
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023 1809

Tracking MaxWeight: Optimal Control for Partially
Observable and Controllable Networks

Bai Liu , Qingkai Liang, and Eytan Modiano, Fellow, IEEE

Abstract— Modern networks are complex and may include
components that cannot be fully controlled or observed. Such
network models can be characterized by overlay-underlay struc-
tures, where the network controller can only observe and operate
on overlay nodes, and the underlay nodes are neither observable
nor controllable. Classic network control algorithms may fail
to work properly if they are only applied to the overlay
nodes. To tackle this issue, we propose the Tracking MaxWeight
(TMW*) algorithm that does not require direct observations
of underlay nodes and only operates on overlay nodes. TMW*
maintains virtual queues that track the dynamics of the underlay
nodes and makes control decisions based on those virtual queues.
We show that TMW* is throughput optimal as long as the
network is stabilizable. We further extend our analysis to the
setting that the estimates of the underlay state is erroneous and
show that as long as the errors scale sub-linearly in time, TMW*
preserves throughput optimality.

Index Terms— Network control, resource allocation, routing,
queueing theory.

I. INTRODUCTION

MODERN communication networks are growing rapidly
in scale and often the network controller cannot have

full access to the entire network. For instance, under the
software-defined networking (SDN) paradigm, the controller
usually can only control certain key nodes, with the rest of
the nodes being uncontrollable or even unobservable. Another
example is that due to security or economic concerns, some
network modules might have restricted access. Such network
characteristics can be captured by an overlay-underlay struc-
ture [1], where only the overlay nodes can be observed and
controlled, while the underlay nodes appear as unobservable
and uncontrollable “black boxes.”

We consider an overlay-underlay network where only a
subset of nodes can be observed and controlled by the network
controller (i.e., overlay nodes). The rest nodes are underlay
nodes of which the state may not be directly obtained by
the network controller. Moreover, the underlay nodes oper-
ate legacy control policies and do not execute commands

Manuscript received 25 August 2021; revised 5 January 2022, 19 April
2022, and 6 September 2022; accepted 27 November 2022; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Moharir. Date of
publication 7 December 2022; date of current version 18 August 2023. This
work was supported in part by National Science Foundation (NSF) under
Grant CNS-1524317, Grant CNS-1907905, and Grant CNS-1735463; and in
part by Office of Naval Research (ONR) under Grant N00014-20-1-2119.
Part of the material in this paper was presented at IEEE International
Conference on Computer Communications (INFOCOM), 2019 [DOI: 10.1109/
INFOCOM.2019.8737528]. (Corresponding author: Bai Liu.)

Bai Liu and Eytan Modiano are with the Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: bailiu@mit.edu).

Qingkai Liang is with Celer Network, Mountain View, CA 94043 USA.
Digital Object Identifier 10.1109/TNET.2022.3225752

given by the network controller. Therefore, we propose the
Tracking MaxWeight algorithm (TMW*)1 to stabilize such
an overlay-underlay network. To the best of our knowledge,
TMW* is the first algorithm to stabilize networks with unob-
servable and uncontrollable nodes.

Classical network control algorithms such as MaxWeight
and BackPressure [2] are capable of stabilizing queue backlogs
effectively, yet directly applying them to our overlay-underlay
network model might lead to instability. In section VI-B,
our simulation results show that applying MaxWeight only to
overlay nodes can lead to linear growth in queue backlogs.

The design of overlay control algorithms for overlay-
underlay networks has been studied from different perspec-
tives. In [3], the authors model the overlay nodes as routers and
the underlay nodes as forwarders, assuming that only routers
are controllable. They then propose the Threshold-based Back-
pressure (BP-T) algorithm that is shown to be throughput
optimal when the paths between routers do not overlap. Based
on [3], the work of [4] further studies the minimal necessary
placement of routers and proposed the Overlay Backpressure
(OBP) algorithm for more general network topologies. In [5],
the authors construct a counter-example network where OBP
fails to stabilize and propose the Optimal Overlay Routing
Policy (OORP) algorithm with more general applicability.
However, OORP requires the instantaneous knowledge of
the underlay queue backlogs, for which approximation meth-
ods are applied and strict theoretical performance guaran-
tees cannot be obtained. Model-based reinforcement learning
techniques have also been applied to overlay-underlay net-
works [6], [7], where the network controller estimates the
dynamics of the underlay nodes and computes the optimal
control policy accordingly.

Most stochastic queueing networks can be modeled
as Markov Decision Processes (MDP), and when the
observability is constrained, the model becomes Partially
Observable Markov Decision Processes (POMDP). POMDP
problems have been receiving much attention in machine
learning communities since real-world problems often involve
limited observability and controllability. However, most of
the POMDP algorithms are heuristic and lack theoretical
performance guarantees. Among the works with theoretical
guarantees, classic methods [8], [9], [10], [11], [12] focus on
solving the value iteration problem for POMDPs, yet are only
applicable to POMDPs with small state spaces and special
structures. From a policy search perspective, [13] introduces

1We use TMW* to distinguish from our earlier version of TMW that
required instantaneous observation of uncontrollable nodes.

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3950-4965

1810 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

a gradient-based policy learning algorithm with proof of
convergence but can only guarantee local optimality. In com-
munication networks that involve POMDP modeling, [14],
[15], [16] study channel cooperation problems and propose
algorithms with performance guarantees, yet they focus on
channel scheduling problems instead of general network
problems.

Another related field is distributed network control, where
each node can only access the dynamics of their neighbors.
Since only partial information is available, this setting is
relevant to partially observable and controllable networks.
For distributed routing, [17], [18], [19] use fluid model to
characterize the network and develop distributed algorithms
to optimize the assigned data transmission rates. In the con-
text of distributed scheduling, many works focus on stabi-
lizing interference constrained networks using randomized or
MaxWeight style algorithms and analyzes the corresponding
stability regions [20], [21], [22].

As far as we know, the existing algorithms either require
instantaneous observations of underlay nodes or can only
be applied to constrained settings. In this work, we con-
sider general overlay-underlay networks with unobservable
and uncontrollable underlay nodes. A preliminary conference
version of our algorithm was presented in [6], and was shown
to be throughput optimal when the underlay nodes are fully
observable. This journal version extends TMW to settings
where underlay nodes are unobservable and their backlogs
can only be estimated. In order to distinguish from its earlier
conference version henceforth, we will refer to the improved
version of TMW as TMW*.

We propose the TMW* algorithm that uses estimates of the
underlay queue backlogs instead of direct observations and
only needs to operate on overlay nodes. We rigorously prove
that TMW* is throughput optimal for general overlay-underlay
networks. To the best of our knowledge, TMW* is the
first throughput optimal control algorithm for networks with
unobservable and uncontrollable nodes. We analyze the per-
formance of TMW* when the estimates are erroneous, and
show that as long as the errors grow sub-linearly in time, our
algorithm remains throughput optimal. Simulation results on
a 15-node overlay-underlay network corroborate the validity
of our theoretical guarantees. We also show that when the
estimation errors grow linearly (or superlinearly) in time, there
exists an overlay-underlay network to which no queue-based
throughput optimal stochastic policy exists. Therefore, TMW*
is “maximally robust” to estimation errors.

The rest of the paper is organized as follows. We introduce
the network model in Section II. We propose TMW* in
Section III. In Section IV, we show that TMW* is throughput
optimal. We consider estimation errors in Section V and
analyze the its impact on stablity. In Section VI, we conduct
simulations on three network models. Section VII concludes
the paper.

II. MODEL

We consider a multi-hop network G consisting of N nodes
and denote the set of nodes byN . We assume that the network

topology is known to the controller. The nodes are partitioned
into overlay nodes O that are observable and controllable, and
underlay nodes U that are unobservable and uncontrollable.
The network has K classes of traffic and traffic of class k is
destined for sink node dk. The set of traffic classes is defined
as K. The link capacity between node i and j is Cij , which
is known to the controller. We assume the time is slotted and
denote by T the time horizon.

At the beginning of time slot t, a node i ∈ N has Qik(t)
buffered packets of class k. Node i receives aik(t) external
new packets of class k. For each i ∈ N and k ∈ K, we assume
aik(t)’s are i.i.d across time and let λik = E[aik(t)].

Overlay nodes are observable and controllable, i.e. at each
time slot, the controller can observe their queue backlogs, and
make routing and scheduling decisions. For an overlay node
i ∈ O, at most fijk(t) packets of class k are transmitted to its
neighbors j. However, since the number of packets available to
be transmitted is upper bounded by Qik(t)+aik(t), the actual
number of packets being transmitted might be less than fijk(t)
and we denote by f̃ijk(t) = min{fijk(t), Qik(t) + aik(t)}.

On the other hand, the underlay nodes are not control-
lable and their state information (e.g. queue size) can only
be estimated sparsely (e.g. sending probing packets, making
statistical inference and underlay broadcast). We denote by
Γik the set of time slots when the controller estimates the
underlay state information Q̂ik(t) of class k at node i. We also
assume that the controller can obtain an unbiased estimate
of the underlay arrival rates λik(t) at time t ∈ Γik (i.e.,
E[λik(t)] = λik). An example approach is to obtain the
underlay arrivals simultaneously with Q̂ik(t) and compute the
sample mean of the arrivals.

We denote τik(t) as the time slot when the most recent state
estimate of class k at node i is obtained, i.e.,

τik(t) = max
τ∈Γik:τ�t

τ,

with which we define L(t) � maxi

(
t−τik(t)

)
, which denotes

the largest delay in underlay observations at time t and assume
that

T−1∑
t=0

L(t)
T

= o(T).

The condition is not hard to satisfy. If the observations of
underlay nodes occur with fixed interval, then it is easy
to show that

∑T−1
t=0 L(t)/T = O(1). More generally, the

condition is met as long as the kth observation interval of
underlay nodes grows slower than the order of kα where
α � 0.

We assume the legacy control policies of the underlay nodes
are queue agnostic (i.e. the actions are independent of the
queue backlogs), such as randomized routing and shortest path
protocols. For an underlay node i ∈ U , it transmits at most
μijk(t) packets of class k to its neighbors j. Since the queue
agnostic policies are stationary, E[μijk(t)] remains constants
at different times and we denote that E[μijk(t)] = μijk (while
the actual number of packets transmitted is μ̃ijk(t) and may
be queue-dependent). Note that our algorithm only operates

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1811

TABLE I

ASYMPTOTIC NOTATIONS

on overlay nodes and does not require control over underlay
nodes.

All nodes receive the packets transmitted by their neighbors.
Note that the actual packets received are denoted by f̃ijk(t)
and μ̃ijk(t).

Thus, the queue backlogs evolve according to the following,

Qik(t + 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
Qik(t) + aik(t)−∑j∈N fijk(t)

]+
+∑

j∈O f̃jik(t) +
∑

j∈U μ̃jik(t), i ∈ O[
Qik(t) + aik(t)−∑j∈N μijk(t)

]+
+∑

j∈O f̃jik(t) +
∑

j∈U μ̃jik(t), i ∈ U ,

where [x]+ � max{x, 0}. We further assume that the system
dynamics are bounded, i.e.

0 � aik(t), fijk(t), μijk(t) � D, ∀i, j, k, t (1)

for some constant D � 0. Moreover, to distinguish the
variables under different policies, we use superscripts (e.g.,
QπA

ik (t) is the queue backlog of node i at time t under
policy πA).

Our goal is to stabilize the entire network when only
overlay dynamics and estimated underlay state information are
available, and policies can only be applied to overlay nodes.

A. Asymptotic Notations

Given two functions f(n) and g(n), their asymptotic rela-
tionships are listed in Table I.

B. Performance Metric

The stability region for an overlay-underlay networks is
defined as follows.

Definition 1: For an overlay-underlay network G, the rate
stability region Π is the set of λik’s such that there exist a
policy π∗ under which the queues are mean rate stable, i.e.,

lim
T→∞

E

[∑
i∈N ,k∈K Q∗

ik(T)
]

T
= 0.

Mean rate stability implies that as t → ∞, the expected
queue backlog grows up to a sublinear factor of t and the
arrival rate is no greater than the service rate.

We now define throughput optimality as follows.
Definition 2: A policy π is throughput optimal if for any

set of λik’s in Π, the system is mean rate stable under π.
Throughput optimal policies are desirable since they can

stabilize the network whenever the network is stabilizable.
For readers’ convenience, we summarize the variable nota-

tions in Table II.

TABLE II

VARIABLE NOTATIONS

III. OUR APPROACH

A key challenge in the control of partially observable and
controllable networks is that the instantaneous underlay state
information cannot be directly observed. If the control actions
are only based on overlay information, they may lead to
instability. Therefore, the core idea behind our approach is
to approximate the underlay queue backlogs and incorporate
them into the decision making process.

A. Overview

Our approach constructs an “imaginary” network that has
the same topology and external arrivals as the real network,
with the only difference being that the underlay nodes can
be instantaneously observed and controlled in the imaginary
network. For i ∈ O, the overlay queue backlogs in the
imaginary network are the same as the real network, and we
continue to denote them by Qik. For i ∈ U , the underlay
queue backlogs and policies of the imaginary network may
differ from the real underlay dynamics. We denote by Xik

and gijk the queue backlog and policy of underlay node i for
class k traffic in the imaginary network.

Since the imaginary network is fully observable and con-
trollable, its total queue backlog

∑
i∈O,k Qik +

∑
i∈U ,k Xik

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

1812 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

could be stabilized using classical network control algorithms
like MaxWeight and BackPressure [2]. Our approach tries
to “drive” the real network towards the dynamics of the
imaginary network. However, the gap in the underlay queue
backlogs between the real system and the imaginary system
may grow, making the real system unstable even if the
imaginary network has been stabilized.

Therefore, we denote by Yik = Qik − Xik the gaps in
the underlay queue backlogs between the real system and the
imaginary system and aim to stabilize Yik’s as well. Since
the total queue backlog of the real system can be expressed as∑

i∈O,k Qik +
∑

i∈U ,k Xik +
∑

i∈U ,k Yik , if we could stabilize
Qik’s, Xik’s and Yik’s simultaneously, the real system will be
stable.

B. Algorithm

We apply a Lyapunov optimization framework to stabilize
Qik, Xik and Yik simultaneously and name it the Tracking
MaxWeight* (TMW*) algorithm. Specifically, we define a
Lyapunov function

Φ(t) �
∑

i∈O,k

Q2
ik(t) +

∑
i∈U ,k

X2
ik(t) +

∑
i∈U ,k

Y +2
ik (t),

where Y +
ik = max{Yik, 0}.

We aim at minimizing the drift ΔΦ(t) = Φ(t + 1) − Φ(t)
at each time slot. Directly minimizing ΔΦ(t) is hard, and
we need to decompose ΔΦ(t) into analyzable terms. For
simplicity in expression, we make the following definitions of
the one-slot changes of Qik(t)’s, Xik(t)’s and Yik(t)’s. Note
that we use δ instead of Δ for δQik(t) and δXik(t) because
they are not the actual one-slot changes but the changes
without imposing the work conservation constraints.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δQik(t) � aik(t)−∑j∈N fijk(t) +
∑

j∈O fjik(t)+∑
j∈U μjik(t), i ∈ O

δXik(t) � λik(t)−∑j∈N gijk(t) +
∑

j∈O fjik(t)+∑
j∈U gjik(t), i ∈ U

ΔYik(t) � Yik(t + 1)− Yik(t), i ∈ U
We first upper bound Q2

ik(t + 1) − Q2
ik(t) for i ∈ O and

X2
ik(t + 1)−X2

ik(t) for i ∈ U in Lemma 1.
Lemma 1: For each k ∈ K and t = 0, · · · , T − 1 and we

have{
Q2

ik(t + 1)−Q2
ik(t) � 2 Qik(t)δQik(t) + 6N2D2, i ∈ O

X2
ik(t + 1)−X2

ik(t) � 2 Xik(t)δXik(t) + 6N2D2, i ∈ U
See Appendix A for the proof. We then upper bound

Y +2
ik (t + 1)− Y +2

ik (t) for i ∈ U in Lemma 2.
Lemma 2: For each i ∈ U , k ∈ K and t = 0, · · · , T − 1,

we have

Y +2
ik (t + 1)−Y +2

ik (t) � 2Ŷ +
ik (t)ΔYik(t)+

(
8L(t) + 6

)
N2D2.

See Appendix B for the proof. By Lemma 1 and Lemma 2,
instead of directly minimizing ΔΦ(t), we can minimize∑
i∈O,k

Qik(t)δQik(t) +
∑

i∈U ,k

Xik(t)δXik(t)

+
∑

i∈U ,k

Y +
ik (t)ΔY +

ik (t). (2)

However, the controller do not have instantaneous access to
Qik(t) and hence Y +

ik (t) for i ∈ U . As discussed in Section II,
the controller obtain an estimate Q̂ik(t) for node i ∈ U at time
t ∈ Γik. Therefore, the controller can use the most recent
Q̂ik(t) to estimate Y +

ik (t), i.e.,

Ŷ +
ik (t) �

[
Q̂ik

(
τik(t)

)−Xik(t)
]+

.

This optimization can be formulated as (3), shown at
the bottom of the next page. The only non-linear compo-
nent of the problem is min

{∑
j∈N gijk, Xik(t) + λik(t)

}
.

To tackle the non-linear issue, we can split the problem into
two linear programming problems: in the first problem, the
component is replaced by

∑
j∈N gijk with an extra constraint∑

j∈N gijk � Xik(t) + λik(t). In the second problem, the
component is replaced by Xik(t) + λik(t) with an extra
constraint

∑
j∈N gijk > Xik(t)+λik(t). The controller solve

the two linear programming problems simultaneously and
selects the solution with the better result. Therefore, solving
(3) is equivalent to solving two linear programming problems.
Since numerous efficient algorithms have been developed for
linear programming, (3) can be solved efficiently.

We denote the solution to (3) by fπT (t) and gπT (t), where
“T” is an abbreviation of the TMW* algorithm. We apply
fπT (t) to overlay nodes in the real system. We then use
fπT (t), gπT (t) and the estimated underlay arrival rates λik(t)
to update the underlay queue backlogs of the imaginary system
according to the update rule

Xik(t + 1) =

⎡
⎣Xik(t) + λik(t)−

∑
j∈N

gijk(t)

⎤
⎦

+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

gjik(t). (4)

The complete algorithm is given in Algorithm 1.

Algorithm 1 The TMW* Algorithm

1: Input: T , Qik(0), Γik

2: Initialization: Xik(0)← Qik(0), Yik(0)← 0
3: for t← 0, 1, · · · , T − 1 do
4: for k ∈ K do
5: Observe Qik(t) and aik(t) for i ∈ O
6: for i ∈ U do
7: if t ∈ Γik then
8: Obtain Q̂ik(t) and λik(t)
9: end if

10: Update Ŷik(t)
11: end for
12: end for
13: Solve Eqn (3) and obtain fπT (t), gπT (t)
14: Implement fπT (t) to overlay nodesO in the real network
15: Update Xik(t + 1) using Eqn (4)
16: end for
17: Output: Overlay policy fπT (t) for t = 0, · · · , T − 1

IV. PERFORMANCE ANALYSIS

We aim to design an overlay algorithm that can stabilize
the entire network whenever it is stabilizable (i.e. throughput

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1813

optimal). We show that our algorithm is throughput optimal
as in Theorem 1.

Theorem 1: TMW* is throughput optimal.
Proof: The outline of the proof is as follows. We first

upper bound the queue backlogs by the Lyapunov function Φ
in Lemma 3, so that we only need to analyze the Lyapunov
value. In Lemma 4 and 5, we upper bound the drift ΔΦ.
We finally upper bound the sum of drift values in Lemma 4
and 5, which gives us an upper bound for the Lyapunov value
and completes the proof.

To show throughput optimality, we consider an arbitrary
set of λik’s and μijk’s in Π. In order to analyze the growth
of queue backlogs, we first explore the relationship between
queue backlogs and the Lyapunov function Φ.

Lemma 3: For any policy π, we have

E

[∑
i,k

Qπ
ik(T)

]
�
√

2KNE
[
Φπ(T)

]

See Appendix C for the proof. Lemma 3 indicates that
showing E

[
Φπ(T)

]
= o(T 2) is sufficient for throughput

optimality. We use the superscript πT to represent the variables
under TMW*. Using Lemma 1 and Lemma 2, we can upper
bound ΔΦπT (t) � ΦπT (t + 1)− ΦπT (t) as follows,

ΔΦπT (t)

� 2
∑

i∈O,k

QπT

ik (t)δπT Qik(t) + 2
∑

i∈U ,k

XπT

ik (t)δπT Xik(t)

+ 2
∑

i∈U ,k

Ŷ
πT +
ik (t)ΔπT Yik(t) + (8L(t) + 18)KN3D2.

(5)

By Definition 1, there exist a policy π∗ such that
Q∗

T � E
[∑

i∈N ,k∈K Q∗
ik(T)

]
= o(T), where we use the

superscript ∗ to represent the variables under π∗. Since TMW*
minimizes the first three terms of (5), replacing δπT Qik(t),
δπT Xik(t) and ΔπT Yik(t) with δ∗Qik(t), δ∗Xik(t) and
Δ∗Yik(t) respectively will not decrease (5), i.e.,

ΔΦπT (t)

� 2
∑

i∈O,k

QπT

ik (t)δ∗Qik(t) + 2
∑

i∈U ,k

XπT

ik (t)δ∗Xik(t)

+ 2
∑

i∈U ,k

Ŷ
πT +
ik (t)Δ∗Yik(t) + (8L(t) + 18)KN3D2.

(6)

By taking expectation on the sum of (6) from t = 0 to
t = T − 1, we have

E

[
ΦπT (T)

]
� 2E

[
T−1∑
t=0

∑
i∈O,k

QπT

ik (t)δ∗Qik(t)

]

+ 2E

[
T−1∑
t=0

∑
i∈U ,k

XπT

ik (t)δ∗Xik(t)

]

+ 2E

[
T−1∑
t=0

∑
i∈U ,k

Ŷ
πT +
ik (t)Δ∗Yik(t)

]

+ 2KN3D2

(
9T + 4

T−1∑
t=0

L(t)

)
+ Φ(0).

(7)

For the first and second terms in (7), we have the following
lemma.

Lemma 4: For each integer H > 0, the following holds

E

[
T−1∑
t=0

∑
i∈O,k

QπT

ik (t)δ∗Qik(t)

+
T−1∑
t=0

∑
i∈U ,k

XπT

ik (t)δ∗Xik(t)

]

� 2NDT 2Q∗
T

H
+ 8KN3D2HT

See Appendix D for the proof. We next upper bound the
third term as follows,

Lemma 5:

E

[
T−1∑
t=0

∑
i∈U ,k

Ŷ
πT +
ik (t)Δ∗Yik(t)

]

� 2 KN3D2

(
T + 2

T−1∑
t=0

L(t)

)
.

See Appendix E for the proof. Using results in Lemma 4
(with H = c

√
TQ∗

T /(KN2D) where c is any positive
constant that makes H an integer) and Lemma 5 in (7) and

fπT (t), gπT (t) = argmin
f ,g

∑
i∈O,k

Qik(t)

⎡
⎣∑

j∈O
fjik +

∑
j∈U

gjik −
∑
j∈N

fijk

⎤
⎦+

∑
i∈U ,k

Xik(t)

⎡
⎣∑

j∈O
fjik +

∑
j∈U

gjik −
∑
j∈N

gijk

⎤
⎦

−
∑

i∈U ,k

Ŷ +
ik (t)

⎡
⎣∑

j∈U
gjik −min

⎧⎨
⎩
∑
j∈N

gijk, Xik(t) + λik(t)

⎫⎬
⎭
⎤
⎦ ,

s.t. fijk � 0, gijk � 0,
∑
k∈K

fijk � Cij ,
∑
k∈K

gijk � Cij . (3)

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

1814 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

then applying Lemma 3, we obtain,

E

[∑
i∈N

QπT

ik (T)

]

�
[
4KN3D

(
(8c + 2/c)

√
KDTQ∗

T + 11KND

)
T

+ 32K2N4D2
T−1∑
t=0

L(t) + 2KNΦ(0)

]1/2

= O

(
T 3/4Q

∗1/4
T +

√√√√T−1∑
t=0

L(t)

)
.

Since Q∗
T = o(T) by Definition 1, when

∑T−1
t=0 L(t)/T =

o(T), the expected queue backlog at T is upper bounded by
a sublinear factor of T . �

V. PERFORMANCE WITH

ESTIMATION ERRORS

In Section IV, we showed that TMW* is a throughput
optimal network control algorithm when the estimates Q̂ik(t)
are accurate. However, in practice, it is hard to obtain accurate
estimates because statistical methods have fundamental perfor-
mance limits, and transmission errors can pollute the collected
data. For an underlay node i ∈ U and t ∈ Γik, we define the
error as εik(t) � Q̂ik(t)−Qik(t) and the erroneous estimates
of Yik(t) as Ỹik(t) = Ŷik(t) + εik(τik(t)).

A. Performance of TMW*

The variable Ŷ +
ik (t) in Algorithm 1 is now replaced by

Ỹ +
ik (t) and the goal becomes to minimize

ΔΦ(t) =
∑

i∈O,k

Qik(t)ΔQik(t) +
∑

i∈U ,k

Xik(t)ΔXik(t)

+
∑

i∈U ,k

Ỹ +
ik (t)ΔY +

ik (t). (8)

In Theorem 2, we show that as long as the scale of εik(t) is
sublinear in t, TMW* is still a throughput optimal algorithm.

Theorem 2: TMW* is a throughput optimal network control
policy if |εik(t)| = o(t) for each i ∈ U .

Proof: The analysis is nearly identical to the proof of
Theorem 1, with the only difference in upper bounding
Y +2

i (t + 1)− Y +2
i (t) and

∑T−1
t=0 Ỹ

πT +
i (t)Δ∗Yik(t), as given

by Lemma 6 and 7 below (see Appendix F and G for the
proofs).

Lemma 6: For each i ∈ U , k ∈ K and t = 0, · · · , T − 1,
we have

Y +2
ik (t + 1)− Y +2

ik (t)

� 2Ỹ +
ik (t)ΔYik(t) +

(
8L(t) + 6

)
N2D2

+ 4ND |εik(τik(t))| .

Lemma 7:

E

[
T−1∑
t=0

∑
i∈U ,k

Ŷ
πT +
ik (t)Δ∗Yik(t)

]

� 2 KN3D2

(
T + 2

T−1∑
t=0

L(t)

)

+ 2KN2
T−1∑
t=0

∑
i∈U
|εik(τik(t))| .

With Lemma 6 and 7, by applying a similar analysis to the
proof of Theorem 1, we have that

E

[∑
i,k

Qπ
ik(T)

]

= O

(
T 3/4Q

∗1/4
T +

√√√√T−1∑
t=0

L(t) +
T−1∑
t=0

∑
i∈U
|εik(τik(t))|

)

(9)

When |εik(t)| = o(t), we have

T−1∑
t=0

∑
i∈U
|εik(τik(t))| �

∑
i∈U

T−1∑
t=0

o(t) = o(T 2).

Therefore, if Q∗
T = o(T),

∑T−1
t=0 L(t)/T = o(T) and

|εik(t)| = o(t), we have
∑

i∈N QπT

ik (T) = o(T), which
completes the proof of Theorem 2. �

B. Impact of Estimation Errors

By Theorem 2, as long as the estimation error grows
sublinearly in t, TMW* is still throughput optimal. However,
when the estimation error grows linearly or even faster in
t, whether the network is stabilizable becomes a question of
interest.

By Definition 1, for a given set of external data arrival rates
inside the stability region, there always exists a randomized
policy that reaches rate stability. The randomized policy is
independent of network state and is immune to estimation
errors. However, to obtain a stabilizing randomized policy usu-
ally requires the knowledge of network dynamics (i.e., arrival
rates), which is unrealistic in practice. Moreover, a given
randomized policy may only support a subset of the stability
region, and may not be throughput optimal. Practical control
algorithms like MaxWeight and BackPressure [2] usually
only utilize queue information and are throughput optimal.
Therefore, we focus on the “queue-based throughput optimal
policies” defined as follows

Definition 3: A queue-based throughput optimal policy gen-
erates actions solely based on the current queue backlogs of
the overlay nodes O and the current estimated queue backlogs
of the underlay nodes U , and stabilizes the entire network
whenever the arrival rates are inside the stability region.

MaxWeight and BackPressure are examples of queue-based
throughput optimal policies in fully observable and control-
lable networks. The actions taken are only decided by the
queue backlogs,are independent of the arrival rates, and could
stabilize the system whenever inside the stability region.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1815

Fig. 1. Constructed example system for Theorem 3.

In contrast, randomized policies may fail to stabilize the
system if the arrival rates change (while still inside the stability
region).

The following theorem shows that when noise is superlinear
in t, there is no queue-based throughput optimal policy for all
network topologies and dynamics.

Theorem 3: There exists a network with εik(t) = Ω(t) for
some i ∈ U such that no queue-based throughput optimal
policy exists.

Proof: We construct a 3-node network with a single class
of data as in Figure 1. Node 1 can directly transmit data
packets to destination d or relay through node 2, while node 2
is neither observable nor controllable.

The idea behind the proof is that for any arrival rates, the
queue backlogs can grow at most linearly in t. Therefore,
when the estimation error grows linearly in t, the error can
completely “mask” the actual queue growth of node 2 and
makes Q̂2(t) ≡ 0, causing the controller to transmit packets
from node 1 to node 2. However, the external arrival rate to
node 2 might be very close to C2d and the total arrival rate
of node 2 may exceed C2d even if f12 is small. The queue
backlog at node 2 then grows linearly in the time horizon and
the entire network becomes unstable. The detailed proof is
given in Appendix H. �

Theorem 3 shows that when the estimation errors scale
linearly or sup-linearly in t, there does not exist a univer-
sal queue-based throughput optimal policy for all partially
observable and controllable networks. On the other hand,
Theorem 2 shows that TMW* is throughput optimal as long as
the estimation errors grow sublinearly in t. Therefore, TMW*
is optimally robust to estimation errors.

VI. NUMERICAL EXPERIMENTS

We conduct simulations on serveral network models to
validate the performance analysis of TMW*. We start from a
simple 3-node network, which has an explicit lower bound and
can be used to evaluate the gap between TMW* and optimum.
We then implement TMW* on a 15-node network to examine
the performance of TMW* in a more compex network model.
We finally consider the 15-node network model with different
scales of estimation errors.

A. 3-Node Network

We first consider a simple 3-node network, as shown in
Figure 2.

Fig. 2. The 3-node network for simulation.

Fig. 3. Average queue backlog for the 3-node network.

In the network, only node 1 is an overlay node, while
nodes 2 and 3 are underlay nodes. We assume all links have
a capacity of 1. The network only has a single class of
traffic to be transmitted from node 1 to destination d. During
each time slot, node 1 receives a new packet with probability
0.9 and receives no packets otherwise (i.e., Bernoulli process
Ber(1, 0.9)). Node 1 then transmit packets to node 2 and
node 3 according to the applied policy. Node 2 and 3 are
uncontrollable and apply randomized policies. Node 2 serves
one packet with probability 0.4, and serves no packet other-
wise (i.e., Ber(1, 0.4)). Similarly, the action taken by node 3
is a Bernoulli process Ber(1, 0.6).

We first derive a lower bound of the expected queue
backlog. We consider a dominant network with the same
topology and dynamics except that the service process at
node 2 is changed to μ2d(t) ∼ Ber(1, 0.6). The dominant
network has smaller expected queue backlog and becomes
an M/M/2 queueing system. By applying the analytical
techniques for M/M/c queueing systems in [23], the expected
queue backlog of the dominant network is 24/7, which serves
as a lower bound for the 3-node network.

We can also derive the optimal randomized policy for
the 3-node network. Suppose node 1 attempts to transmit
one packet to node 2 with probability p, and to node 3
otherwise, then the arrival rate to node 2 and node 3 are 0.9p
and 0.9 − 0.9p, respectively. Using analytical techniques for
M/M/1 queueing systems, we can express the expected queue
backlog using p and further obtain the optimal choice of p is
p∗ = (2 −√2/3)/3.

We conduct simulation on the 3-node network using TMW*
with different estimation intervals L and the optimal random-
ized policy with p∗. The results are shown in Figure 3.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

1816 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 4. The 15-node network for simulation.

From Figure 3, we can see that when the estimation
interval is small, TMW* significantly outperforms the optimal
randomized policy. A possible reason is that the randomized
policy fails to consider the queue backlog information and
may transmit to the node with larger queue. Moreover, the
gap between TMW* and the lower bound is relatively small,
which shows that TMW* is close to the optimal policy in this
case.

B. 15-Node Network

We next study a 15-node partially observable queueing
network as in Figure 4. The system consists of 12 overlay
nodes and 3 underlay nodes. At the beginning of each time
slot, external packets arrive at nodes 1, 3 and 13 at random
with rates of λ1, λ3 and λ13 respectively. Each node then
decides to which neighbors to relay the buffered packets. The
destination d can be reached via nodes 5, 11 and 15. We aim
to stabilize the entire network by implementing policies only
on overlay nodes.

For conciseness in illustration, we let all link capacities be
5 (including the links 5→ d, 11→ d and 15→ d). We let the
underlay transmission rates for nodes 8, 9 and 13 be random
and uniform between 0 and 5 packets on each outgoing link,
i.e.

μ8→9(t), μ9→15(t), μ13→9(t), μ13→12(t), μ13→14(t)
∼ Unif{0, · · · , 5},

and the updates from underlay nodes have a fixed interval of L
time slots. We also set the external arrivals for node λ1, λ3 and
λ13 be i.i.d. Bernoulli with 9 packet arrivals with probability
0.55 and no arrivals with probability 0.45.

It can be easily shown that a stabilizing randomized overlay
policy is to fix the transmission rates on route 1 → 6 →
11 → d, 3 → 4 → 5 → d, 12 → 7 → 8, 10 → 15 → d and
14 → 15 → d to 5, while keeping other overlay link rates to
zero. In the simulation, we compared the evolution of the total
queue backlog under the above randomized policy, and TMW*
with different update intervals L. We also directly applied the
traditional MaxWeight algorithm to the overlay nodes as a
baseline method. The results are shown in Figure 5.

From Figure 5a, we can see that under the traditional
MaxWeight algorithm, the average queue backlog grows lin-
early in time. Therefore, traditional MaxWeight might not

Fig. 5. Average queue backlog for the 15-node network.

Fig. 6. The gaps between the virtual queues and actual queues for underlay
nodes (L = 10).

be capable of stabilizing the network. We then focus on the
performance of stabilizing policies in Figure 5b, which shows
that while all of the shown values of L can stabilize the system,
smaller L’s leads to smaller average queue backlogs. This
phenomenon matches intuition, as smaller L’s give fresher
information about the underlay nodes.

We then plot the gaps between virtual queues Xik’s and
actual queue Qik’s for i ∈ U under L = 10. As can be
seen from Figure 6, the gaps between Xik’s and Qik’s are
bounded by constants, which indicates that our estimates Xik’s

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1817

Fig. 7. Average queue backlogs in noisy environments.

for underlay queues are effective (otherwise the gap would
grow without bound). Note that all the gaps have deviations
from zero and a possible reason is that, in our simulation, the
initial buffers are empty, and it takes some time to reach the
stationary distribution.

C. 15-Node Network With Estimation Errors

We continue using the 15-node network model in
Section VI-B. Theorem 2 indicates that when the estimation
error |εik(t)| = o(t), our algorithm can stabilize the queues.
We conducted simulations for different noise settings: when
|εik(t)| � 30, |εik(t)| � 100, |εik(t)| � 20

√
t, |εik(t)| � 20 t

and when there is no estimation error. The estimation error
imposed is sampled uniformly inside the error scale region.

As can be seen from Figure 7, as the estimation error scale
increases, the average queue backlogs grow larger, yet the
system is still stable even when the error grows at the rate of t.
Note that this result does not contradict Theorem 3, which only
gives a specific example of a system that cannot be stabilized
when the noise grows linearly in the time horizon.

VII. CONCLUSION

In this paper, we focus on overlay-underlay networks in
which the underlay nodes are unobservable and uncontrollable.
We propose the TMW* algorithm that only requires sparse
estimates of the underlay queue state and only needs to be
implemented on the overlay nodes. We rigorously show that
TMW* is throughput optimal. We then analyze the perfor-
mance of TMW* when the estimation is erroneous and show
that as long as the error scales sublinearly in time, TMW*
still remains throughput optimal. We further explore the the-
oretical limit of queue-based control algorithm and show that
TMW* is optimally robust to estimation errors. Simulations on
multiple overlay-underlay networks validate our performance
analysis.

For future works, a potential direction is to apply machine
learning techniques to further optimize the control algorithms
for overlay-underlay networks. Another possible direction is
to develop inference methods for underlay queue backlogs and
analyze the error bounds.

APPENDIX A
PROOF OF LEMMA 1

We first upper bound Q2
ik(t+1)−Q2

ik(t) for i ∈ O. Writing
down the update rule for Q2

ik(t), we have that

Qik(t + 1) =

[
Qik(t) + aik(t)−

∑
j∈N

fijk(t)

]+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

μ̃jik(t)

�
[
Qik(t) + aik(t)−

∑
j∈N

fijk(t)

]+

+
∑
j∈O

fjik(t) +
∑
j∈U

μjik(t).

It is easy to show that for x, y, z � 0, the inequality(
[x−y]+ + z

)2
� x2 + y2 + z2 + 2x(z − y)

holds. By replacing x with Qik(t) + aik(t), y with∑
j∈N fijk(t) and z with

∑
j∈O fjik(t) +

∑
j∈U μjik(t),

we upper bound Q2
ik(t + 1) as

Q2
ik(t + 1) � Q2

ik(t) +
(∑

j∈N
fijk(t)

)2

+
(∑

j∈O
fjik(t) +

∑
j∈U

μjik(t)
)2

+ 2 aik(t)δQik(t) + 2 Qik(t)δQik(t)
� Q2

ik(t) + 2 Qik(t)δQik(t) + 6N2D2, (10)

where the last inequality holds by utilizing (1).
We then upper bound X2

ik(t + 1)−X2
ik(t) for i ∈ U . With

Xik(t + 1) =

⎡
⎣Xik(t) + λik(t)−

∑
j∈N

gijk(t)

⎤
⎦

+

+
∑
j∈O

f̃jik(t) +
∑
j∈U

gjik(t)

�

⎡
⎣Xik(t) + λik(t)−

∑
j∈N

gijk(t)

⎤
⎦

+

+
∑
j∈O

fjik(t) +
∑
j∈U

gjik(t),

by applying similar techniques as (10), we have

X2
ik(t + 1) � X2

ik(t) + 2 Xik(t)δXik(t) + 6N2D2. (11)

APPENDIX B
PROOF OF LEMMA 2

To avoid confusion, we define that ΔY +
ik (t) � Y +

ik (t +
1) − Y +

ik (t). Both ΔYik(t) and ΔY +
ik (t) are bounded as the

following lemma.
Lemma 8: For each i ∈ U , t = 0, · · · , T − 1 and k ∈ K,

we have

−2ND � ΔYik(t), ΔY +
ik (t) � 2ND,

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

1818 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Proof: Here we fix an i and a t arbitrarily. We first discuss
the range of ΔYik(t). From the definition of ΔYik(t), we have

ΔYik(t)
= Qik(t + 1)−Qik(t)− (Xik(t + 1)−Xik(t)

)
= aik(t)−

∑
j∈N

μ̃ijk(t) +
∑
j∈O

f̃jik(t) +
∑
j∈U

μ̃jik(t)

−λik(t) +
∑
j∈N

g̃ijk(t)−
∑
j∈O

f̃jik(t)−
∑
j∈U

gjik(t)

= aik(t)− λik(t) +
∑
j∈U

μ̃jik(t)−
∑
j∈N

μ̃ijk(t)

+
∑
j∈N

g̃ijk(t)−
∑
j∈U

gjik(t).

By applying (1), we have

−2ND � ΔYik(t) � 2ND. (12)

With (12) at hand, we first have

ΔY +
ik (t) = max{Yik(t + 1), 0} − Y +

ik (t)
= max{Yik(t + 1)− Y +

ik (t),−Y +
ik (t)}

� max{Yik(t + 1)− Yik(t),−Y +
ik (t)}

= max{ΔYik(t),−Y +
ik (t)} � 2ND. (13)

For the lower bound Y +
ik (t), we have

ΔY +
ik (t) = Y +

ik (t + 1)−max{Yik(t), 0}
= min{Y +

ik (t + 1)− Yik(t), Y +
ik (t + 1)}

� min{Yik(t + 1)− Yik(t), Y +
ik (t + 1)}

= min{ΔYik(t), Y +
ik (t + 1)} � −2ND. (14)

Combining (12), (13) and (14) completes the proof.
�

Since Y +2
ik (t + 1)− Y +2

ik (t) can be decomposed as

Y +2
ik (t + 1)− Y +2

ik (t)

=
(
Y +

ik (t) + ΔY +
ik (t)
)2 − Y 2+

ik (t)

= 2 Y +
ik (t)ΔY +

ik (t) +
(
ΔY +

ik (t)
)2

, (15)

upper bounding Y +
ik (t)ΔY +

ik (t) suffices and we have that

Y +
ik (t)ΔY +

ik (t)
� Y +

ik (t) ·max{ΔYik(t),−Y +
ik (t)}

= Y +
ik (t)ΔYik(t) + max{0,−Y +2

ik (t)− Y +
ik (t)ΔYik(t)}

� Y +
ik (t)ΔYik(t) + max{0,−Y +2

ik (t) + 2NDY +
ik (t)}

= Y +
ik (t)ΔYik(t) + max{0,−(Y +2

ik (t)−ND)2 + N2D2}
� Y +

ik (t)ΔYik(t) + N2D2, (16)

where the first inequality comes from the fact that Y +
ik (t) �

0 and ΔY +
ik (t) � max{ΔYik(t),−Y +

ik (t)}. The second
inequality holds because Y +

ik (t) � 0 and ΔYik(t) � −2ND.

By inserting (16) into (15) and utilizing Lemma 8, we have
that

Y +2
ik (t + 1)− Y +2

ik (t)

� 2 Y +
ik (t)ΔYik(t) +

(
ΔY +

ik (t)
)2 + 2N2D2

� 2 Y +
ik (t)ΔYik(t) + 6N2D2

� 2Ŷ +
ik (t)ΔYik(t) + 2(t− τik(t)) · 2ND · 2ND + 6N2D2

� 2Ŷ +
ik (t)ΔYik(t) +

(
8L(t) + 6

)
N2D2, (17)

which completes the proof.

APPENDIX C
PROOF OF LEMMA 3

We first have∑
i,k

Qik(T)

=
∑

i∈O,k

Qik(T) +
∑

i∈U ,k

Xik(T) +
∑

i∈U ,k

Yik(T)

�
∑

i∈O,k

Qik(T) +
∑

i∈U ,k

Xik(T) +
∑

i∈U ,k

Y +
ik (T)

�
√

KN + K |U|
·
√∑

i∈O,k

Q2
ik(T) +

∑
i∈U ,k

X2
ik(T) +

∑
i∈U ,k

Y +2
ik (T)

�
√

2KNΦ(T), (18)

where the second inequality utilizes Cauchy–Schwarz inequal-
ity.

By taking expectation on both sides of (18) and then
applying Jensen’s inequality, we have

E

[∑
i,k

Qik(T)

]
�
√

2KN · E[√Φ(T)
]

�
√

2KNE
[
Φ(T)

]
,

which completes the proof.

APPENDIX D
PROOF OF LEMMA 4

We define M � T mod H and there exists an integer J such
that T = JH+M . Then, we have the following decomposition
for i ∈ O and k ∈ K,

T−1∑
t=0

QπT

ik (t)δ∗Qik(t)

=
J−1∑
j=0

[
QπT

ik (jH)
(j+1)H−1∑

t=jH

δ∗Qik(t)

+
(j+1)H−1∑

t=jH

(
QπT

ik (t)−QπT

ik (jH)
) · δ∗Qik(t)

]

+
T−1∑

t=JH

QπT

ik (t)δ∗Qik(t)

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1819

�
J−1∑
j=0

[
2NDT

(j+1)H−1∑
t=jH

δ∗Qik(t)

+
(j+1)H−1∑

t=jH

2NDH · 2ND

]
+ M · 2NDT · 2ND

� 2JNDT
T−1∑
t=0

δ∗Qik(t) + 8N2D2HT

� 2NDT 2

H

T−1∑
t=0

δ∗Qik(t) + 8N2D2HT, (19)

where inequalities hold by using (1), and the fact that M � H
and J � T/H .

Similarly, we show that for i ∈ U ,

T−1∑
t=0

XπT

ik (t)δ∗Xik(t)

� 2NDT 2

H

T−1∑
t=0

δ∗Xik(t) + 8N2D2HT. (20)

We then proceed to analyze
∑

i∈O,k δ∗Qik(t) +∑
i∈U ,k δ∗Xik(t). Define the set of destinations (sinks)

for the traffic of class k as Dk, we then have that∑
i∈O,k

δ∗Qik(t) +
∑

i∈U ,k

δ∗Xik(t)

=
∑

i∈O,k

(
aik(t)−

∑
j∈N

f∗
ijk(t) +

∑
j∈O

f∗
jik(t)

+
∑
j∈U

μjik(t)

)
+
∑

i∈U ,k

(
λik(t)−

∑
j∈N

μijk(t)

+
∑
j∈O

f∗
jik(t) +

∑
j∈U

μjik(t)

)

=
∑

i∈O,k

aik(t) +
∑

i∈U ,k

λik(t)−
∑

i∈O,k

f∗
idkk(t)

−
∑

i∈U ,k

μidkk(t),

with which we have that
T−1∑
t=0

(∑
i∈O,k

δ∗Qik(t) +
∑

i∈U ,k

δ∗Xik(t)

)

=
T−1∑
t=0

(∑
i∈O,k

aik(t) +
∑

i∈U ,k

λik(t)

−
∑

i∈O,k

f∗
idkk(t)−

∑
i∈U ,k

μidkk(t)

)
. (21)

On the other hand, we have that∑
i∈N ,k∈K

Q∗
ik(T)

=
T−1∑
t=0

(∑
i∈N ,k

aik(t)−
∑

i∈O,k

f̃∗
idkk(t)−

∑
i∈U ,k

μ̃idkk(t)

)

+
∑

i∈N ,k∈K
Qik(0). (22)

Combining (21) and (22), and using the fact that
Qik(0) � 0, f̃∗

ijk(t) � f∗
ijk(t), μ̃∗

ijk(t) � μ∗
ijk(t) hold for

each i, j, k, t, we have

E

[
T−1∑
t=0

(∑
i∈O,k

δ∗Qik(t) +
∑

i∈U ,k

δ∗Xik(t)

)]
� Q∗

T . (23)

Summing up (19) and (20) over all nodes and traffic classes,
and then plugging in (23) complete the proof.

APPENDIX E
PROOF OF LEMMA 5

We first discuss the case when Qik(t) < ND. Since Y +
ik (t)

is non-negative and Xik(t) � 0, we have 0 � Y +
ik (t) < ND,

which gives us that

E

[
Ŷ

πT +
ik (t)Δ∗Yik(t) | Qik(t) < ND

]
�
(
Y +

ik (t) + (t− τik(t)) · 2ND
)
· 2ND

�
(
4L(t) + 2

) ·N2D2, (24)

where the first inequality utilizes Lemma 8.
When Qik(t) � ND, Qik(t) + aik(t) −∑j∈N μijk(t) �

0. Therefore, μ̃ijk(t) = μijk(t) and Δ∗Yik(t) can be upper
bounded as

Δ∗Yik(t)
= Q∗

ik(t + 1)−Q∗
ik(t)− (X∗

ik(t + 1)−X∗
ik(t))

= aik(t)− λik(t)−
∑
j∈N

μijk(t) +
∑
j∈U

μ̃ijk(t)

+
∑
j∈N

μ̃ijk(t)−
∑
j∈U

μijk(t)

� aik(t)− λik(t)−
∑
j∈N

μijk(t) +
∑
j∈U

μijk(t)

+
∑
j∈N

μijk(t)−
∑
j∈U

μijk(t)

= aik(t)− λik(t). (25)

Moreover, since Ŷ
πT +
ik (t) depends on arrivals and actions

up to time t−1, but is independent of the arrivals and actions
at time t, we have

E

[
Ŷ

πT +
ik (t)Δ∗Yik(t) | Qik(t) � ND

]
� E

[
Ŷ

πT +
ik (t) · (aik(t)− λik(t)

) | Qik(t) � ND
]

= E

[
Ŷ

πT +
ik (t) | Qik(t) � ND

]
·
(

E
[
aik(t)

]− λik

)
= 0. (26)

Combining (24) and (26), we have

E

[
Ŷ

πT +
ik (t)Δ∗Yik(t)

]
�
(
4L(t) + 2

) ·N2D2,

which completes the proof.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

1820 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

APPENDIX F
PROOF OF LEMMA 6

We have the following upper bound

Y +2
ik (t + 1)− Y +2

ik (t)

� 2Ŷ +
ik (t)ΔYik(t) + (8L(t) + 6)N2D2

= 2Ỹ +
ik (t)ΔYik(t) + (8L(t) + 6)N2D2

+ 2
(
Ŷ +

ik (t)− Ỹ +
ik (t)
)

ΔYik(t)

� 2Ỹ +
ik (t)ΔYik(t) + (8L(t) + 6)N2D2

+ 4ND
∣∣∣Ỹ +

ik (t)− Ŷ +
ik (t)
∣∣∣ , (27)

where the first inequality comes from (17) and the last
inequality utilizes (1).

To analyze
∣∣∣Ỹ +

ik (t)− Ŷ +
ik (t)
∣∣∣, we first have

Ỹ +
ik (t)− Ŷ +

ik (t) = max
{
Ỹik(t), 0

}− Ŷ +
ik (t)

= max
{
Ỹik(t)− Ŷ +

ik (t),−Ŷ +
ik (t)
}

� max
{
Ỹik(t)− Ŷik(t),−Ŷ +

ik (t)
}

� max
{
εik(τik(t)), 0

}
.

On the other direction, we have a lower bound as follows

Ỹ +
ik (t)− Ŷ +

ik (t) = Ỹ +
ik (t)−max

{
Ŷik(t), 0

}
= min

{
Ỹ +

ik (t)− Ŷik(t), Ỹ +
ik (t)
}

� min
{
Ỹik(t)− Ŷik(t), Ỹ +

ik (t)
}

� min
{
εik(τik(t)), 0

}
.

Therefore, we have an upper bound
∣∣∣Ỹ +

ik (t)− Ŷ +
ik (t)
∣∣∣ �

|εik(τik(t))|. By inserting it into (27), we complete the proof.

APPENDIX G
PROOF OF LEMMA 7

We first discuss the case when Qik(t) < ND. Since now

0 � Y +
ik (t) < ND and

∣∣∣Ỹ +
ik (t)− Ŷ +

ik (t)
∣∣∣ � |εik(t)| (as shown

in Lemma 6), we have

E

[
Ỹ

πT +
ik (t)Δ∗Yik(t) | Qik(t) < ND

]
�
(
Y +

ik (t) + (t− τik(t)) · 2ND + εik(τik(t))
)
· 2ND

�
(
4L(t) + 2

) ·N2D2 + 2ND |εik(τik(t))| . (28)

When Qik(t) � ND, the analysis remains identical as the
proof of Lemma 5 and we have

E

[
Ỹ

πT +
ik (t)Δ∗Yik(t) | Qik(t) � ND

]
� 0. (29)

By combining (28) and (29), we complete the proof.

APPENDIX H
PROOF OF THEOREM 3

Node 2 is set to have a fixed underlay policy
π∗

u : μ2d = C2d. We reinforce to assume that we can
observe Q2(t) for each time slot, with the observation defined
as Q̂2(t). The observation noise ε2(t) = 8t and we have
Q̂2(t) = [Q2(t)− ε2(t)]+.

We first characterize the stability region. It is easy to show
that the stability region of the system is

Π0 = {(λ1, λ2) : λ1 + λ2 < 6, λ2 < 4} .
We fix an arbitrary throughput optimal stochastic policy

π0
c : (Q1, Q̂2) → (f1d, f12). To simplify the expression,

we define the action taken under (Q1, Q̂2) to be f1d(Q1, Q̂2)
and f12(Q1, Q̂2). We now analyze three different cases.

Case 1: Let

a1(t) =

{
4, w.p. 3/4
0, w.p. 1/4,

a2(t) ≡ 0.

It is easy to verify that we are inside the stability region.
Since λ1 − C1d = 1, we must have

μ12 = lim
T→∞

Eπ0
c

[∑πT

t=1 f̃12

(
Q1(t), Q̂2(t)

)]
T

� 1.

Since the every time slot there are at most 4 external packets
into the system, we have Q̂2(t) ≡ 0.

Denote p(Q1, Q2) as the stationary probability of (Q1, Q2)
and Q � {Q1 : pπ0

c (Q1, 0) > 0}, we then have

μ12 =
∑

Q1∈Q
p(Q1, 0) · Eπ0

c
[f12(Q1, 0)] � 1. (30)

Case 2: Let

a1(t) =

{
4, w.p. 1/2
0, w.p. 1/2,

a2(t) ≡ 0.

It is easy to verify that we are still inside the stability region
and we still have Q̂2(t) ≡ 0.

Denote p′(Q1, Q2) as the stationary probability in this case.
Since the set of possible values of a1(t), f12(t) and f1d(t) are
the same as case 1, and Q denotes the set of reachable Q1’s,
we also have p′(Q1, 0) > 0 for Q1 ∈ Q. Also, (30) ensures
that there exists Q∗

1 such that Eπ0
c
[f12(Q1, 0)] > 0, we thus

have

μ′
12 =

∑
Q1∈Q

p′(Q1, 0) · Eπ0
c
[f12(Q1, 0)]

� p′(Q∗
1, 0) · Eπ0

c
[f12(Q∗

1, 0)] > 0.

Case 3: We define the value of μ′
1→2 as δ and let

a1(t) =

{
4, w.p. 1/2
0, w.p. 1/2,

a2(t) =

{
4, w.p. 1− δ/8
0, w.p. δ/8.

It is easy to verify that we are still inside the stability region.
Since the every time slot there are at most 8 external packets

into the system, we still have Q̂2(t) ≡ 0. Also consider the
a1 has the same pattern as in case 2, for us (the overlay
controller), the system now “looks” exactly the same as case 2.
We therefore have that μ′′

12, the rate of packets transmitted
from node 1 to node 2, equals to μ′

12.
Now, the total input rate to node 2 amounts to

λ2 + μ′′
12 = 4− δ/2 + δ > C2d and Q2 is instable.

Case 3 violates the definition of throughput optimal sto-
chastic policy. Since π0

c is selected arbitrarily, we complete
the proof.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TRACKING MaxWeight: OPTIMAL CONTROL FOR PARTIALLY OBSERVABLE AND CONTROLLABLE NETWORKS 1821

REFERENCES

[1] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Overlay
networks: An Akamai perspective,” Adv. Content Del., Streaming, Cloud
Services, vol. 51, no. 4, pp. 305–328, 2014.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[3] G. S. Paschos and E. Modiano, “Throughput optimal routing in overlay
networks,” in Proc. 52nd Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Sep. 2014, pp. 401–408.

[4] N. M. Jones, G. S. Paschos, B. Shrader, and E. Modiano, “An over-
lay architecture for throughput optimal multipath routing,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2615–2628, Aug. 2017.

[5] A. Rai, R. Singh, and E. Modiano, “A distributed algorithm for through-
put optimal routing in overlay networks,” in Proc. IFIP Netw. Conf.
(IFIP Netw.), May 2019, pp. 1–9.

[6] Q. Liang and E. Modiano, “Optimal network control in partially-
controllable networks,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2019, pp. 397–405.

[7] B. Liu, Q. Xie, and E. Modiano, “Reinforcement learning for optimal
control of queueing systems,” in Proc. 57th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep. 2019, pp. 663–670.

[8] E. J. Sondik, “The optimal control of partially observable Markov
processes over the infinite horizon: Discounted costs,” Ope. Res., vol. 26,
no. 2, pp. 282–304, 1978.

[9] H.-T. Cheng, “Algorithms for partially observable Markov decision
processes,” Ph.D. dissertation, Dept. Commerce Bus. Admin., Univ.
British Columbia, Vancouver, BC, Canada, 1988.

[10] N. L. Zhang and W. Liu, “Planning in stochastic domains: Problem
characteristics and approximation,” Hong Kong Univ. Sci. Technol.,
Hong Kong, Tech. Rep. HKUST-CS96-31, 1996.

[11] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
nos. 1–2, pp. 99–134, 1998.

[12] A. R. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental pruning:
A simple, fast, exact method for partially observable Markov decision
processes,” 2013, arXiv:1302.1525.

[13] J. Baxter and P. L. Bartlett, “Infinite-horizon policy-gradient estimation,”
J. Artif. Intell. Res., vol. 15, pp. 319–350, Jul./Dec. 2001.

[14] R. Urgaonkar and M. J. Neely, “Opportunistic cooperation in cognitive
femtocell networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3,
pp. 607–616, Apr. 2012.

[15] S. Kompella, G. Nguyen, C. Kam, J. E. Wieselthier, and A. Ephremides,
“Cooperation in cognitive underlay networks: Stable throughput trade-
offs,” IEEE/ACM Trans. Netw., vol. 22, no. 6, pp. 1756–1768, Dec. 2014.

[16] T. Stahlbuhk, B. Shrader, and E. Modiano, “Throughput maximization
in uncooperative spectrum sharing networks,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2016, pp. 1242–1246.

[17] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73–85,
Jan. 1977.

[18] D. Bertsekas, E. Gafni, and R. Gallager, “Second derivative algorithms
for minimum delay distributed routing in networks,” IEEE Trans.
Commun., vol. COM-32, no. 8, pp. 911–919, Aug. 1984.

[19] J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous optimal
routing in data networks,” IEEE Trans. Autom. Control, vol. AC-31,
no. 4, pp. 325–332, Apr. 1986.

[20] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 34, no. 1, pp. 27–38, 2006.

[21] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” IEEE/ACM Trans. Netw.,
vol. 17, no. 5, pp. 1481–1493, Oct. 2009.

[22] X. Lin and S. B. Rasool, “Constant-time distributed scheduling policies
for ad hoc wireless networks,” IEEE Trans. Autom. Control, vol. 54,
no. 2, pp. 231–242, Feb. 2009.

[23] M. Barbeau and E. Kranakis, Principles of Ad Hoc Networking.
Hoboken, NJ, USA: Wiley, 2007.

[24] C. Hedrick et al., Routing Information Protocol, document TR
RFC 1058, Rutgers Univ., Piscataway, NJ, USA, 1988.

[25] C. Hopps et al., Analysis of an Equal-Cost Multi-Path Algorithm,
document TR RFC 2992, Nov. 2000.

[26] J. Moy, OSPF Version 2, document RFC2178, 1998.

Bai Liu received the B.E. degree (Hons.) from
Tsinghua University, Beijing, China, in 2017, and
the M.S. degree from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2019, where
he is currently pursuing the Ph.D. degree with the
Laboratory for Information and Decision Systems.
His research interests include learning and control
problems in networked systems, with application of
reinforcement learning, stochastic optimization, and
inference methods.

Qingkai Liang received the B.E. degree (Hons.)
in electronic engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2013, and the M.S.
and Ph.D. degrees from the Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in
2015 and 2018, respectively. He is currently the
Co-Founder at Celer Network. His research focuses
on various learning and control problems that arise
in networked systems, especially on online learning
algorithms in adversarial networks, which have been
successfully applied in Raytheon BBN Technologies
and Bell Laboratories.

Eytan Modiano (Fellow, IEEE) received the B.S.
degree in electrical engineering and computer sci-
ence from the University of Connecticut, Storrs,
in 1986, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Maryland,
College Park, MD, in 1989 and 1992, respectively.

He is currently the Richard C. Maclaurin Professor
with the Department of Aeronautics and Astronau-
tics and the Laboratory for Information and Deci-
sion Systems (LIDS), MIT. Prior to joining as the
Faculty Member at MIT in 1999, he was a Naval

Research Laboratory Fellow from 1987 to 1992, a National Research Council
Post-Doctoral Fellow from 1992 to 1993, and a member of the Technical
Staff at the MIT Lincoln Laboratory from 1993 to 1999. His research
interests include modeling, analysis, and design of communication networks
and protocols. In 2020, he received the Infocom Achievement Award for
contributions to the analysis and design of cross-layer resource allocation
algorithms for wireless, optical, and satellite networks. He is the co-recipient
of the Infocom 2018 Best Paper Award, the MobiHoc 2018 Best Paper Award,
the MobiHoc 2016 Best Paper Award, the Wiopt 2013 Best Paper Award,
and the Sigmetrics 2006 Best Paper Award. He was the Editor-in-Chief for
IEEE/ACM TRANSACTIONS ON NETWORKING (2017–2020) and served as
an Associate Editor for IEEE TRANSACTIONS ON INFORMATION THEORY
and IEEE/ACM TRANSACTIONS ON NETWORKING. He was the Technical
Program Co-Chair for IEEE Wiopt 2006, IEEE Infocom 2007, ACM MobiHoc
2007, and DRCN 2015; and the General Co-Chair of Wiopt 2021. He had
served on the IEEE Fellow Committee in 2014 and 2015. He is an Associate
Fellow of the AIAA.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:45:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

