parameter K is appropriately chosen.

Theorem 2: The Upper-Confidence-Priority-K policy
πUCPK achieves O(log3 T )-regret with K = C1 log T , where
C1 is the same constant as in Theorem 1.

Proof: It can be seen from Algorithm 2 that the execution
of UCPK policy can be divided into periods, with each
period corresponding to an ordering and a period ends if the
ordering O changes. We define a period as correct if in the
corresponding ordering, the first L + 1 servers are exactly
s1, . . . , sL+1, i.e., the first L + 1 positions in the ordering
match the ordering of the underlying utility. Otherwise, the
period is incorrect.

To give the main idea of the proof, we identify three factors
that contribute to the regret of the UCPK policy. The first
comes from the changes in ordering O, as with each change
come M time slots of pure exploration which inherently
contains sub-optimal decisions. The second comes from the
routing decisions made when using Priority-K based on an
incorrect ordering. The third comes from the regret accrued by
Priority-K with a correct ordering, which has been analyzed in
Theorem 1. To bound the regret from the first factor, we need

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2005

to bound the total number of periods (changes of O). To bound
the regret from the second factor, we need to bound the length
of the incorrect periods where the policy follows Priority-K
but with a wrong priority. Finally, for the third factor, we can
invoke previous results on Priority-K (i.e., from Theorem 1).

Recall from Proposition 1 and Proposition 3 that

RT (πUCPK) ≤ E

[
T∑

t=0

a(t, ω)

−
L∑

m=1

T∑
t=0

cm(t, ω)−
T∑

t=0

c̃L+1(t, ω)

]
· vL+1

+
T∑

t=0

L∑
m=1

P[Qm(t) < C] · C2

= E

[
a(t, ω) −

L∑
m=1

cm(t, ω)− c̃L+1(t, ω)

]
·vL+1

+
T∑

t=0

[
L∑

m=1

P[Qm(t) < C] · C2

]
,

where again, we omit the superscript of Qm(t) and c̃L+1(t, ω)
for ease of notations. Define the term R̄(πUCPK , t) as

R̄(πUCPK , t) =
L∑

m=1

P[Qm(t) < C] · C2

+ E

[
a(t, ω) −

L∑
m=1

cm(t, ω)

− c̃L+1(t, ω)] · vL+1.

We define the set of time slots when UCPK is doing pure
exploration (Line 4) as T1, the set of time slots when UCPK is
making decisions using Priority-K with an incorrect ordering
as T2, and the time slots when UCPK is making decisions
using Priority-K with a correct ordering as T3.4 Based on
these definitions, we can decompose the regret based on the
aforementioned three factors as

RT (πUCPK) ≤
∑
t∈T1

R̄(πUCPK , t) +
∑
t∈T2

R̄(πUCPK , t)

+
∑
t∈T3

R̄(πUCPK , t) (24)

≤ 2MC2|T1| + 2MC2|T2|
+
∑
t∈T3

R̄(πUCPK , t),

(25)

where (25) follows from a trivial upper bound R̄(πUCPK ,
t) ≤ 2MC2.

We now proceed to bound the three terms on the right-
hand-side of (25). Recall that K = C1 log T for a sufficiently
large constant C1 which can be chosen the same way as in
Theorem 1.

Lemma 7: With probability at least 1 − O(1/T ), there are
at most N̂ periods, and |T1| = O(log T ).

4Rigorously speaking, T1,T2,T3 are random sets that depend on the sample
paths. For simplicity of notations, we omit such dependence as it does not
affect our proof.

Proof of Lemma 7: Note that we will obtain at least one
utility observation from each server at the beginning of each
period. From Lemma 6, we have that for any server sm, if we
have obtained at least N̂ utility observations of sm, then
there will be at least m− 1 servers sm′ with v̂m(t) < v̂m′(t).
Therefore, if we have obtained at least N̂ observations for each
server, then for each m, every server with a higher underlying
utility than sm will have a higher upper-confidence-bound
than v̂m(t). Hence, the resulting ordering O based on the
upper-confidence-bound will coincides with the ordering
based on the underlying utility (i.e., s1, . . . , sM ) and will
not change further. Thus, with probability 1 − O(1/T ), there
will be at most N̂ periods, and it follows that |T1| ≤ MN̂ =
O(log T ). �

Lemma 8: With probability at least 1 − O(1/T ), |T2| ≤
O(log3 T ).
Proof of Lemma 8: Let O be the corresponding ordering of
an incorrect period and let m ≤ L + 1 be the first “out-of-
place” server in the ordering. More formally, m is the smallest
integer where server sm occupies the j-th position in O with
j < m. Such m is well-defined as the period is incorrect.

For this period, first there are M slots with each slot each
server gets at least one job. If the ordering changes after
the first M slots, then the length of the period is obviously
in O(MKN̂). Next, we consider the second phase of the
period where UCPK follows priority-K with the ordering O.
Consider the first m servers in the ordering O. We will show
that with probability 1 − O(1/T ), the length of the period
is bounded by O(log2 T ). Note that the period ends when
the ordering O based on the current upper-confidence bounds
changes. And from Lemma 6, we have that the receiving
N̂ utility observations from server sm is sufficient for the
ordering to change with high probability, since after receiving
N̂ utility observations, there will be at least m − 1 servers
with upper confidence bounds greater than m, and thus v̂m(t)
will no longer occupies the j-th position (j < m) as in the
original ordering O of the period.

We now proceed to bound the length of the time between
server sm receives two utility observations (completes two
jobs) under the current ordering O. Let t0 be any time slot
under the current ordering that server sm completes a job
(receives a utility observation). Let t0 + τ be the first time
slot after t0 that sm completes a job. We will show that
P[τ = O(log T )] = O(1/T 2). Since the offered service of
sm is lower-bounded by one, whenever the queue of sm is
not empty, it will complete at least one job every time slot.
Therefore, τ ≤ 1 if Qm(t0 + 1) > 0. Furthermore, we have

∀t ∈ {t0 + 1, . . . , t0 + τ − 1},
Qm(t) = 0, and ∃i ∈ {1, . . . , j − 1},
Qi(t) ≤ K. (26)

Consider a new system consisting of only servers s1, . . . , sj−1

with queue lengths Q1(t0), . . . , Qj−1(t0) being the same as
those of the original system. Observe that from t0 to t0+τ−1,
the state of queue lengths of s1, . . . , sj−1 evolves identically
as that of the new system under UCPK. Furthermore, let
Z(t) = (j − 1)(K + C) −

∑j−1
i=1 Qi(t). In the new system,

we have for some i ∈ {1, . . . , j − 1}, ai(t) = a(t), that
is, the incoming jobs at time t are routed to one of the

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2006 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

servers s1, . . . , sj−1. It follows that E[Z(t + 1) − Z(t) |
Z(t)] = E[−a(t) +

∑j−1
i=1 ci(t) | Z(t)] = −λ +

∑j−1
i=1

μi < 0. It follows that Z(t) is a super-martingale with one-slot
negative drift. As Z(t) ≤ (j − 1)(K + C) = O(log T ) with
probability 1, from the hitting time bound on super-martingales
with negative drift in [36] (Theorem 2.3 therein), we have that
starting from state, the hitting time of the set {Z(t) < C}
is in O(log T ) with probability at least 1 − O(1/T 2). More
formally, starting from any Z(t0), there exists a τ0 = O(log T )
such that with probability at least 1 − O(1/T 2), there exists
t ∈ {t0 + 1, . . . , t0 + τ0} such that Z(t) ≤ C. Note that as
Qi(t) ≤ K + C with probability 1, {Z(t) < C} implies that
for all i ∈ {1, . . . , j − 1}, Qi(t) > K . It follows that in the
original system, the interval τ = O(log T ) with probabilities
at least 1−O(1/T 2), i.e., (26) can hold for at most O(log T )
time slots with probability 1 − O(1/T 2). Applying a union
bound, it follows that with probability at least 1−O(1/T ), the
time between server sm receives any two utility observations
is in O(log T ). Combining with the preceding discussion, the
length of the current incorrect period is upper bounded by
the time it takes for sm to receive N̂ utility observations.
Thus, we have proved that the length of an incorrect period is
bounded by O(log2 T ). As the total number of periods is in
O(log T ), it follows that |T2| ≤ O(log3 T ). �

Now, back to the proof of the theorem, for the third term,
note that we have already analyzed the term R̄(πUCPK , t) in
Theorem 1. The analysis there was done for a specific initial
state with Qm(0) = 0 for all m. But it is straightforward to see
from the analysis that the bound hold for arbitrary initial state
with Qm(0) ≥ 0. Therefore, we have from Theorem 1 that for
each correct period, the sum of R̄(πUCPK , t) is in O(log T ).
It follows from Lemma 7 that

∑
t∈T3

R̄(πUCPK , t) =
O(log2 T ). In summary, combining this with Lemmas 7 and 8,
we have that RT (πUCPK) = O(log3 T ) and conclude the
proof. �

Remark: (i). The UCPK policy achieves O(log3 T )-regret,
which strictly dominates all static polices as they have a regret
of Ω(

√
T ). The key to this improvement is that UCPK is

queue-length-aware, i.e., it takes the queue lengths into con-
sideration when making routing decisions. Such queue-length
awareness makes the routing policy dynamic and adaptive to
the realizations of the arrival and offered services. (ii). It is
possible to show that the UCPK policy still achieves
poly-logarithmic regret without the “pure-exploration” slots
in T1 (i.e. Line 4 of Algorithm 2). However, the proof would
be much more involved, as we would need to bound the total
number of incorrect periods through arguing that for each
incorrect period, an “out-of-place” server will receive N̂ jobs
eventually if the ordering does not change in the meantime.
We choose to present the version of UCPK with the “pure-
exploration” slots as the analysis is much cleaner. (iii). The
instance-dependent factor in the O(log3 T )-regret of UCPK
is proportional to M

δ·Δ2 , where Δ = minm Δm > 0 with
Δm = vm−1 − vm. (iv). Both the PK and the UCPK policies
rely on the knowledge of the time horizon T . We can use
the “doubling trick” when the time horizon is unknown: we
maintain a pseudo time-horizon T ′. Starting from T ′ = 1,
we run the policy as if the time horizon is T ′ (setting K
as C log T ′). If we have reached the end of the pseudo-time
horizon but not the real time horizon, then we double the

pseudo-time horizon T ′ and re-run the policy. Such procedure
is continued until the end of the real time horizon. As there
are at most O(log T ) pseudo-time horizons, the doubling trick
would at most add an O(log T ) factor to the regret.5 (v). The
regret lower bound of Ω(log T ) for the multi-armed bandit
problem [20] also holds for the optimal routing problem since
optimal routing is a generalization of the multi-armed bandit
problem. However, there is a gap between the O(log3 T )-
regret achieved by the UCPK policy and the lower bound of
Ω(log T ). We conjecture that the stochastic queueing dynamics
make the optimal routing problem fundamentally harder than
the multi-armed bandit problem, and therefore a lower bound
larger than Ω(log T ) should hold for the optimal routing
problem. Proving such a lower bound would narrow or close
the gap, which we will leave as future work.

V. SIMULATIONS

In this section, we conduct simulations to evaluate the
empirical performance of the PK and UCPK policies.

A. Simulation Setup

We consider a network with 20 servers. The underlying
utilities of the servers are {20, 19, . . . , 1}. The arrival rate
to the job dispatcher is 100, and the service rates of the
servers are randomly selected from {6, 8, 10}. We compare the
performance of three policies: the best static policy (Static),
Priority-K (PK) and Upper-Confidence Priority-K (UCPK).
The best static policy makes routing decisions based on the
optimal solution to the problem P .

B. Simulation Results

We vary the time horizon T in {10000, 20000, . . . , 200000}.
For each time horizon, we run the policies and study the
queue length at the end of the time horizon (i.e., total number
of unfinished jobs), and the utility regret. We compute an
upper bound on the regret by using the utility achieved in
an imaginary system with one time slot, where the arrival is∑T

t=0 a(t) and the offered service of server m is
∑T

t=0 cm(t).
The parameter K of the PK and UCPK policies is set
to 
20 log2 T �.

We plot the utility regret in Figure 2(a) and the queue length
at the end of the time horizon in Figure 2(b). We can see that
both the UCPK policy and the PK policy achieve significantly
better regret than the best static policy, with the UCPK policy
performing slightly worse than the PK policy, due to its need
to learn the underlying utilities of the servers. The superiority
in terms of utility regret is also manifested in the queue length
at the end of the time horizon. As explained in Section II-C,
the main drawback of the best static policy is that its queue
length can grow as Θ(

√
T ) while for the PK and the UCPK

policies, the queue length only grows logarithmically with T .

VI. EXTENSION TO GENERAL BIPARTITE NETWORK

In this section, we extend our results to general bipartite
networks with multiple job dispatchers. We first present the
model for bipartite networks, and then discuss how our pro-
posed policies can be applied to this general setting.

5However, since both the UCB and the threshold value K depend on the
time horizon, it is more challenging to come up with a more natural “any-
time policy” that uses functions of the current time t as the parameters of the
policy as in the multi-armed bandit problem.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2007

Fig. 2. Utility Regret and Queue Length of Different Policies.

A. Bipartite Network Model

We consider a similar setup as in Section II. Instead of
one job dispatcher, we study a system with N job dispatchers
and M parallel servers where the dispatcher and servers form
a general bipartite graph G. For a dispatcher un, we denote
by Sun the set of servers un is connected to. For a server
sm, we denote by Nsm the set of job dispatchers that have
connection to sm. At each time slot t, there are an(t) jobs
arriving at dispatcher un with E[an(t)] = λn. an(t)’s are
assumed to be i.i.d. and the arrival rates λn’s are unknown.
The service process and the utility observation process are
identical to the single dispatcher case in Section II. Note
that in this general setting, the utility of a job is still only
dependent on the server it is allocated to, but not on the
dispatcher it comes from. Let amn(t) be the number of jobs
sent to server sm from dispatcher un at time t (amn(t) = 0 if
sm �∈ Sun ). The evolution of the queue length can be written

as Qm(t + 1) :=
[
Qm(t) +

∑N
n=1 amn(t) − cm(t)

]+
. Our

goal is to design a policy that makes routing decisions for
the incoming jobs from each dispatcher. We will refer to the
problem as the generalized optimal routing problem. Instead
of pursuing a policy that achieves logarithmic regret for all
instances of the problem, our focus is on exploring whether,
when, and how our previous analysis and policies can be
extended to this generalized case.

B. Bounds on Utility and Regret

As in Section III, we start by proposing bounds on the
utility and regret for the optimal routing problem in general
bipartite networks. Recall that the bounds (Propositions 1, 2
and 3) for the optimal routing problem with a single dispatcher
was motivated by the solution to the optimization problem P ,
which is essentially a static version of the optimal routing
problem. For the generalized optimal routing problem, we can
define a counterpart of P , the optimization problem P ′,
as follows.

P ′ : max
{xmn}

N∑
n=1

∑
sm∈Sun

vmxmn (27)

s.t.
∑

m∈Sun

xmn = λn, (28)

∑
n:sm∈Sun

xmn ≤ μm. (29)

0 ≤ xm ≤ μm. (30)

In P ′, the optimization variable xmn can be interpreted
as the rate of jobs that dispatcher n sends to server sm.

Let {x∗
mn} be an optimal solution to P ′. We define a server

sm to be critical if
∑

n:m∈Sun
xmn = μm, a server to be

slack if 0 <
∑

n:m∈Sun
xmn < μm, and a server to be idle if∑

n:m∈Sun
xmn = 0. Let the set of critical servers be S1 and

the set of slack servers be S2. For example, in the case with
a single job dispatcher, the servers s1, . . . , sL are critical,
the server sL+1 is slack, while the remaining servers are
idle.

The optimal policy for the single job dispatcher case tries
to send most of the jobs to critical servers (s1, . . . , sL) to
keep them fully utilized, send the remaining jobs to slack
servers (in this case there is only one slack server sL+1), and
avoid sending jobs to the idle servers. This structure is in
line with the optimal solution to P . For a general instance
of bipartite networks, the optimal solution to P ′ may not
have a similar structure. This is mainly because the presence
of multiple job dispatchers necessitates global coordination
among the dispatchers. As a result, generalized version of
the bounds in Section III may not hold and extensions of
our proposed policies may not work. This enable us to
generalize our previous bounds on utility and regret, and the
proposed policies in a non-trivial fashion. We remark here
that the conditions are sufficient for our previous analysis and
results to be carried over without trivializing the problem.
However, they are not necessary for our bounds to hold
and we conjecture that even when the conditions are not
satisfied, there exist policies with logarithmic regret for the
generalized optimal routing problem. However, such policies
may be of different nature and require drastically different
analysis. We leave the development of such policies to future
work.

Recall the bipartite graph G formed by the job dispatchers
and servers. We define the sub-graph Gx∗ as the sub-graph of
G with (un-directed) edges such that x∗

mn > 0. For each slack
server sm ∈ S2, we define Gm as the connected component
of Gx∗ that sm belongs to. Furthermore, we define Ñm as
the set of job dispatchers in Gm, and S̃m as the set of
servers that are in Gm. Now, we are ready to state the two
conditions.

Condition 1: For any servers sm, sm′ with m < m′,
Nsm ⊆ Nsm′ or Nsm′ ∩ Nsm = ∅.

Condition 2: For each sm ∈ S1, there exists a slack server
sm′ ∈ S2 such that sm ∈ S̃m′ .

Condition 1 essentially says that for two servers sm, sm′ ,
with sm having a higher underlying utility than sm′ , the set of
job dispatchers that are connected to sm is either a subset of
or disjoint with that to sm′ . Condition 2 is the counterpart
of the instance-dependent condition on the λ and {μm}

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2008 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

(i.e.,
∑L

m=1 μm < λ <
∑L+1

m=1 μm) in Section II-B.1.
It essentially says that there does not exists a connected
component in Gx∗ without a slack server. The results in this
section will all be under Conditions 1 and 2.

Based on the conditions, we show some key structural
results for the generalized optimal routing problem in the
following four lemmas. The proofs of the lemmas are deferred
to Appendix B-E.

Lemma 9: There does not exist a job dispatcher un that is
connected to two slack servers sm, sm′ with vm > vm′ such
that un �∈ Gm but un ∈ Gm′ .

Lemma 10: ∀sm, sm′ ∈ S2 with m �= m′, Gm and Gm′ do
not intersect.

Note that from Condition 2, Lemmas 9 and 10, we have
that the collection {Ñm, sm ∈ S2} forms a partition of the set
of job dispatchers, and the collection {S̃m, sm ∈ S2} forms a
partition of S1 ∪ S2.

Lemma 11: For any job dispatcher that is connected to a
slack server sm and an idle server sm′ , vm > vm′ .

Lemma 12: For any slack server sm, all the critical server
in S̃m have underlying utility greater than vm.

Under Conditions 1 and 2, based on Lemmas 9, 10, 11
and 12, we can show that for the generalized optimal routing
problem, we should try to fully utilize the critical servers
(S1) and sends the remaining jobs to slack servers (S2).
Furthermore, each slack server sm ∈ S2 receives all the
remaining jobs from the job dispatchers from Ñm. Note that
since Ñm forms a partition, every job dispatcher is connected
to one and only one slack server. This structure enable us to
show an upper bound on the utility of any policy, which is
formally presented in Proposition 4. The proof is deferred to
Appendix B-F.

Proposition 4: Under Conditions 1 and 2,

sup
π∗∈Π∗

UT (π∗, ω) ≤
∑

sm∈S1

T∑
t=0

cm(t, ω) · vm

+
∑

sm∈S2

⎡
⎣ T∑

t=0

∑
un∈Ñm

an(t, ω)

−
T∑

t=0

L∑
sm′∈S̃m∩S1

cm′(t, ω)

⎤
⎦

+

· vm.

From Proposition 4 and following the same analysis as in
the case of single job dispatcher, we obtain the following
corollary as an upper bound of regret.

Corollary 1: For any policy π,

RT (π) ≤
T∑

t=0

∑
sm∈S1

P[Qπ
m(t) < C] · C2

+
∑

sm∈S2

E

⎡
⎣ ∑

sm′∈S̃m∩S1

Qπ
m′(T, ω)

+
T∑

t=0

∑
un∈Ñm

∑
sm′ �=S1

m′ �=m

aπ
m′n(t, ω)

⎤
⎥⎥⎦ · vm.

C. Generalized Routing Policy

From Corollary 1, we see that under Conditions 1 and 2,
a policy has low regret if under the policy the idleness
of critical servers is low, and the critical servers are not
overloaded while the jobs not served by the critical servers are
sent to the slack servers (not the idle servers). In what follows,
we will show that natural extensions of the PK and the UCPK
policies achieves the aforementioned objectives and still enjoy
logarithmic regret for the generalized optimal routing problem.

Following a similar road map, we start with the case where
the ordering of the underlying utilities is known. For this case,
we propose an extension of Priority-K policy that is shown
in Algorithm 3.

Algorithm 3 The Generalized Priority-K Policy
Require: Parameter K
1: Initialize: Qm(0) = 0 for each m.
2: for t = 0, 1, . . . , do
3: for n = 1, . . . , N do
4: amn(t) := 0 for each m.
5: for m ∈ Sun following the decreasing order of under-

lying utilities do
6: if Qm(t) ≤ K then
7: amn(t) := an(t).
8: end if
9: end for

10: if Qm′(t) > K for all m′ ∈ Sun then set amn(t) :=
an(t) for an arbitrary m ∈ Sun .

11: Update Qm(t) for each m.
12: end for
13: end for

The Generalized Priority-K policy is a natural extension
of the Priority-K policy to the general bipartite network
setting. Each job dispatcher un follows a local version of the
Priority-K policy, inspects the servers in Sun following the
decreasing order of the underlying utilities and sends the
incoming jobs of un to the first server with queue length no
larger than K .

In Theorem 3, we will show that the generalized Priority-K
policy also achieves O(log T )-regret under Conditions 1 and 2.
The proof follows a similar idea as in Theorem 1. We construct
potential function of queues to bound each term on the right-
hand-side of Corollary 1. The details of the proof are presented
in Appendix B-G.

Theorem 3: Let πGPK be the Generalized Priority-K pol-
icy with K = C3 log T for some sufficiently large constant C3.
RT (πGPK) = O(log T ).

Based on the Generalized Priority-K policy, we can extend
it in the same way to a generalized version of UCPK policy
to handle the case of unknown utilities, as the extension from
Priority-K to UCPK. It is easy to show that all the analysis for
the UCPK policy holds for the Generalized UCPK policy, with
the bounds on Priority-K replaced by the bounds on Gener-
alized Priority-K . Therefore, the Generalized UCPK policy
achieves O(log3 T )-regret for the general optimal routing
problem. Finally, we note that both the Generalized Priority-K
policy and the Generalized UCPK policy are amenable to
distributed implementation, as they essentially only require

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2009

each dispatcher to make routing decision locally based on
the shared information on queue lengths. The flip side is
that the local nature of decision making may prevent them
from achieving logarithmic regret for instances of generalized
optimal routing problem where Conditions 1 and 2 do not
hold.

VII. CONCLUSION

In this paper we studied the problem of optimal rout-
ing for parallel servers, which is a new multi-armed bandit
formulation where the bandit arms have queues. We pre-
sented analytical bounds that link the regret of the policy
to the utilization and queue length of servers with high
utilities and servers with low utilities, thereby characterizing
the exploration-exploitation trade-off in the optimal routing
problem. We designed routing policies that enjoy regret that
grows logarithmically with the time horizon T . The policies
we propose are easy to implement, and have natural extensions
which can still achieve logarithmic regret for the generalized
optimal routing problem with multiple job dispatchers under
certain structural conditions. Despite the simplicity and the
good theoretical performance guarantees of our policies for the
optimal routing problem with single job dispatcher, we have
not been able to extend them to handle all instances of the
generalized problem with multiple job dispatchers. Designing
efficient routing policies with provably low regret for the
generalized optimal routing problem is an important future
direction.

APPENDIX A
REGRET LOWER BOUND OF STATIC POLICIES

In this section, we establish a lower bound on the regret of
static policies. We formally define the static policies as ones
under which the numbers of jobs am(0), . . . , am(T ) sent to
each server sm at time t = 0, . . . , T are independent random
variables with the same mean. Note that we only require
independence of decisions corresponding to each server across
time, but do not ask for independence of a1(t), . . . , aM (t)
across different servers for the same t. The lower bound is
summarized as follow.

Proposition 5: There exist instances of the optimal routing
problem in which any static policy has Ω(

√
T )-regret.

Proof: We consider an instance with two servers (M = 2).
Server s1 has an integer service rate μ1 with its offered
service c1(t) being an integer chosen from {μ1 − 1, μ1 + 1}
uniformly at random. Server s2 has an integer service rate
μ2 with its offered service c2(t) being an integer chosen from
{μ2−1, μ2 +1} uniformly at random. The underlying utilities
v1 = v2+1. The arrival process is deterministic, with a(t) = λ
for each t. Note that we explicitly specify the distributions
of the arrival and service processes only for concreteness.
It should be clear from the proof that the result holds for
a wide range of instances, not restricted to M = 2 or the
distributions assumed here.

We consider an arbitrary static routing policy π that sends
a1(t) = λ1, t = 0, . . . , T jobs to s1 and a2(t) = λ2, t =
0, . . . , T jobs to s2. By Proposition 1, for the optimal policy
π∗, on any sample path ω, UT (π∗, ω) ≤

∑T
t=0 c1(t, ω)

v1 +
[∑T

t=0 λ −
∑T

t=0 c1(t, ω)
]
v2. It follows that

UT (π∗) ≤ E

[
T∑

t=0

c1(t, ω)v1

+

[
T∑

t=0

λ −
T∑

t=0

c1(t, ω)

]
v2

]

=
T∑

t=0

μ1v1 +

[
T∑

t=0

λ −
T∑

t=0

μ1

]
v2. (31)

We will show that the gap between (31) and UT (π) is Ω(
√

T ).
Although (31) upper-bounds and may not be equal to UT (π∗),
as the UCPK policy achieves logarithmic regret, having a
Ω(

√
T ) gap with respect to (31) implies a gap of the same

order with respect to UCPK, from which it will follow that
any static policy has Ω(

√
T )-regret.

For the static policy π, by definition, we have

UT (π) ≤
[

T∑
t=0

λ1 − E[Q1(T )]

]
v1 +

T∑
t=0

(λ − λ1)v2. (32)

It follows that the gap between the right-hand-side of (31) and
UT (π) is at least[

T∑
t=0

μ1 −
T∑

t=0

λ1 + E[Q1(T )]

]
v1 +

T∑
t=0

(μ1 − λ1)v2. (33)

Recall the evolution of Q1 as Q1(t + 1) = [Q1(t) + a1(t) −
c1(t)]+ ≥ Q1(t)+ a1(t)− c1(t). Let Q̃1(T ) =

∑T
t=0[a1(t)−

c1(t)]. It follows that E[Q1(T )] ≥ P[Q̃1(T ) ≥ 0] · E[Q̃1(T ) |
Q̃1(T ) ≥ 0]. For any t, a1(t) − c1(t) takes value in {λ1 −
μ1 − 1, λ1 − μ1 + 1} uniformly at random. It has the same
distribution as λ1 −μ1 − 1 +2 · b(t) where b(t) is a Bernoulli
random variable that takes value 0 or 1 with equal probability.6

Therefore, Q̃1(T ) has the same distribution as
∑T

t=0(λ1 −
μ1) + 2 · B(T + 1, 1/2), where B(T + 1, 1/2) is a binomial
random variable with parameters T + 1, 1/2. Let δ = λ1 −
μ1. It follows that E[Q̃1(T )] =

∑T
t=0 δ and as a1(t), c1(t)

are independent across time, the variance of Q̃1(T ) is T + 1.
As for the binomial random variable Q̃1(T ), P[Q̃1(T ) ≥ 0] ·
E[Q̃1(T ) | Q̃1(T ) ≥ 0] is at least the same order as the mean
plus the standard deviation of Q̃1(T ). It follows that if δ ≥ 0 or
|δ| = o(1/

√
T ), we have

E[Q1(T )] ≥ P[Q̃1(T ) ≥ 0] · E[Q̃1(T ) | Q̃1(T ) ≥ 0]

≥ Ω(Tδ +
√

T ) = Ω(
√

T ).

If δ < 0 and |δ| = Ω(1/
√

T ), as still E[Q1(T )] ≥ 0, we have

(33) ≥ −
T∑

t=0

δ = T |δ| = Ω(
√

T ).

Therefore, in either case, the regret of a generic static policy
π is Ω(

√
T ), which concludes the proof. �

6Note that here the distribution of a1(t)− c1(t) does not matter as long as
its variance is a positive constant.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2010 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

APPENDIX B
ADDITIONAL PROOFS

A. Proof of Proposition 3

Proof: From Propositions 1 and 2, we have

sup
π∗∈Π∗

UT (π∗, ω) − UT (π, ω)

≤
T∑

t=0

L∑
m=1

[cm(t, ω) − c̃π
m(t, ω)] · C

+

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω)

]
· vL+1

−
M∑

m=L+1

T∑
t=0

c̃π
m(t, ω) · vm

≤
T∑

t=0

L∑
m=1

[cm(t, ω) − c̃π
m(t, ω)] · C

+

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω)

−
T∑

t=0

c̃π
L+1(t, ω)

]
· vL+1.

Due to the work-conserving nature of the servers, we have
that c̃π

m(t, ω) < cm(t, ω) only if Qπ
m(t, ω) < C. It follows

that cm(t, ω) − c̃π
m(t, ω) ≤ �[Qπ

m(t, ω) < C] · C. Therefore,
we have

sup
π∗∈Π∗

UT (π∗, ω) − UT (π, ω)

≤
T∑

t=0

L∑
m=1

�[Qπ
m(t, ω) < C] · C2

+

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω)

−
T∑

t=0

c̃π
L+1(t, ω)

]
· vL+1. (34)

Taking expectation over ω for both sides of (34), we have

RT (π) ≤
T∑

t=0

L∑
m=1

P[Qπ
m(t) < C] · C2

+ E

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω)

−
T∑

t=0

c̃π
L+1(t, ω)

]
· vL+1.

For the second term on the right-hand-side above, since
c̃π
m(t, ω) ≤ cm(t, ω), we have

E

[
T∑

t=0

a(t, ω) −
L∑

m=1

T∑
t=0

cm(t, ω) −
T∑

t=0

c̃π
L+1(t, ω)

]

≤ E

[
T∑

t=0

a(t, ω) −
L+1∑
m=1

T∑
t=0

c̃π
m(t, ω)

]

≤ E

[
L+1∑
m=1

Qπ
m(T )

]
+ E

[
M∑

m=L+2

T∑
t=0

aπ
m(t, ω)

]
,

from which the proposition follows. �

B. Proof of Inequality (7)

Let η1(t) = Z1(t + 1) − Z1(t) and recall the constant
r = δ

4C . Noting that |η1(t)| ≤ C, we first have

erZ1(t+1) = erZ1(t) · erη1(t)≤ erZ1(t) · [1 + rη(t) + 2r2η2(t)],

where the second inequality is due to that ex ≤ 1+x+2x2 for
0 ≤ x ≤ 1, and rη1(t) ≤ rC = δ/4 ≤ 1. It follows that

E[erZ1(t+1) | Z1(t) < C] ≤ erZ1(t) · erC (35)

E[erZ1(t+1) | Z1(t) ≥ C] ≤ erZ(t) · [1 + rη(t) + 2r2η2(t)]

≤ erZ1(t) ·
[
1 − λ − μ1

2
r

]
, (36)

where the last inequality follows from E[rη(t) | Z1(t) ≥ C] =
−(λ − μ1)r, and 2r2η2(t) ≤ − η(t)

2 r since r|η(t)| ≤ rC ≤
1/4. Write δ1 = (λ−μ1)

2 . It follows that

E[erZ1(t+1)]
= P[Z1(t) ≥ C] · E[erZ1(t+1) | Z1(t) ≥ C]

+ P[Z1(t) < C] · E[erZ1(t+1) | Z1(t) < C]
≤ erC · E[erZ1(t) | Z1(t) < C] · P[Z1(t) < C]

+ [1 − δ1r] · E[erZ1(t) | Z1(t) ≥ C] · P[Z1(t) ≥ C]
= [1 − δ1r] · E[erZ1(t)]

+
[
erC − (1 − δ1r)

]
· E[erZ1(t) | Z1(t) ≤ C]

·P[Z1(t) ≤ C]
≤ [1 − δ1r] · E[erZ1(t)] + e2rC .

C. Proof of Inequality (12)

Define η2(t) = Z2(t + 1) − Z2(t) and recall that r = δ
8C .

Similar as in the proof of (7).Write δ2 = (λ−μ1−μ2)
2 . We have

E[erZ2(t+1)]
= P[Z2(t) ≥ 2C] · E[erZ2(t+1) | Z2(t) ≥ 2C]

+ P[Z2(t) < 2C] · E[erZ2(t+1) | Z2(t) < 2C]
≤ e2rC · E[erZ2(t) | Z2(t) < 2C] · P[Z2(t) < 2C]

+ [1 − δ2r] · E[erZ2(t) | Z2(t) ≥ 2C] · P[Z2(t) ≥ 2C]
=
[
e2rC − (1 − δ2r)

]
· E[erZ2(t) | Z2(t) < 2C]

·P[Z2(t) < 2C]
+ [1 − δ2r] · E[erZ2(t)]

≤ [1 − δ2r] · E[erZ2(t)] + e4rC .

D. Proof of Inequality (19)

The inequality (19) is established in an entirely analogous
way as (7) and (12). Note that |ZL(t+1)−ZL(t)| ≤ (L+1)C.

Writing L1 = (L + 1)C + LK and δm =
(∑L+1

m=1 μm − λ
)

,

E[erZL+1(t+1)]
= P[ZL+1(t) ≥ L1] · E[erZL+1(t+1) | ZL+1(t) ≥ L1]

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



FU AND MODIANO: OPTIMAL ROUTING TO PARALLEL SERVERS WITH UNKNOWN UTILITIES 2011

+ P[ZL+1(t) < L1] · E[erZL+1(t+1) | ZL+1(t) < L1]
≤ [1 − δmr] · E[erZL+1(t) | ZL+1(t) < L1]

·P[ZL+1(t) < L1]

+ eL′rC · E[erZL+1(t) | ZL+1(t) < L1]
·P[ZL+1(t) < L1]

= [1 − δmr] · E[erZL+1(t)] + er(2L′C+LK).

E. Proofs of Lemmas 9, 10, 11, 12

Proof of Lemma 9: We prove the lemma by contradiction.
If there exists a job dispatcher un with un �∈ Gm but
un ∈ Gm′ and vm > vm′ , then x∗

mn = 0 and x∗
m′n > 0.

Since sm, sm′ ∈ S2, we have
∑

n:sm∈Sun
x∗

mn < μm and∑
n:sm′∈Sun

x∗
m′n < μm′ . Without loss of generality we

assume vm > v′m, we can thus increase x∗
mn and decrease

x∗
m′n by a same sufficiently small amount and obtain a

feasible solution with larger utility than that of {x∗
mn}, which

contradicts the optimality of {x∗
mn}.

Proof of Lemma 10: Again, we prove the lemma by con-
tradiction. If there exist sm, sm′ ∈ S2, m �= m′ with
Gm ∩ Gm′ �= ∅. Due to the bipartite nature of the graph,
it follows that there exists a path of even length from sm

to sm′ in Gx∗ . Hence, by the definition of Gx∗ , there exists
a path sm, un1 , sm1 , . . . , unk

, snk
, unk+1 , sm′ where the value

of the component of x∗ corresponding to each edge in the
path is positive. Without loss of generality, assume vm > vm′ .
Then, we can “propagate” a sufficiently small positive value
of flow from sm′ to sm, i.e., decreasing x∗

m′nk+1
, increasing

x∗
mknk+1

,. . ., increasing x∗
mn1

. After such propagation, the
resulting solution will still remain feasible since both sm and
sm′ are slack server. However, as vm > vm′ , we now arrive at
a solution that has higher value of objective function than the
original {x∗}, which again contradicts the optimality of {x∗}.
Proofs of Lemmas 11 and 12: The lemmas follow from the
same argument as the proof of Lemmas 9 and 10.

F. Proof of Proposition 4

Proof: We prove the proposition by inspecting the
connected components corresponding to the slack servers
following decreasing order of underlying utilities. We first
consider the slack server sm1 with the largest underly-
ing utility in S2. On a sample path ω, the total num-
ber of incoming jobs from the job dispatchers in Ñm1 is
equal to

∑T
t=0

∑
un∈ ˜Nm1

an(t, ω). By Lemmas 11 and 12,
the maximum utility that can be obtained from these
jobs is upper-bounded by the critical servers using up all
the offered services and the remaining jobs being served
by the slack server sm1 , which lead to a total utility
of at most

∑
sm′∈ ˜Sm1∩S1

∑T
t=0 cm′(t, ω) · vm′ +

[∑T
t=0∑

un∈Ñm
an(t, ω)−

∑T
t=0

∑L
sm′∈Sm1\{sm1}

cm′(t, ω)
]+ ·vm1 .

We then consider the slack server sm2 with the second largest
underlying utility in S2. Note that by Lemma 9, the job
dispatchers in Ñm2 are not connected to sm1 , so their traffic
cannot be diverted to sm1 . Thus, together with sm1 , a corre-
sponding upper bound in this case still holds. By repeating
this argument over all the slack servers and their connected
components, we have enumerated all the job dispatchers. The
proposition thus follows. �

G. Proof of Theorem 3

Proof: The idea of the proof is the same as Theorem 1.
We will use Corollary 1 and bound its right-hand-side through
analyzing the term P[Qm(t)] for each critical server, and
the regret term associated with each slack server. Note
that for each slack server sm, by definition

∑
un∈Ñm

>∑
sm′∈S̃m∩S1

μm′ . It follows that the difference between

E
[
[
∑

un∈Nm
an(t, ω)−

∑L
sm′∈Sm∩S1

cm′(t, ω)]+ − c̃π
m(t, ω)

]
and E

[∑
un∈Nm

an(t, ω)−
∑L

sm′∈Sm∩S1
cm′(t, ω)−c̃π

m(t, ω)
]

is of order O(1), which means that we can essentially analyze
the latter term.

The analysis is also based on constructing suitable poten-
tial functions, establishing drift arguments for the potential
functions, and deriving upper bounds on the relevant term
through the drift arguments. To avoid unnecessary repetition,
we will only illustrate how to construct the potential functions
and establish corresponding drift arguments. We start from
s1 and go over each server following the decreasing order of
underlying utility.

For a server sm, if it is an idle server, then it does not
appear in the right-hand-side of Corollary 1, so we can skip
it. If sm ∈ S1, then recall the partition based on the connected
component of each slack server. Slightly overloading the
notations, we define Sm

1 as the set of critical server with larger
underlying utility than sm in the connected component that
sm belongs to. We construct the potential function Zm(t) =∑

s′
m∈Sm

1
[K +C−Qm′(t)]. By essentially the same argument

as in the proof of Theorem 1, we have P[Qm(t) < C] ≤
P[Zm(t) > K] as Qm(t) < C implies that Zm(t) > K .
Also, note that due to the Condition 1, there is no slack server
with larger underlying utility (higher priority in Generalized
Priority-K) than sm. Hence, with Condition 2, we can estab-
lish a similar negative conditional one-slot drift for Zm(t) as
in the proof of Theorem 1, and a bound on P[Zm(t) > K]
follows similarly. Finally, if sm ∈ S2, then we consider the
connected component of the slack server sm. Same as in
the proof of Theorem 1, the term E

[∑
un∈Nm

an(t, ω) −∑L
sm′∈Sm∩S1

cm′(t, ω)−c̃π
m(t, ω)

]
can be bounded by the sum

of a O(log T ) term and P[
∑

m∈S̃m
Qm(t) > |S̃m|K]. First,

by analyzing the connected components of the slack servers
with higher utility than sm, we can show that the probability
of the job dispatchers in those components send jobs to sm is
of order O(1/T ), which can be ignored without affecting the
regret analysis. Conditioning on those job dispatchers do not
send jobs to sm, we consider the potential function Zm(t) =∑

m∈Sm
Qm(t), and same as in the previous proof we can

establish a one-slot negative drift argument for Zm(t) and thus
bound P[

∑
m∈S̃m

Qm(t) > |S̃m|K]. Therefore, we have that
the Generalized Priority-K policy achieves O(log T )-regret.

�

REFERENCES

[1] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing with
general service time distributions,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 38, no. 1, pp. 275–286, 2010.

[2] T. Bonald, M. Jonckheere, and A. Proutiére, “Insensitive load balancing,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 367–377,
Jun. 2004.

[3] S. Stidham, “Optimal control of admission to a queueing system,” IEEE
Trans. Autom. Control, vol. AC-30, no. 8, pp. 705–713, Aug. 1985.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



2012 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

[4] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt, “Analysis of join-the-
shortest-queue routing for web server farms,” Perform. Eval., vol. 64,
nos. 9–12, pp. 1062–1081, Oct. 2007.

[5] S. Foss and A. L. Stolyar, “Large-scale join-idle-queue system with
general service times,” J. Appl. Probab., vol. 54, no. 4, pp. 995–1007,
Dec. 2017.

[6] Z. Rosberg and A. M. Makowski, “Optimal routing to parallel heteroge-
neous servers-small arrival rates,” IEEE Trans. Autom. Control, vol. 35,
no. 7, pp. 789–796, Jul. 1990.

[7] P. Eschenfeldt and D. Gamarnik, “Join the shortest queue with many
servers. The heavy-traffic asymptotics,” Math. Oper. Res., vol. 43, no. 3,
pp. 867–886, Aug. 2018.

[8] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp. 1094–1104, 2001.

[9] Z. Guo et al., “AggreFlow: Achieving power efficiency, load balancing,
and quality of service in data center networks,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 17–33, 2020.

[10] J. Fu, B. Moran, J. Guo, E. W. M. Wong, and M. Zukerman,
“Asymptotically optimal job assignment for energy-efficient processor-
sharing server farms,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 4008–4023, Dec. 2016.

[11] X. Fu and E. Modiano, “Learning-NUM: Network utility maximization
with unknown utility functions and queueing delay,” Proc. ACM Mobi-
hoc, pp. 21–30, Jul. 2021.

[12] X. Fu and E. Modiano, “Elastic job scheduling with unknown utility
functions,” Perform. Eval., vol. 152, Dec. 2021, Art. no. 102229.

[13] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic IoT management,” IEEE Internet Things J., vol. 6, no. 1,
pp. 1276–1286, Feb. 2019.

[14] A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin,
“Stochastic convex optimization with bandit feedback,” SIAM J. Optim.,
vol. 23, no. 1, pp. 213–240, Jan. 2013.

[15] A. L. Stolyar, “Optimal routing in output-queued flexible server sys-
tems,” Probab. Eng. Informational Sci., vol. 19, no. 2, pp. 141–189,
Apr. 2005.

[16] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power
allocation in server farms,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 37, no. 1, pp. 157–168, Jun. 2009.

[17] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-
based scheduling to improve web performance,” ACM Trans. Comput.
Syst., vol. 21, no. 2, pp. 207–233, May 2003.

[18] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing
on a space-division packet switch,” IEEE Trans. Commun., vol. C-35,
no. 12, pp. 1347–1356, Dec. 1987.

[19] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[20] S. Bubeck, “Regret analysis of stochastic and nonstochastic multi-armed
bandit problems,” Found. Trends Mach. Learn., vol. 5, no. 1, pp. 1–122,
2012.

[21] A. Garivier and O. Cappé, “The KL-UCB algorithm for bounded
stochastic bandits and beyond,” in Proc. Conf. Learn. Theory, 2011,
pp. 359–376.

[22] J.-Y. Audibert, R. Munos, and C. Szepesvári, “Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits,” Theor. Com-
put. Sci., vol. 410, no. 19, pp. 1876–1902, Apr. 2009.

[23] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 151–159.

[24] Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation,” in Proc. IEEE Symp. New Frontiers Dyn. Spectr.
(DySPAN), Apr. 2010, pp. 1–9.

[25] E. Fouché, J. Komiyama, and K. Böhm, “Scaling multi-armed bandit
algorithms,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Jul. 2019, pp. 1449–1459.

[26] J. Komiyama, J. Honda, and H. Nakagawa, “Optimal regret analysis
of Thompson sampling in stochastic multi-armed bandit problem with
multiple plays,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1152–1161.

[27] A. Badanidiyuru, R. Kleinberg, and A. Slivkins, “Bandit with knap-
sacks,” J. ACM, vol. 65, no. 3, pp. 1–55, 2018.

[28] C. Jiang and R. Srikant, “Bandits with budgets,” in Proc. 52nd IEEE
Conf. Decis. Control, Dec. 2013, pp. 5345–5350.

[29] S. Cayci, A. Eryilmaz, and R. Srikant, “Budget-constrained bandit over
general cost and reward distributions,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 4388–4398.

[30] S. Krishnasamy, R. Sen, R. Johari, and S. Shakkottai, “Learning
unknown service rates in queues: A multiarmed bandit approach,” Oper.
Res., vol. 69, no. 1, pp. 315–330, Jan. 2021.

[31] T. Choudhury, G. Joshi, W. Wang, and S. Shakkottai, “Job dispatching
policies for queueing systems with unknown service rates,” 2021,
arXiv:2106.04707.

[32] T. Stahlbuhk, B. Shrader, and E. Modiano, “Learning algorithms for
minimizing queue length regret,” IEEE Trans. Inf. Theory, vol. 67, no. 3,
pp. 1759–1781, Mar. 2021.

[33] J. He, D. Zhou, and Q. Gu, “Logarithmic regret for reinforcement
learning with linear function approximation,” in Proc. Int. Conf. Mach.
Learn., 2021, pp. 4171–4180.

[34] L. Zheng and L. Ratliff, “Constrained upper confidence reinforcement
learning,” in Proc. 2nd Conf. Learn. Dyn. Control, 2020, pp. 620–629.

[35] I. Osband and B. Van Roy, “Near-optimal reinforcement learning in
factored MDPs,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1–9.

[36] B. Hajek, “Hitting-time and occupation-time bounds implied by drift
analysis with applications,” Adv. Appl. Probab., vol. 14, no. 3,
pp. 502–525, Sep. 1982.

Xinzhe Fu received the B.S. degree (Hons.) in com-
puter science from Shanghai Jiao Tong University
in 2017 and the Ph.D. degree in communication
networks from MIT in 2022. His research focuses
on learning and stochastic optimization in queueing
networks.

Eytan Modiano (Fellow, IEEE) received the B.S.
degree in electrical engineering and computer sci-
ence from the University of Connecticut at Storrs in
1986 and the M.S. and Ph.D. degrees in electrical
engineering from the University of Maryland, Col-
lege Park, MD, in 1989 and 1992, respectively.

He is currently the Richard C. Maclaurin Professor
with the Department of Aeronautics and Astronau-
tics and the Laboratory for Information and Deci-
sion Systems (LIDS), MIT. Prior to joining as the
Faculty Member at MIT in 1999, he was a Naval

Research Laboratory Fellow from 1987 to 1992, a National Research Council
Post-Doctoral Fellow from 1992 to 1993, and a member of the Technical
Staff at the MIT Lincoln Laboratory from 1993 and 1999. His research
interests include modeling, analysis, and design of communication networks
and protocols. In 2020, he received the Infocom Achievement Award for
contributions to the analysis and design of cross-layer resource allocation
algorithms for wireless, optical, and satellite networks. He is the co-recipient
of the Infocom 2018 Best Paper Award, the MobiHoc 2018 Best Paper Award,
the MobiHoc 2016 Best Paper Award, the Wiopt 2013 Best Paper Award,
and the Sigmetrics 2006 Best Paper Award. He was the Editor-in-Chief for
IEEE/ACM TRANSACTIONS ON NETWORKING (2017–2020) and served as
an Associate Editor for IEEE TRANSACTIONS ON INFORMATION THEORY
and IEEE/ACM TRANSACTIONS ON NETWORKING. He was the Technical
Program Co-Chair for IEEE Wiopt 2006, IEEE Infocom 2007, ACM MobiHoc
2007, and DRCN 2015; and the General Co-Chair of Wiopt 2021. He has
served on the IEEE Fellow Committee in 2014 and 2015. He is an Associate
Fellow of the AIAA.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:28 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


