
58

Joint Learning and Control in StochasticQueueing
Networks with Unknown Utilities
XINZHE FU, LIDS, Massachusetts Institute of Technology, USA

EYTAN MODIANO, LIDS, Massachusetts Institute of Technology, USA

We study the optimal control problem in stochastic queueing networks with a set of job dispatchers connected

to a set of parallel servers with queues. Jobs arrive at the dispatchers and get routed to the servers following

some routing policy. The arrival processes of jobs and the service processes of servers are stochastic with

unknown arrival rates and service rates. Upon the completion of each job from dispatcher 𝑢𝑛 at server 𝑠𝑚 , a

random utility whose mean is unknown is obtained. We seek to design a control policy that makes routing

decisions at the dispatchers and scheduling decisions at the servers to maximize the total utility obtained by

the end of a finite time horizon 𝑇 . The performance of policies is measured by regret, which is defined as the

difference in total expected utility with respect to the optimal dynamic policy that has access to arrival rates,

service rates and underlying utilities.

We first show that the expected utility of the optimal dynamic policy is upper bounded by 𝑇 times the

solution to a static linear program, where the optimization variables correspond to rates of jobs from dispatchers

to servers and the feasibility region is parameterized by arrival rates and service rates. We next propose a

policy for the optimal control problem that is an integration of a learning algorithm and a control policy.

The learning algorithm seeks to learn the optimal extreme point solution to the static linear program based

on the information available in the optimal control problem. The control policy, a mixture of priority-based

and Joint-the-Shortest-Queue routing at the dispatchers and priority-based scheduling at the servers, makes

decisions based on the graphical structure induced by the extreme point solutions provided by the learning

algorithm. We prove that our policy achieves logarithmic regret whereas application of existing techniques to

the optimal control problem would lead to Ω(
√
𝑇)-regret. The theoretical analysis is further complemented

with simulations to evaluate the empirical performance of our policy.

CCS Concepts: • Networks → Network algorithms; • Theory of computation → Theory and algo-
rithms for application domains.

Additional Key Words and Phrases: Stochastic Queueing Networks; Learning For Network Control

ACM Reference Format:
Xinzhe Fu and Eytan Modiano. 2022. Joint Learning and Control in Stochastic Queueing Networks with

Unknown Utilities. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 58 (December 2022), 32 pages. https:

//doi.org/10.1145/3570619

1 INTRODUCTION
Consider a bipartite queueing network with a set of job dispatchers connected to a set of servers

with queues. Jobs arriving at the dispatchers get routed to the queues for service, while a certain

utility is obtained for each job completed. Such bipartite queueing networks have been widely

adopted to model networked systems such as inter-connected switches [1], cloud platforms [2]

and server farms [3, 4]. We study the optimal control problem in such bipartite queueing networks.

Authors’ addresses: Xinzhe Fu, LIDS, Massachusetts Institute of Technology, USA; Eytan Modiano, LIDS, Massachusetts

Institute of Technology, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2476-1249/2022/12-ART58

https://doi.org/10.1145/3570619

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright is held by the owner/author(s).
2476-1249/2022/12 – Art 58. https://doi.org/10.1145/3570619

https://doi.org/10.1145/3570619
https://doi.org/10.1145/3570619
https://doi.org/10.1145/3570619
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570619&domain=pdf&date_stamp=2022-12-08

58:2 Xinzhe Fu and Eytan Modiano

Jobs of unit size arrive at the dispatchers and are sent to a server following some routing policy.

Each server has a queue that buffers the incoming jobs and serves the jobs in the queue following

some scheduling policy. The job arrival process at each dispatcher 𝑢𝑛 is a stochastic process with

unknown arrival rate 𝜆𝑛 and the service process of each server 𝑠𝑚 is stochastic with unknown

service rate 𝜇𝑚 (see Figure 1 for an illustration). Upon the completion of a job from dispatcher 𝑢𝑛
at server 𝑠𝑚 , a random utility 𝑣𝑛𝑚 is obtained with an unknown mean E[𝑣𝑛𝑚] = 𝑣𝑛𝑚 . The utility
of each job is independent. The goal is to design a control policy that minimizes regret, which is

defined as the difference in the total expected utility obtained by the end of a finite time-horizon 𝑇

with respect to the optimal dynamic policy that has the knowledge of arrival rates, service rates

and underlying utilities. In this paper, we will propose a policy that achieves logarithmic regret,

i.e., the regret of the policy grows (poly)logarithmically with the time horizon 𝑇 .

First, we show that the expected utility of the optimal dynamic policy is upper bounded by 𝑇

times the value of a linear program, which we will refer to as the static linear program of the optimal

control problem. The static linear program can be interpreted as a fluid version of the optimal

control problem, where the optimization variables correspond to rates of jobs from the dispatchers

to the servers, the feasibility region is the set of rates that satisfy the resource constraints of the

arrivals and the capacity constraints of the servers, and the objective function is the total utility

corresponding to the rates (see Figure 2 for a concrete example). Note that both the objective

function, which involves underlying utilities, and the feasibility region, which involves arrival

rates and service rates, of the static linear program are unknown apriori. Thus, the optimal control

problem requires a combination of learning and network control, i.e., it needs an algorithm that

seeks to learn the solution to the static linear program based on observed information, and a control

policy that makes routing and scheduling decisions based on the learned solution.

Optimization problems with unknown parameters have received considerable attention in the

online decision making literature. Since the classical multi-armed bandit problem[11], there has

been extensive effort dedicated to optimization problems with unknown objective functions of

various form [5–9, 17]. Previous works focus on finding the minimizer of a linear [17] or convex

[5, 9] objective function in a given feasibility region, where the objective function is unknown

but feedback on function values can be observed. Subsequent works extend the consideration to

problems with cumulative constraints over the time horizon [25, 26] or stochastic constraints that

are unknown apriori but revealed sequentially over time [5, 27].

In contrast to the growing literature on problems with unknown parameters in pure optimization

settings, the stochastic queueing dynamics in optimal control brings new challenges to both learning

and network control. For the learning aspect, different from traditional problems in the literature

where the objective function value is immediately observed upon decision on the optimization

variables, in the optimal control problem utility observations experience queueing delay as they

are only available after the jobs complete service at the servers. Therefore, the learning algorithm

for solving the static linear program must be able to handle the feedback delay in addition to the

unknown feasibility region in stochastic queueing networks.

From the aspect of network control, first, it is worth noting that even if the optimal solution to

the static linear program was given exactly, designing a control policy with logarithmic regret is a

non-trivial task. Indeed, for example, suppose we are given the optimal solution 𝑟 ∗
11

= 5, 𝑟 ∗
12

= 2 to

the linear program of Figure 2, an immediate candidate is a static randomized routing policy that

every time sends the incoming jobs to 𝑠1 with probability
5

7
and to 𝑠2 with probability

2

7
combined

with an arbitrary scheduling policy at the servers. Such a policy will lead to the queue of 𝑠1 being

critically loaded and result in Ω(
√
𝑇)-regret. In fact, we will formally show in Section 4 that any

static policy will incur Ω(
√
𝑇)-regret, which is strictly worse than the policy we propose that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:3

1 λ

2 λ
2 µ

1µ

3 µ
3λ

4µ

1u

2u

3u

1s

2s

3s

4s

Fig. 1. An example of the bipartite queueing
network model with three job dispatchers
and four servers.

2 5= µ

1 5= µ

1u1 7=λ 11 6v =

12 5v =

1s

2s

Fig. 2. A simple example with one dispatcher and
two servers. In this example, the static linear pro-
gram is to maximize 𝑣11𝑟11 + 𝑣12𝑟12 subject to
𝑟11 + 𝑟12 = 𝜆1, 𝑟11 ≤ 𝜇1, 𝑟12 ≤ 𝜇2.

achieves logarithmic regret. What further elevates the challenge is that in the optimal control

problem, as the parameters are unknown and we can only observe their stochastic realizations,

it is impossible to obtain the exact optimal solution to the static linear program, e.g., no learning

algorithm can obtain the exact values of 𝑟 ∗
11
, 𝑟 ∗

12
in a finite time horizon [17]. The solutions computed

by the learning algorithm are inherently approximate, which precludes the routing policy from

relying on the values of the solutions as the approximation error will accumulate to Ω(
√
𝑇)-regret

(See Section 4). Instead, the routing policy has to rely on some structure of the solutions that is

robust to the approximation error.

Our main results are as follows. First, we show that each extreme point solution to the static

linear program induces a spanning forest of the bipartite network. We thus propose a control policy

that consists of a mixture of priority-based routing and Join-the-Shortest-Queue routing at the

dispatchers and priority-based scheduling at the servers, which relies on the spanning forests of

the solutions as input. Such spanning forest structure is robust against the error in the values of the

solutions. Second, we propose a learning algorithm that can learn the optimal solution to the linear

program and handle the unknown feasibility region in the optimal control problem. Finally, we

integrate the learning algorithm and the control policy into a joint learning and control policy. We

show that our policy achieves logarithmic regret for the optimal control problem, which is superior

to application of existing techniques that will lead to Ω(
√
𝑇)-regret. We also complement our

theoretical analysis with empirical evaluation. Our results highlight the importance of co-design

for the learning and the networking control aspects of the optimal control problem.

We note that the optimal control problem can be subsumed into the general framework of

network utility maximization (with unknown utility functions) [8, 23, 24] or reinforcement learning

[12–14]. However, the methods therein can also only achieve Ω(
√
𝑇)-regret since they cannot

leverage the structure of the optimal control problem. We refer the reader to Section 4 for further

discussion.

The rest of the paper is organized as follows: we formally present the model and formulation of

the optimal control problem in Section 2. In Section 3, we introduce several key preliminary results

for the optimal control problem. In Section 4, we will give an overview of our main results and

provide discussion on related results in the literature. We propose our control policy in Section 5,

and the learning algorithm and the joint learning and control policy in Section 6. In Section 7, we

conduct empirical evaluation on our policy. Finally, we conclude the paper in Section 8.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:4 Xinzhe Fu and Eytan Modiano

2 MODEL AND PROBLEM FORMULATION
Consider a bipartite network G(U,S) that operates in discrete time with 𝑁 job dispatchers

{𝑢1, . . . , 𝑢𝑁 } and𝑀 parallel servers {𝑠1, . . . , 𝑠𝑀 } (see Figure 1). The job dispatchers are controlled
by a single decision maker. Dispatcher 𝑢𝑛 is connected to a set of servers S𝑛 . Server 𝑠𝑚 is connected

to a set of job dispatchers U𝑚 . We will also sometimes use 𝑛 to represent a generic dispatcher

and𝑚 to represent a generic server. At each time slot 𝑡 , 𝑎𝑛 (𝑡) unit-size jobs arrive at dispatcher
𝑢𝑛 . The arrivals 𝑎𝑛 (𝑡)’s are independent random variables with unknown means (arrival rates)

E[𝑎𝑛 (𝑡)] = 𝜆𝑛 . Each dispatcher sends its incoming jobs to servers to which it is connected. Each

server has a buffer that stores incoming jobs. For server 𝑠𝑚 , its offered service at time 𝑡 is denoted

by 𝑐𝑚 (𝑡), with 𝑐𝑚 (𝑡)’s being independent random variables with unknown mean (service rate)

E[𝑐𝑚 (𝑡)] = 𝜇𝑚 . The offered service 𝑐𝑚 (𝑡) is equal to the number of jobs that 𝑠𝑚 can finish executing

at time 𝑡 . The arrival rates {𝜆𝑛} and the service rates {𝜇𝑚} will be referred to as the network

statistics. After a job 𝑗 from dispatcher 𝑢𝑛 finishes execution at server 𝑠𝑚 , we obtain and observe a

random utility 𝑣𝑛𝑚 (𝑗) with an unknown mean E[𝑣𝑛𝑚 (𝑗)] = 𝑣𝑛𝑚 , where 𝑣𝑛𝑚 is the underlying utility

associated with server 𝑠𝑚 for dispatcher 𝑢𝑛 . Each 𝑣𝑛𝑚 (𝑗) is a 1-sub-Gaussian random variable
1
and

𝑣𝑛𝑚 (𝑗)’s for different jobs are independent. Note that the underlying utilities 𝑣𝑛𝑚’s are unknown,
and that we can only observe 𝑣𝑛𝑚 (𝑗)’s. We assume that the realized arrivals and offered service

rates, i.e., 𝑎𝑛 (𝑡)’s, 𝑐𝑚 (𝑡)’s are all bounded by a constant 𝐶 almost surely. Finally, let 𝑎𝑛𝑚 (𝑡) be the
number of jobs from dispatcher 𝑢𝑛 sent to server 𝑠𝑚 at time 𝑡 by the job dispatcher and 𝑄𝑚 (𝑡)
be the queue length of server𝑚 at time 𝑡 . The evolution of queue length can be written with the

Lindley recursion: 𝑄𝑚 (𝑡 + 1) :=
[
𝑄𝑚 (𝑡) +∑

𝑛∈U𝑚
𝑎𝑛𝑚 (𝑡) − 𝑐𝑚 (𝑡)

]+
, where [·]+ = max{·, 0}.

Our goal is to design a control policy that makes routing decisions at the dispatchers(i.e. sending

each incoming job to a server) and scheduling decisions at the servers (i.e. deciding which jobs

to serve) such that the expected utility obtained by the end of the time horizon 𝑇 is maximized.

To make the problem concrete, we first define the expected utility of a generic policy 𝜋 . Let 𝐶𝜋𝑛𝑚
be the total number of jobs from dispatcher 𝑢𝑛 completed at server 𝑠𝑚 by the end of the time

horizon. Note that 𝐶𝜋𝑛𝑚 is a random variable. As the noise associated with the utility of each job is

independent, the expected total utility obtained under 𝜋 is 𝑈 (𝜋) = ∑𝑁
𝑛=1

∑𝑀
𝑚=1 𝑣𝑛𝑚E[𝐶𝜋𝑛𝑚]. Also,

note that only the jobs that are completed by 𝑇 contribute to the total utility while the jobs that

are left in the queue at the end of the time horizon 𝑇 do not count towards the total utility. Let Π
be the set of all policies, including the ones that have knowledge of the underlying utilities {𝑣𝑛𝑚},
the network statistics, and the realizations of arrivals and services over the whole time horizon.

The optimal dynamic policy 𝜋∗
is the best policy in Π, i.e., 𝜋∗ = argmax𝜋 ′∈Π𝑈 (𝜋 ′). Note that the

optimal dynamic policy is typically inadmissible in the optimal control problem as it can make

decisions based on information that is not available in the problem setting. We define the regret of

a policy 𝜋 as 𝑅(𝜋) = 𝑈 (𝜋∗) −𝑈 (𝜋), i.e., the gap between the expected utility of 𝜋 and the optimal

dynamic policy. In this paper, we pursue admissible policies that make decisions only based on

observable information without prior knowledge of the network statistics or the underlying utilities

with low regret. We will refer to the problem as the Optimal Control Problem.

3 PRELIMINARIES
In this section, we introduce several key preliminary results. We start by presenting a static linear

program as fluid version of the optimal control problem. Based on the linear program, we first

give an upper bound on the expected utility of the optimal dynamic policy, and then set up the

1
A random variable 𝑋 is 1-sub-Gaussian if P{ |𝑋 − E[𝑋] | ≥ 𝑡 } ≤ 2 exp(− 𝑡2

2
) , i.e., its tail is dominated by a Gaussian

distribution with variance 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:5

instance-dependent conditions on the network statistics that will be assumed throughout the paper.

Finally, we establish several structural properties of the extreme points of the linear program.

3.1 The Static Linear Program
Consider the following linear program P.

P : max

{𝑟𝑚𝑛 }

𝑁∑
𝑛=1

∑
𝑚∈S𝑛

𝑣𝑛𝑚𝑟𝑛𝑚 (1)

s.t.
∑
𝑚∈S𝑛

𝑟𝑛𝑚 = 𝜆𝑛, (2)∑
𝑛:𝑠𝑚 ∈S𝑛

𝑟𝑛𝑚 ≤ 𝜇𝑚 . (3)

𝑟𝑛𝑚 ≥ 0. (4)

The linear program P can be interpreted as a fluid version of the optimal control problem, where

𝑟𝑛𝑚 represents the rate of jobs from dispatcher 𝑢𝑛 completed at server 𝑠𝑚 . Let 𝑂𝑃𝑇 (P) be the

optimal value of P. Using the same argument as in [23], we have the following proposition. Similar

results that upper-bound the value of a stochastic dynamic program with its fluid counterpart have

appeared in other works on online decision problems, e.g. [25, 26].

Proposition 1. The expected utility of the optimal dynamic policy is upper bounded by𝑇 ·𝑂𝑃𝑇 (P),
i.e.,𝑈 (𝜋∗) ≤ 𝑇 ·𝑂𝑃𝑇 (P).

From Proposition 1, we see that if our policy can obtain an expected utility close to 𝑇 ·𝑂𝑃𝑇 (P),
then it will achieve low regret. We can thus approach the optimal control problem through learning

the solution to P while making routing decisions based on the learned solution.

3.2 Structure of the Extreme Points
We now briefly recall some standard definitions from the linear programming literature [29] that

will be useful in the proceeding discussion. The definitions are most conveniently stated for a linear

program in standard form: min𝒙 𝒄T𝒙 s.t. 𝑨𝒙 = 𝒃, 𝒙 ≥ 0, with 𝑨 ∈ R𝑚×𝑛,𝑚 ≤ 𝑛, the feasibility

region D = {𝒙 | 𝑨𝒙 = 𝒃, 𝒙 ≥ 0} is a polyhedron. Let 𝒙∗
be an optimal solution and E be the set of

all extreme points of the polyhedron D, which is equivalently the set of all basic feasible solutions

of the linear program. Without loss of generality, assuming 𝐴 has𝑚 linearly-independent rows,

each basic solution is characterized by a basis 𝑩 = [𝐴𝐵 (1) , . . . 𝐴𝐵 (𝑚)], where 𝐴𝐵 (1) , . . . , 𝐴𝐵 (𝑚) are
𝑚 linearly-independent columns of 𝑨 with 𝐵(1), . . . , 𝐵(𝑚) being the indices of the columns. For a

generic vector 𝒙 , we write 𝒙𝑩 as the coordinates of 𝒙 corresponding to indices 𝐵(1), . . . , 𝐵(𝑚). A
basis is feasible if and only if 𝑩−1𝒃 ≥ 0. Write (𝑩−1𝒃)𝑖 as the 𝑖-th component of 𝑩−1𝒃 . A basis 𝑩 is

Δ-feasible if min𝑖:(𝑩−1𝒃)𝑖>0 (𝑩−1𝒃)𝑖 ≥ Δ, i.e., the minimum positive basis variable is greater than Δ.
A basis 𝑩 is Δ-infeasible if max𝑖:(𝑩−1𝒃)𝑖<0 (𝑩−1𝒃)𝑖 ≤ −Δ, i.e., the maximum negative basis variable is

smaller than -Δ.
Each basic feasible solution is characterized by a feasible basis, i.e.,

E = {𝒙 | 𝑥𝑩 = 𝑩−1𝒃 ≥ 0, for some 𝑩 = [𝐴𝐵 (1) , . . . 𝐴𝐵 (𝑚)], 𝑥𝑖 = 0 for 𝑖 ∉ {𝐵(1), . . . , 𝐵(𝑚)}}

If the feasibility regionD is bounded, then there exists an optimal solution 𝒙∗
that is a basic feasible

solution or equivalently, an extreme point (i.e., 𝒙∗ ∈ E). We will write 𝑩∗
as the basis associated

with 𝒙∗
. Following the standard definition in the linear programming literature [29], we say an

extreme point 𝒙 with basis 𝐵 is non-degenerate if 𝒙𝐵 > 0 component-wise.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:6 Xinzhe Fu and Eytan Modiano

Back to the static linear program P of the optimal control problem, we can write P in standard

form as the following.

P : max

{𝑟𝑛𝑚,𝑦𝑚 }

𝑁∑
𝑛=1

∑
𝑚∈S𝑛

𝑣𝑛𝑚𝑟𝑛𝑚

s.t.
∑
𝑚∈S𝑛

𝑟𝑛𝑚 = 𝜆𝑛,∑
𝑛:𝑠𝑚 ∈S𝑛

𝑟𝑛𝑚 + 𝑦𝑚 = 𝜇𝑚 .

𝑟𝑛𝑚, 𝑦𝑚 ≥ 0.

Here, the matrix𝑨 and vector 𝒃 are formed by the constraints

∑
𝑚∈S𝑢𝑛

𝑟𝑛𝑚 = 𝜆𝑛 and
∑
𝑛:𝑠𝑚 ∈S𝑢𝑛

𝑟𝑛𝑚+
𝑦𝑚 = 𝜇𝑚 and the optimization vector 𝒙 is formed by {𝑟𝑛𝑚}, {𝑦𝑚}. Compared to the original form of

P, in the standard form we introduce slack variables {𝑦𝑚} to replace inequality constraints with

equality constraints. The slack variables essentially capture the difference between the service rates

and the total rates of incoming jobs.

Let 𝒙 = {𝑟𝑛𝑚, 𝑦𝑚} be an extreme point of P in standard form. Under the extreme point, we

define 𝑠𝑚 to be an idle server if 𝑟𝑛𝑚 = 0 for all 𝑢𝑛 ∈ U𝑚 and 𝑠𝑚 to be a slack server if 𝑦𝑚 > 0.

For a dispatcher 𝑢𝑛 and server 𝑠𝑚 that are connected, we say that the link between 𝑢𝑛 and 𝑠𝑚 is

essential, if 𝑟𝑛𝑚 > 0. In Proposition 2, we show that each extreme point induces a spanning forest

of G. Similar results and extreme point structure have also been applied in heavy traffic analysis

of stochastic queueing networks [30, 31]. The proof relies on standard techniques for analyzing

linear programs related to network flow. We give the proof in Appendix A for completeness.

Proposition 2. Under any extreme point {𝑟𝑛𝑚, 𝑦𝑚}, the subgraph induced by essential links and
idle servers form a spanning forest of the bipartite network G. Each tree in the spanning forest contains
at most one slack server. Furthermore, if the extreme point is non-degenerate, then each tree contains
exactly one slack server.

To give an example of Proposition 2, consider the network shown in Figure 3(a) with the essential

links of an extreme point marked in red. The values of the {𝑟𝑛𝑚} variables are labeled besides the

links. In this example, the extreme point is non-degenerate and the only slack server is 𝑠4 (with

𝑦4 = 2). The spanning forest induced by the extreme point has two trees: one is a trivial tree only

consisting of the idle server 𝑠2, and the other is shown in Figure 3(b).

3.3 Conditions on Network Statistics
We define the following two conditions.

• Condition 1: Δ1
:= min𝒙∈E,𝒙≠𝒙∗ 𝒄T𝒙 − 𝒄T𝒙∗ > 0 is a constant independent of 𝑇 .

• Condition 2: the optimal extreme point is non-degenerate, and every basis is either Δ2-feasible

or Δ2-infeasible with Δ2 > 0 being a constant independent of 𝑇 .

Using the terminology of the online learning literature [11], Δ1 and Δ2 can be viewed as the

“instance-dependent” parameters, where Δ1 denotes the gap between the optimal and the second

best extreme point, and Δ2 represents the minimum absolute value of the non-zero basis variables.

Note that under Condition 2, as the optimal extreme point is feasible and non-degenerate, all of its

basis variables are non-zero, and larger than or equal to Δ2. Using the structure of extreme points

defined in Proposition 2, condition 2 means that for each extreme point (basic feasible solution),

the rates of jobs on essential links are at least Δ2 and the one slack server has at least Δ2 of extra

capacity (𝑦𝑚 ≥ Δ2). For each infeasible basic solution, the rates of jobs on essential links are at least

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:7

Δ2 and the servers with arrival greater than service have 𝑦𝑚 ≤ −Δ2 (which is what makes the basic

solution infeasible).

For the rest of the paper, we will assume that conditions 1 and 2 hold, and focus on analyzing

instance-dependent regret (with Δ1,Δ2 being the instance-dependent parameters), where the

instance of the optimal control problem is fixed and we study the scaling of the regret with respect

to the time horizon 𝑇 . Note that existing lower bounds on stochastic linear optimization [11, 17]

establishes that only in the instance-dependent case can one hope to achieve logarithmic regret,

otherwise, it is impossible to have a policy with regret better than Ω(
√
𝑇).

The standard form of P was introduced to facilitate the definitions related to the extreme points.

For consistency of notations, in what follows we will focus on the original form of P (instead of

the standard form) and use vector 𝒓 or {𝑟𝑛𝑚} to represent a generic feasible solution to P.

4 OVERVIEW AND DISCUSSION OF RESULTS
In this section, we give an overview of our main results and discuss their relation to previous works

in the literature.

4.1 Overview of Results
Proposition 1 shows that solving the optimal control problem boils down to learning the solution

to P in the context of stochastic queueing networks and making routing and scheduling decisions

based on the learned solution. Therefore, we can break down the optimal control problem into

two logical components: the learning algorithm and the control policy. The learning algorithm

(approximately) solves P using the feedback available in the optimal control problem. The control

policy makes routing and scheduling decisions based on the solution provided by the learning

algorithm. Note that the two logical components are anything but disjoint. They must be integrated

as a joint policy as the learning algorithm updates its solution based on the utility observations,

the dynamics of which is determined by the control policy, while the control policy relies on the

solution fed by the learning algorithm.

For the control policy, we propose one that relies on the extreme point of P as input. It relies on

the graphical structure, or more specifically, the spanning forest induced by the extreme point rather

than the value of the extreme point. This makes it robust to the errors in the solution provided by the

learning algorithm. We will show that, given the optimal extreme point, our control policy achieves

logarithmic regret. The control policy is a mixture of threshold-based join-the-shortest-queue

routing and priority-based routing at the dispatchers, and priority-based scheduling at the servers,

with the priority defined by the structure of the forest. More details will be given in Section 5.

The learning algorithm and the joint policy that integrates the learning algorithm and the routing

policy will be presented in Section 6. We adapt the algorithm for stochastic linear optimization

with bandit feedback proposed in [17] to learn the solution to P. The algorithm from [17] cannot

be directly applied here due to the unknown feasibility region of P (which is parameterized by the

unknown network statistics) and the feedback delay. More details will be given regarding these

two challenges in Section 6. We will adapt the algorithm from [17] and combine it with our control

policy to form a joint learning and control policy and show that it achieves logarithmic regret for

the optimal control problem.

4.2 Discussion
In this section, we review related results in the literature and discuss how they fall short of achieving

logarithmic regret for the optimal control problem, which will also highlight the novelty of our

results on learning in stochastic queueing networks.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:8 Xinzhe Fu and Eytan Modiano

4.2.1 Online Learning and Online DecisionMaking. Aswe have mentioned, there has been extensive

effort in the field of online learning/online decision making dedicated to optimization problems

with unknown utility functions with feedback given through (zero-order) oracle on function values

[9, 17, 25–27]. Due to the unknown constraints and feedback delay, those algorithms cannot be

directly applied to learn the optimal extreme point of P. More importantly, as those works study

a pure optimization problem, they are not concerned with the networking aspect of the optimal

control problem, i.e., how to translate the learned solution to an effective control policy and how the

control policy affects the learning process. Note that many works in the online learning literature

consider adversarial objective functions that are time varying [32], which is more general than the

fixed utilities we consider in the optimal control problem. However, that generality does not help

as their settings still do not involve stochastic queueing dynamics.

4.2.2 Network Utility Maximization. The optimal control problem can be considered as a problem

of network utility maximization with (unknown) linear utility function. Although results for general

network utility maximization problems [8, 19, 20, 23, 24, 28] can be used to derive viable policies for

the optimal control problem, we will justify in the following that those policies will only achieve

Ω(
√
𝑇)-regret, which is strictly worse than the logarithmic regret achieved by our policy.

Consider the simple network with one dispatcher and two servers in Figure 2. Since 𝑣11 = 6 >

𝑣12 = 5, the optimal solution is 𝑟 ∗
11

= 5, 𝑟 ∗
12

= 2, and the network statistics satisfy conditions 1 and 2

with Δ1 = Δ2 = 3. We first consider a simplistic case where the optimal solution is given and we

only need a good control policy to achieve low regret. A simple idea is to use a static randomized

routing policy parameterized by the optimal solution combined with an arbitrary scheduling policy.

For example, a valid static policy based on {𝑟 ∗} is one that at each time sends the incoming jobs to

𝑠1 with probability
5

7
and to 𝑠2 with probability

2

7
while the servers serve the jobs in an arbitrary

order. This policy seems natural, but it has a utility gap of Ω(
√
𝑇), which is defined as the difference

between the expected utility achieved by the policy and𝑇 times the value of the solution 𝒓∗, and this
will lead to Ω(

√
𝑇)-regret. The reason is that the queue of 𝑠1 is critically loaded, which will result

in E[𝑄1 (𝑇)] = Ω(
√
𝑇) and cause a Ω(

√
𝑇)-loss of utility2. This is by no means specific to the static

randomized policy considered in the example, as we will formally show in Appendix B that any

static policy that makes routing decisions independently over time has a regret of Ω(
√
𝑇), which is

inferior to the logarithmic regret that our policy achieves. As existing works on network utility

maximization use variants of Max-Weight policies which are derived from minimizing certain

quadratic Lyapunov function that seek to converge to the optimal static policy, they also cannot

achieve a regret better than Ω(
√
𝑇) [19]. It follows that the network control component alone is

already non-trivial. Furthermore, when we bring the problem of learning the optimal solution back

into the picture, we see that to achieve logarithmic regret, the control policy cannot rely on the

values of the solution. Since both the objective function and the feasibility region of the static

linear program P are unknown, existing lower bounds [11, 17] establish that it is impossible to

obtain the solution to P within an error smaller than Θ(1√
𝑇
) after 𝑇 time slots. For example, in the

aforementioned case (Figure 2), no learning algorithm can obtain the exact values of 𝑟 ∗
11

= 5, 𝑟 ∗
12

= 2

but at best 𝑟 ∗
11

≃ 5 ± Θ(1√
𝑇
), 𝑟 ∗

12
≃ 2 ± Θ(1√

𝑇
). Therefore, relying on the values of the solution will

inevitably lead to Ω(
√
𝑇)-regret. To achieve logarithmic regret, we have to rely on some structure

of the solutions that is robust against the error.

4.2.3 Reinforcement Learning. The optimal control problem can be formulated as aMarkov decision

process with unknown parameters. Therefore, reinforcement learning techniques can also be applied.

2
This follows because the queue length of a critically loaded queue grows at the order of Θ(

√
𝑇) with time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:9

However, none of the existing results on reinforcement learning can be shown to achieve a regret

better than𝑂 (
√
𝑇) [12–16]. Due to the generality of the reinforcement learning framework, results

therein cannot exploit the structure of the optimal control problem.

5 THE DUAL-LEVEL JSQ-𝐾 POLICY
In this section, we introduce the control policy for the optimal control problem, which we call

the Dual-Level JSQ-𝐾 policy. At the dispatchers, it makes routing decisions based on the priority

levels defined on the forest induced by the extreme point in a Join-the-Shortest-Queue fashion

with queue length threshold 𝐾 . At the servers, it makes priority-based scheduling decisions also

based on the priority levels defined on the forest. In what follows, we first introduce the priority

levels of extreme points, and then present the details and performance analysis of the Dual-Level

JSQ-𝐾 policy.

5.1 Priority Levels Induced by Extreme Point
Given an extreme point of the linear program P, we associate a priority level with each server and

dispatcher as follows. For a tree in the spanning forest induced by the extreme point, if there is a

slack server in the tree, then we designate the slack server as the root, otherwise, we designate an

arbitrary server in the tree as the root. Based on the designated root, we essentially give each tree

an orientation. For each node in the tree, we define its priority level as its distance to the root in the

tree. For example, the root server has priority level 0, and the job dispatchers that are immediately

connected to the root server in the tree have priority level 1. From these definition, we have the

following observations:

• For a dispatcher of level ℎ, it is connected to exactly one server of level ℎ − 1. If the dispatcher

is not a leaf node, it is also connected to at least one server of level ℎ + 1. We will refer to the

level ℎ − 1 server as the secondary server of the dispatcher, and the level ℎ + 1 server(s) as

the primary server(s) of the dispatcher.

• For a server of level ℎ ≠ 0, it is connected to exactly one dispatcher of level ℎ − 1. If the server

is not a leaf node, it is also connected to at least one dispatcher of level ℎ + 1. We will refer

to the level ℎ − 1 dispatcher as the secondary dispatcher of the server, and the level ℎ + 1

dispatcher(s) as the primary dispatcher(s) of the server.

• If a server 𝑠𝑚 is a primary server of a dispatcher 𝑢𝑛 , then the dispatcher 𝑢𝑛 is the (only)

secondary dispatcher of the server 𝑠𝑚 . Similarly, if 𝑠𝑚 is the secondary server of a dispatcher

𝑢𝑛 , then 𝑢𝑛 is a primary dispatcher of 𝑠𝑚 .

5.2 The Control Policy
We now present the details of the dual-level JSQ-𝐾 policy, which we will often abbreviate as the

JSQ-𝐾 policy. The JSQ-𝐾 policy is parameterized by a threshold parameter 𝐾 whose value will be

set later. For a given extreme point 𝒓 , the JSQ-𝐾 policy is structured based on the spanning forest

induced by 𝒓 .
Scheduling: The queue of each server 𝑠𝑚 is partitioned into two virtual queues 𝑄ℎ𝑚 and 𝑄𝑙𝑚 .

Under an extreme point, the virtual queue 𝑄ℎ𝑚 is the high-priority queue that holds the jobs from

the primary dispatchers of the server while the virtual queue 𝑄𝑙𝑚 is the low-priority queue that

holds the jobs from the secondary dispatcher of the server. As an example, the virtual queueing

architecture corresponding to the extreme point in the example of Figure 3(a) is shown in Figure

3(b). For each server, the scheduling policy is to gives priority service to the jobs in its high-priority

queue and only serves the jobs in its low-priority queue if its high-priority queue is empty.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:10 Xinzhe Fu and Eytan Modiano

2u

3u

1s

2s

3s

4s

4u

4

4

4

7

7

7

7

4

1

5u

1u2

1

2

2

4

5
5

(a)

3s

2u

1s

1u

4

4

1

2

2
3
lQ 1

lQ

1
hQ

5u
4
hQ

4s

3u

4u

441

4 25

5
3
hQ

(b)

Fig. 3. Illustration of the priority levels and the virtual queue architecture induced by an extreme point.

Routing: For each dispatcher𝑢𝑛 that is connected to its primary servers𝑚1, . . . ,𝑚𝐿 and secondary

server𝑚0, it first checks if any of its primary servers have low-priority queue with length no larger

than the threshold𝐾 . If so, then it sends the jobs to the primary server with the smallest low-priority

queue length. Otherwise, it then checks if the high-priority queue of its secondary server is no

larger than 𝐾 . If so, it sends the incoming jobs to its secondary server. If all the low-priority queues

of𝑚1, . . . ,𝑚𝐿 and the priority queue of𝑚0 are greater than 𝐾 , then the dispatcher discards the

incoming jobs
3
. The pseudo-code of the JSQ-𝐾 policy is shown in Algorithm 1.

To give a concrete example, consider the extreme point in Figure 3(b). On the server side, the

priority queue of server 𝑠1 receives jobs from dispatchers 𝑢1 and 𝑢2. The low-priority queue of

𝑠1 receives jobs from 𝑢3. The high-priority queue of 𝑠3 receives jobs from 𝑢4 and the low-priority

queue of 𝑠3 receives jobs from 𝑢3. The high-priority queue of 𝑠4 receives jobs from 𝑢3 and 𝑢5. On the

dispatcher side, both 𝑢1 and 𝑢2 only sends jobs to 𝑠1 when 𝑄
ℎ
1
≤ 𝐾 , and discard the incoming jobs

otherwise. Dispatcher 𝑢4 sends jobs to 𝑠3 when 𝑄
ℎ
3
≤ 𝐾 and discard the incoming jobs otherwise.

Dispatcher 𝑢3 sends jobs to the shorter of 𝑄𝑙
1
, 𝑄𝑙

3
when at least one of them is no larger than 𝐾 ,

otherwise 𝑢3 sends jobs to 𝑠4 when 𝑄
ℎ
4
≤ 𝐾 . When 𝑄𝑙

1
, 𝑄𝑙

3
, 𝑄ℎ

4
are all greater than 𝐾 , 𝑢3 discards

the incoming jobs. Dispatcher 𝑢5 sends jobs to 𝑠4 when 𝑄
ℎ
4
≤ 𝐾 , and discards the incoming jobs

otherwise.

5.3 Analysis
We first show the claim that given the optimal extreme point, the JSQ-𝐾 policy achieves logarithmic

regret. The claim will follow from Theorem 1, which establishes a more general statement: given

any non-degenerate extreme point 𝒓 , the difference between the total utility achieved by the JSQ-𝐾

policy given 𝒓 as input and 𝑇 · 𝑈 (𝒓) is in 𝑂 (log𝑇), where 𝑈 (𝒓) = ∑
𝑛,𝑚 𝑣𝑛𝑚𝑟𝑛𝑚 is the value of 𝒓

with respect to the objective function of P. Combining Proposition 1 and Condition 2, we have

that the optimal extreme point is non-degenerate. Hence, we have that Theorem 1 implies the claim

that the JSQ-𝐾 policy achieves logarithmic regret if given the optimal extreme point.

Theorem 1. For any non-degenerate extreme point 𝒓 , the total expected utility achieved by the JSQ-𝐾
policy based on the spanning forest induced by 𝒓 with 𝐾 = 𝑂 (log𝑇) is at least 𝑇 ·𝑈 (𝒓) −𝑂 (log𝑇).

3
The policy would still work if the dispatcher makes an arbitrary routing decision in this case. We present the job-discarding

version for convenience of analysis.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:11

Algorithm 1 The Dual-Level JSQ-𝐾 Policy

Input: Parameter 𝐾

1: Initialize: 𝑄ℎ𝑚 (0) = 0, 𝑄𝑙𝑚 (0) = 0 for each𝑚.

2: for 𝑡 = 0, 1, . . . , do
3: for each server 𝑠𝑚 do
4: Gives priority service to jobs in 𝑄ℎ𝑚 (𝑡).
5: for each dispatcher 𝑢𝑛 with primary servers𝑚1, . . .𝑚𝑙 and secondary server𝑚0 do
6: if there exists 𝑖 ∈ {1, . . . , 𝐿} with 𝑄𝑙𝑚𝑖

(𝑡) ≤ 𝐾 then
7: 𝑖∗ := argmin𝑖∈{1,...,𝐿}𝑄

𝑙
𝑚𝑖

(𝑡).
8: Send the jobs from 𝑢𝑛 to 𝑄

𝑙
𝑚𝑖∗

. 𝑎𝑛𝑚𝑖∗ (𝑡) = 𝑎𝑛 (𝑡).
9: else if 𝑄ℎ𝑚0

(𝑡) ≤ 𝐾 then
10: Send the jobs from 𝑢𝑛 to 𝑄

ℎ
𝑚0

. 𝑎𝑛𝑚0
(𝑡) = 𝑎𝑛 (𝑡).

11: 𝑎𝑛𝑚 (𝑡) := 0 for all other servers𝑚.

12: Update 𝑄ℎ𝑚 (𝑡), 𝑄𝑙𝑚 (𝑡) for each𝑚.

Due to the space limitations, we give the overall structure and the intuition of the proof here.

The proof details are deferred to Appendix C.
The proof of Theorem 1 consists of proving two claims for each node in the spanning forest.

Under a policy 𝜋 , we define the random variable 𝑐𝜋𝑛𝑚 (𝑡) as the number of jobs from dispatcher

𝑢𝑛 completed at server 𝑠𝑚 at time 𝑡 . In the proof, we will omit the superscript 𝜋 as it will always

refer to the JSQ-𝐾 policy. Consider a non-degenerate extreme point 𝒓 . The extreme point induces a

spanning forest of G. We consider an arbitrary tree in the spanning forest with 𝐻 + 1 priority levels

0, . . . , 𝐻 . We will establish two claims for each dispatcher and two claims or each server. More

specifically, define 𝜖ℎ = 1

[4(𝑀+𝑁)]𝐻−ℎ for ℎ = 1, . . . , 𝐻 and𝐶1 =
4(𝑀+𝑁)

Δ2

. Set 𝐾 = 8(4(𝑀 +𝑁))𝐻 log𝑇 .

For each dispatcher 𝑢𝑛 at level 𝐻 − ℎ with primary servers𝑚1, . . . ,𝑚𝐿 and secondary server𝑚0,

we establish the following two claims:

Claim (1.1): Starting from 𝑡 = 𝐶1ℎ ln𝑇 , the probability that there exists a primary server of 𝑢𝑛
with queue length (high-priority queue plus low-priority queue) smaller than (1 − 𝜖ℎ)𝐾 is small,

i.e.,

∑𝑇
𝑡=𝐶1ℎ ln𝑇

P[∃𝑖 = 1, . . . , 𝐿,𝑄ℎ𝑚𝑖
(𝑡) +𝑄𝑙𝑚𝑖

(𝑡) ≤ (1 − 𝜖ℎ)𝐾] = 𝑂 (1
𝑇
).

Claim (1.2): The expected total completed service from 𝑢𝑛 at each of the primary server𝑚 is

close to 𝑇 · 𝑟𝑛𝑚 , i.e., for each 𝑖 = 1, . . . , 𝐿, 𝑇𝑟𝑛𝑚𝑖
−𝑂 (log𝑇) ≤ ∑𝑇

𝑡=1 E[𝑐𝑛𝑚𝑖
(𝑡)] ≤ 𝑇𝑟𝑛𝑚𝑖

+𝑂 (log𝑇).
For each server 𝑠𝑚 (of priority level 𝐻 − ℎ) with primary dispatchers 𝑛1, . . . , 𝑛𝐿 and secondary

dispatcher 𝑛0, we establish the following two claims

Claim (2.1): Starting from 𝑡 = 𝐶1ℎ ln𝑇 , the probability that the high-priority queue of 𝑠𝑚 grows

over 𝜖ℎ𝐾 is small, i.e.,

∑𝑇
𝑡=𝐶1ℎ ln𝑇

P[𝑄ℎ𝑚 (𝑡) ≥ 𝜖ℎ𝐾] = 𝑂 (1
𝑇
).

Claim (2.2): The expected total completed service at 𝑠𝑚 from each of its primary dispatcher 𝑢𝑛 is

close to 𝑇 · 𝑟𝑛𝑚 , i.e., for each 𝑖 = 1, . . . , 𝐿, 𝑇𝑟𝑛𝑖𝑚 −𝑂 (log𝑇) ≤ ∑𝑇
𝑡=1 E[𝑐𝑛𝑖𝑚 (𝑡)] ≤ 𝑇𝑟𝑛𝑖𝑚 +𝑂 (log𝑇).

Note that the constant 𝜖ℎ decreases as the level of the node increases (going from the root to leaf

nodes). Claim (1.1) shows that for each server𝑚𝑖 that is not the root (slack) server, its queue length

rarely goes below (1 − 𝜖ℎ)𝐾 after 𝑂 (log𝑇) time slots, which implies that it is almost never idle.

This also implies that non-slack servers are fully utilized. Claim (2.1) shows that for each server, its

high-priority queue is rarely greater than 𝜖ℎ𝐾 with 𝜖ℎ < 1. This implies that dispatchers almost

never drop the incoming jobs since the high-priority queue of their secondary server is almost

always smaller than 𝐾 . Claims (1.1) and (2.1) are intermediate steps that are instrumental in proving

Claims (1.2) and (2.2). After having proved Claim (1.2) for each dispatcher in the tree and Claim

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:12 Xinzhe Fu and Eytan Modiano

(2.2) for each server in the tree, it will follow that the difference between the total expected utility

obtained under the policy and 𝑇 ·𝑈 (𝒓) is 𝑂 (log𝑇), which will imply Theorem 1.

The proof of the claims with respect to each node in the tree is done via an induction framework.

Structure of the Induction: For each tree in the spanning forest, the base step of the induction

deals with the nodes at level 𝐻 − 1 (parents of the leaf nodes). The base step starts from nodes

at level 𝐻 − 1 instead of nodes at level 𝐻 because nodes at level 𝐻 (the leaf nodes) do not have

any children and thus their corresponding claims trivially hold. Depending on whether the nodes

are servers or dispatchers, the base step can be divided into two cases. In the first case, the nodes

at level 𝐻 − 1 are dispatchers (and the leaf nodes are servers) and we need to prove Claim (1.1)

and Claim (1.2) for each dispatcher at level 𝐻 − 1. In the second case, the nodes at level 𝐻 − 1 are

servers (and the leaf nodes are dispatchers) and we need to prove Claim (2.1) and Claim (2.2) for

each server at level 𝐻 − 1. Proceeding from the base step, the induction step works by proving for

each node in the tree Claims (1.1), (1.2) if the node is a dispatcher, and Claims (2.1), (2.2) if the node

is a server, assuming the induction hypothesis that Claims (1.1), (1.2) hold for all the dispatchers,

and Claims (2.1), (2.2) hold for all the servers in the subtree rooted at the node. When completing

the induction, we will have proved the corresponding claims of each node in the forest.

Intuition Behind the Claims: Now we give the intuition behind why the claims hold. The

details of establishing the claims are deferred to Appendix C. We first give the main intuition

behind Claims (1.1) and (1.2). Consider a dispatcher 𝑢𝑛 whose primary servers𝑚1, . . . ,𝑚𝐿 are the

leaf nodes of the tree and secondary server is𝑚0. For Claim (1.2), note that in this case 𝑟𝑛𝑚𝑖
= 𝜇𝑚𝑖

.

Therefore, the upper bound of

∑𝑇
𝑡=1 E[𝑐𝑛𝑚𝑖

(𝑡)] is straightforward. While for the lower bound, since

each primary server only receives jobs from 𝑢𝑛 , we need to show that the cumulative idleness in

each of the servers𝑚1, . . . ,𝑚𝐿 is in 𝑂 (log𝑇), which will essentially follow from Claim (1.1). For

Claim (1.1), note that if we consider servers𝑚1, . . . ,𝑚𝐿 as a set, as long as one of the servers have

queue length smaller than 𝐾 , the incoming jobs from 𝑢𝑛 (which is of rate 𝜆𝑛) are sent to the set

while the total service rate of the set is

∑𝐿
𝑖=1 𝜇𝑖 . By the constraint satisfied by the extreme point,

𝜆𝑛 −
∑𝐿
𝑖=1 𝜇𝑖 = 𝑟𝑛𝑚0

> 0. Therefore, the total queue lengths of the set tend to have positive drift

when the queues are not too large, from which Claim (1.1) can be derived. When proving Claims

(1.1) and (1.2) for a dispatcher higher up in the tree (i.e. the induction steps), the key ideas are

the same but the drift arguments are more challenging to construct since the queueing dynamics

will be influenced by the servers and dispatchers of higher priorities (that are descendents of the

dispatcher in the tree).

For the main intuition behind Claims (2.1) and (2.2), consider a server 𝑠𝑚 whose primary dis-

patchers 𝑛1, . . . , 𝑛𝐿 are the leaf nodes and secondary dispatcher is 𝑛0. In this case 𝑟𝑛𝑖𝑚 = 𝜆𝑛𝑖 . Hence

for Claim (2.2) the upper bound on

∑𝑇
𝑡=1 E[𝑐𝑛𝑖𝑚 (𝑡)] is straightforward. For the lower bound, since

each dispatcher 𝑛1, . . . , 𝑛𝐿 only sends jobs to 𝑠𝑚 , we need to show that the queue length of 𝑠𝑚 and

the total number of jobs discarded are in 𝑂 (log𝑇). The queue length of 𝑠𝑚 is in 𝑂 (log𝑇) by design

as 𝐾 = 𝑂 (log𝑇). The total number of jobs discarded is the same order as the total probability of

𝑄ℎ𝑚 being greater than 𝐾 over the whole time horizon which will essentially follow from Claim

(2.1). For Claim (2.1), note that the total arrival rate to 𝑄ℎ𝑚 is at most

∑𝐿
𝑖=1 𝜆𝑛𝑖 , while the offered

service rate to 𝑄ℎ𝑚 (as it receives priority service) is 𝜇𝑚 as long as 𝑄ℎ𝑚 > 0. As by the constraint

satisfied by the extreme point, 𝜇𝑚 −∑𝐿
𝑖=1 𝜆𝑛𝑖 = 𝑟𝑛0𝑚 > 0, 𝑄ℎ𝑚 is a queue with negative drift, from

which Claim (2.1) can be derived. Again, when proving Claims (2.1) and (2.2) for a server higher

up in the tree (i.e. the induction steps), we use the same ideas but need to be more careful when

constructing the drift arguments.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:13

6 LEARNING ALGORITHM AND THE JOINT POLICY
In this section, we will first present our learning algorithm, which is an adaptation of the Confidence-

Ball algorithm proposed in [17]. Next, we integrate the learning algorithm with the JSQ-𝐾 policy

to form a joint policy and prove that it achieves logarithmic regret for the optimal control problem.

6.1 Learning Algorithm: The Confidence-Ball Algorithm
6.1.1 Stochastic Linear Optimization with Bandit Feedback. We start by briefly reviewing the result

of [17]. The work [17] studied the problem of stochastic linear optimization with bandit feedback.

Consider the linear optimization problem max𝒓 ∈𝐷 𝒗 · 𝒓 , where 𝐷 ∈ R𝑘 is the feasibility region that

is known in advance but 𝒗 is unknown. At every time 𝑡 , we choose a decision vector 𝒓𝑡 ∈ 𝐷 and

receives an observation 𝑙𝑡 = 𝒗 · 𝒓 + 𝜖𝑡 , where 𝜖𝑡 is a zero-mean noise with bounded variance. Let

the optimal solution be 𝒓∗ := argmax𝒓 ∈𝐷 𝒗 · 𝒓 . The goal is to design an algorithm that outputs a

sequence of decisions 𝒓1, . . . , 𝒓𝑇 such that the regret 𝑅𝑇 =
∑𝑇
𝑡=1 (𝒗 · 𝒓∗𝑡 − 𝒗 · 𝒓𝑡) is low.

The algorithm proposed by [17], the Confidence-Ball algorithm, achieves logarithmic regret for

stochastic linear optimization with bandit feedback. Before reviewing the details of the algorithm,

the following definitions are needed. For a vector𝝂 ∈ R𝑛 and a positive definite matrix𝐴 ∈ R𝑛×𝑛 , we
denote | |𝝂 | |1,𝐴 := | |𝐴1/2𝝂 | |1 =

∑𝑛
𝑖=1 |𝐴1/2𝝂 |𝑖 as the 1-norm based on𝐴. The details of the algorithm is

shown in Algorithm 2. The algorithm essentially works through estimating the vector 𝒗 from the

observations using a linear regression-like procedure. Note that if we are given (𝒓1, 𝑙1), . . . , (𝒓𝑡 , 𝑙𝑡),
the problem of estimating 𝒗 resembles the linear regression problem, where the estimate is given by

𝒗𝑡 := (∑𝑡
𝜏=1 𝒓𝜏 𝒓

′
𝜏)−1

∑𝑡
𝜏=1 𝑙𝜏 𝒓𝜏 . The Confidence-Ball algorithm essentially uses the same procedure,

where the matrix 𝐴𝑡 keeps track of

∑𝑡
𝜏=1 𝒓𝜏 𝒓

′
𝜏 but initialized with the Bary-centric spanner to make

sure that 𝐴𝑡 is invertible for 𝑡 = 1, . . . ,𝑇 . Instead of using the point estimate 𝑣𝑡 , the algorithm uses

the best 𝒗 in an ellipsoid (confidence-ball) around 𝑣𝑡 (Line 4) to solve for 𝒓𝑡 (Line 5). Note that as
pointed out in [17], when 𝐷 is a polyhedron, every 𝒓𝑡 can be solved to be an extreme point of 𝐷 .

Algorithm 2 The Confidence-Ball Algorithm

1: Initialization: Barycentric spanner 𝒃1, . . . , 𝒃𝑘 for 𝐷 ; 𝐴1 =
∑𝑘
𝑖=1 𝒃𝑖 · 𝒃 ′𝑖 ; 𝒗1 = 0.

2: for 𝑡 = 1, . . . ,𝑇 do
3: 𝛽𝑇 = 512𝑘 ln2𝑇 .

4: 𝐵1
𝑇
= {𝝂 : | |𝝂 − 𝒗𝑡 | |1,𝐴𝑡

≤
√
𝑘𝛽𝑇 }.

5: 𝒓𝑡 = argmax𝒙∈𝐷 max𝒗∈𝐵1

𝑡
(𝒗 ′ · 𝒓).

6: Receives unbiased observation of the objective function 𝑙𝑡 := 𝒗 · 𝒓𝑡 + 𝜖𝑡 .
7: 𝐴𝑡+1 = 𝐴𝑡 + 𝒓𝑡 · 𝒓 ′𝑡 .
8: 𝒗𝑡+1 = 𝐴−1

𝑡+1
∑𝑡
𝜏=1 𝑙𝜏𝑟𝜏 .

6.1.2 Challenges of Applying the Confidence-Ball Algorithm. Two main challenges prevent us from

directly applying the Confidence-Ball Algorithm to find the optimal extreme point of the static

linear program P in the optimal control problem. The first one is the unknown feasibility region.

Recall that the feasibility region𝐷 of P is written as𝐷 = {{𝑟𝑛𝑚} | ∑𝑚∈S𝑛
𝑟𝑛𝑚 = 𝜆𝑛,

∑
𝑛:𝑠𝑚 ∈S𝑛

𝑟𝑛𝑚 ≤
𝜇𝑚, 𝑟𝑛𝑚 ≥ 0.}. The set𝐷 is unknown apriori since it is parameterized by unknown network statistics

(arrival rates and service rates).

The second challenge arises from the delay in obtaining unbiased estimate of the objective

function. The Confidence-Ball algorithm requires an unbiased estimate of the objective function

𝒗 · 𝒓𝑡 for a decision vector 𝒓𝑡 . Such unbiased estimate is not directly available in the optimal control

problem, but can be synthesized from utility observations of completed jobs. Consider a decision

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:14 Xinzhe Fu and Eytan Modiano

vector 𝒓 = {𝑟𝑛𝑚} for P . If for each 𝑢𝑛, 𝑠𝑚 with 𝑟𝑛𝑚 > 0, we have a utility observation 𝑣𝑛𝑚 from

a job from 𝑢𝑛 completed at 𝑠𝑚 (which from now on will be referred to as a (𝑢𝑛, 𝑠𝑚)-job), then∑
𝑛,𝑚:𝑟𝑛𝑚>0 𝑣𝑛𝑚 · 𝑟𝑛𝑚 is an unbiased estimate of the objective function of P at {𝑟𝑛𝑚}. However,

such synthesized estimates are not immediately available since we only observe utilities upon the

completion of the jobs which experience queueing delay.

Therefore, the Confidence-Ball algorithm cannot be directly applied in the optimal control

problem. In what follows, we will propose an adapted version of the Confidence-Ball algorithm

that address the aforementioned two challenges and integrate the algorithm with the JSQ-𝐾 policy.

6.2 The Confidence-Ball JSQ-𝐾 Policy
In this section, we propose the an adapted version of the Confidence-Ball algorithm and integrate it

with the Dual-Level JSQ-𝐾 policy to form the Confidence-Ball JSQ-𝐾 policy, which will be shown

to achieve logarithmic regret for the optimal control problem.

6.2.1 The Adapted Confidence-Ball Algorithm. We propose the Adapted Confidence-Ball algorithm

to deal with the unknown feasibility region of the static linear program P. Note that for each time

𝑡 , we can observe the arrivals 𝑎𝑛 (𝑡)’s and offered services 𝑐𝑚 (𝑡)’s. Thus, we can form an estimation

of the feasibility region 𝐷 at each time 𝑡 based on the empirical means of the arrivals and services.

Definition 1. Let ˆ𝜆𝑡 := 1

𝑡

∑𝑡
𝜏=1 𝑎𝑛 (𝜏), 𝜇𝑡𝑚 := 1

𝑡

∑𝑡
𝜏=1 𝑐𝑚 (𝜏). The estimation of the feasibility region

at time 𝑡 is defined as �̂�𝑡 := {{𝑟𝑛𝑚, 𝑦𝑚} | ∑𝑚∈S𝑛
𝑟𝑛𝑚 = ˆ𝜆𝑡𝑛,

∑
𝑛:𝑠𝑚 ∈S𝑛

𝑟𝑛𝑚 ≤ 𝜇𝑡𝑚, 𝑟𝑛𝑚 ≥ 0.}.

The Adapted Confidence-Ball algorithm is the same asAlgorithm2 but with Line 5 replaced with
minimization over �̂�𝑡 , i.e., 𝒓𝑡 = argmax𝒓 ∈�̂�𝑡

max𝒗∈𝐵1

𝑡
(𝒗 ′ · 𝒓), and Line 6 replaced with synthesizing

the unbiased estimate using corresponding utility observations as introduced in Section 6.1.2.

We define 𝒓∗𝑡 as the optimal extreme point of �̂�𝑡 , i.e., 𝒓∗𝑡 := argmax𝒓 ∈�̂�𝑡
𝒗 · 𝒓 . Using the results

of [17], we have the following proposition regarding the performance guarantee of the Adapted

Confidence-Ball algorithm.

Proposition 3. With probability at least 1− 1

𝑇
, during𝑇 iterations of the Adapted Confidence-Ball

algorithm, the number of 𝑡 in {1, . . . ,𝑇 } such that 𝒓𝑡 ≠ 𝒓∗𝑡 is in 𝑂 (log3𝑇).

6.2.2 Integration of Adapted Confidence-Ball and Dual-Level JSQ-𝐾 . Now we are ready to introduce

the Confidence-Ball JSQ-𝐾 (CB-JSQ-𝐾) policy, which the joint policy that integrates the Adapted

Confidence-Ball algorithm and the Dual-Level JSQ-𝐾 policy for the optimal control problem.

The basic idea of the CB-JSQ-𝐾 policy is to make routing decisions using the JSQ-𝐾 policy based

on the extreme-point solution provided by the Adapted Confidence-Ball algorithm. Due to the

aforementioned feedback delay, the Adapted Confidence-Ball algorithm cannot update the solution

every time slot. Instead, we employ an episodic version of the Adapted Confidence-Ball algorithm

where the solution is updated once every episode (consisting of multiple time slots). The routing

decisions are made using JSQ-𝐾 based on the same solution during each episode. The episode

length will be set long enough to ensure that the Adapted Confidence-Ball algorithm can obtain

the utility observations necessary to synthesis unbiased estimates of the objective function.

More specifically, the CB-JSQ-𝐾 policy embeds the JSQ-𝐾 policy in an episodic version of the

Adapted Confidence-Ball algorithm. The episode length is set to𝑊 = log
2𝑇 log log𝑇 . We index

the episodes by 𝑒 = 1, . . . and let 𝑡𝑒 be the first time slot of episode 𝑒 . The policy maintains the

matrix 𝐴𝑒 , vector estimate 𝒗𝑒 of 𝒗, and ellipsoid 𝐵𝑒 around 𝒗𝑒 for every episode 𝑒 . At the beginning

of each episode, it solves for an extreme point 𝒓𝑒 through optimization over 𝐵𝑒 and �̂�𝑒 , where �̂�𝑒
is the estimation of feasibility region (Definition 1) at the beginning of episode 𝑒 . Let T𝑒 be the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:15

spanning forest induced by 𝒓𝑒 . If T𝑒 ≠ T𝑒−1, the policy discards all the jobs in the queues.
4
Then, it

makes routing and scheduling decisions based on the JSQ-𝐾 policy using T𝑒 , while collecting utility
observations. At the end of the episode, the policy updates �̂�𝑒 based on the observations of arrivals

and offered services, and updates 𝐴𝑒 , 𝒗𝑒 if we have obtained at least one utility observation of a

(𝑢𝑛, 𝑠𝑚)-job for each 𝑟𝑛𝑚 > 0. The pseudo-code of the CB-JSQ-𝐾 policy is shown in Algorithm 3.

Algorithm 3 The Confidence-Ball JSQ-𝐾 Policy

1: Initialization: Barycentric spanner 𝑏1, . . . , 𝑏𝑛 for �̂�1; 𝐴1 =
∑𝑘
𝑖=1 𝑏1𝑏

T

1
; 𝒗1 = 0; 𝑊 =

log
2𝑇 log log𝑇 .

2: 𝛽𝑇 = 512𝑘 ln2𝑇 .

3: for episode 𝑒 = 1, . . . do
4: 𝐵1𝑒 = {𝝂 : | |𝝂 − 𝒗𝑒 | |1,𝐴𝑒

≤
√
𝑘𝛽𝑇 }.

5: 𝒓𝑒 := argmax𝒓 ∈�̂�𝑒
max𝒗∈𝐵1

𝑒
(𝒗T𝒓).

6: T𝑒 := the spanning forest induced by 𝒙𝑒 .
7: Discard all the jobs in the queues if T𝑒 ≠ T𝑒−1.
8: for 𝑡 = 𝑡𝑒 , 𝑡𝑒 + 1, . . . , 𝑡𝑒 +𝑊 − 1 do
9: Make routing and scheduling decisions based on the JSQ-𝐾 policy on the forest T𝑒 .
10: When the first (𝑢𝑛, 𝑠𝑚) job of the episode is completed with utility observation 𝑣𝑛𝑚 , set

𝑣𝑒𝑛𝑚 := 𝑣𝑛𝑚 .

11: Collect the observations of arrivals and offered services during the episode and update �̂�𝑒 to

�̂�𝑒+1.
12: if at least one observation is obtained for each (𝑢𝑛, 𝑠𝑚) with 𝑟𝑒𝑛𝑚 > 0 then
13: 𝐴𝑒+1 = 𝐴𝑒 + 𝒓𝑒 · (𝒓𝑒) ′.
14: 𝑙𝑒 :=

∑
𝑛,𝑚:𝑟𝑒𝑛𝑚>0 𝑣

𝑒
𝑛𝑚𝑟

𝑒
𝑛𝑚 .

15: 𝒗𝑒+1 = 𝐴−1
𝑒+1

∑𝑒
𝜏=1 𝑙𝜏 𝒓𝜏 .

16: else
17: 𝐴𝑒+1 := 𝐴𝑒 , 𝑙𝑒 := 0, 𝒗𝑒+1 := 𝒗𝑒 .

6.2.3 Analysis of CB-JSQ-𝐾 . We show in Theorem 2 that the Confidece-Ball JSQ-𝐾 policy with

𝐾 = 𝑂 (log𝑇) achieves logarithmic regret.

Theorem 2. The CB-JSQ-𝐾 policy achieves𝑂 (log5𝑇 log log𝑇) regret with an appropriately chosen
𝐾 = 𝑂 (log𝑇).

Proof Sketch:we provide the main idea of the proof here and defer the details toAppendix D. The
first step of the proof is to show that we will be able to obtain all the necessary utility observations

for each episode (with high probability) after 𝑡 ≥ log
3𝑇 . This holds since after 𝑡 ≥ log

2𝑇 , ˆ𝜆𝑡𝑛, 𝜇
𝑡
𝑚

will be sufficiently close to 𝜆𝑛, 𝜇𝑚 so that the estimated feasibility region �̂�𝑒 is sufficiently close

to the true feasibility region 𝐷 . It follows that the forest induced by any extreme point of �̂�𝑒 will

be feasible with respect to 𝐷 . Therefore, we can construct similar drift argument as the proof of

Theorem 1 to show that within each episode 𝑒 , at least one (𝑢𝑛, 𝑠𝑚)-job is completed for every

𝑟𝑒𝑛𝑚 > 0with high probability, which implies that all the necessary utility observations are obtained.

The second step is to show that after 𝑡 ≥ log
2𝑇 , the optimal extreme point of �̂�𝑒 and the optimal

extreme point of 𝐷 induces the same spanning forest. This again follows from that
ˆ𝜆𝑡𝑛, 𝜇

𝑡
𝑚 being

sufficiently close to 𝜆𝑛, 𝜇𝑚 . Combining this with Proposition 3, it implies that there are at most

4
This step is made for simplicity of analysis, since a different spanning forest may lead to a different virtual queueing

architecture.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:16 Xinzhe Fu and Eytan Modiano

𝑂 (log3𝑇) episodes where the spanning forest used by the JSQ-𝐾 policy is sub-optimal. Based on

the previous two steps, we proceed to analyze the regret of the CB-JSQ-𝐾 policy. We divide the time

horizon into periods, where each period is formed by consecutive episodes with the same forest. The

regret of the CB-JSQ-𝐾 policy is the sum of the regret over each period. We will call a period/episode

correct if the spanning forest of the period/episode coincides with the optimal, and a period/episode

incorrect otherwise. Since there are at most𝑂 (log3𝑇) episodes where T𝑒 is not equal to the optimal

forest, there are at most 𝑂 (log3𝑇) periods. The total length of incorrect period is upper bounded

by the total number of incorrect episodes times the episode length, which is 𝑂 (log5𝑇 log log𝑇)
time slots. Therefore, the regret incurred in incorrect period is in 𝑂 (log5𝑇 log log𝑇). Whenever

the policy switches between periods, it discards all the jobs in the queue, which will in total incur

𝑂 (log4𝑇)-regret as the total queue length is in 𝑂 (log𝑇). Finally, by Theorem 1, as the optimal

extreme point is non-degenerate, the regret incurred in each correct period is 𝑂 (log𝑇). Therefore,
in summary, the regret of the CB-JSQ-𝐾 policy is in 𝑂 (log5𝑇 log log𝑇).

Discussion: The main reason that the Confidence-Ball JSQ-𝐾 policy can achieve (poly)-logarithmic

regret instead of 𝑂 (
√
𝑇) regret is that the Confidence-Ball JSQ-𝐾 policy tries to learn the optimal

spanning forest, i.e., the structure of the optimal solution to the linear program P instead of

the value of the optimal solution. Since the total number of extreme points is finite, when the

assumptions are satisfied, there is enough “separation” between different extreme points while

such separation does not exist for the value of the solution as it lies in a continuous set. This is the

main reason why learning the optimal structure is more robust than learning the optimal value.

7 SIMULATIONS
In this section, we evaluate the empirical performance of our policies via simulations on the network

shown in Figure 3(a). The arrival rates and service rates are shown in the figure. The underlying

utilities are chosen such that the extreme point shown in Figure 3(b) is the optimal extreme point.
5

For each dispatcher 𝑢𝑛 , 𝑎𝑛 (𝑡) is chosen as a uniform integer between 𝜆𝑛 − 2 and 𝜆𝑛 + 2 and for each

server 𝑠𝑚 , 𝑐𝑛 (𝑡) is chosen as a uniform integer between 𝜇𝑚 − 2 and 𝜇𝑚 + 2.

We first study the growth of regret with the time horizon. We vary the time horizon 𝑇 in

{10000, 20000, . . . , 200000} and compare the performance of three policies:

• Static: the static optimal control policy based on the optimal solution to P.

• JSQK: the Dual-Level JSQ-𝐾 policy with 𝐾 = 20 log𝑇 on the optimal extreme point.

• CB-JSQK: the Confidence-Ball JSQ-𝐾 policy with𝐾 = 20 log𝑇 and episode length 𝐸 = log
3𝑇 .

The regret of each policy is approximated by the difference between 𝑇 · 𝑂𝑃𝑇 (P) and the total

utility obtained over the time horizon. We plot the regret and the total queue lengths at the end of

the time horizon in Figure 4. The results are the average over 10 runs.
From Figure 4(a), we can see that JSQK and CB-JSQK have significantly lower regrets than the

static optimal policy, which validates our theoretical analysis, as the former two achieve logarithmic

regret while the latter has a regret of Ω(
√
𝑇). The regret of CB-JSQK is higher than JSQK since it

needs to learn the optimal extreme point while JSQK is fed with the optimal extreme point. Similar

phenomenon can be observed for queue lengths in Figure 4(b). However, the queue length under

CB-JSQK is slightly lower than JSQK, which can be attributed to that the CB-JSQK policy clears the

queues when the current extreme point changes between episodes.

Next, we study the sensitivity of the performance of JSQK and CB-JSQK to the parameter 𝐾 . We

fix the time horizon to be 𝑇 = 100000 and vary 𝐾 in {20, 40, . . . , 200}. We plot the regret and the

total queue lengths at the end of the time horizon in Figure 5. From Figure 5, we can see that for

both JSQK and CB-JSQK, the total queue lengths increase with 𝐾 , which is not surprising given the

5
More specifically, 𝑣11 = 5, 𝑣21 = 5, 𝑣22 = 2, 𝑣31 = 3, 𝑣33 = 3, 𝑣34 = 2, 𝑣42 = 2, 𝑣43 = 4, 𝑣53 = 2, 𝑣54 = 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:17

0.5 1 1.5 2
Time Horizon 105

0

2000

4000

6000

8000

10000

R
eg

re
t

Static

JSQK

CB-JSQK

(a)

0.5 1 1.5 2
Time Horizon 105

0

500

1000

1500

2000

2500

Q
ue

ue
 L

en
gt

h

Static

JSQK

CB-JSQK

(b)

Fig. 4. Progression of regret and queue length with the time horizon under different policies.

20 40 60 80 100 120 140 160 180 200
K

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R
eg

re
t

JSQK
CB-JSQK

(a)

20 40 60 80 100 120 140 160 180 200
K

0

50

100

150

200

250

300

350

400

Q
ue

ue
 L

en
gt

h

JSQK
CB-JSQK

(b)

Fig. 5. Regret and queue length of under JSQK and CB-JSQK policies with different values of 𝐾 .

role of 𝐾 as the queue length threshold in the policies. Furthermore, the regrets of both policy are

not sensitive to 𝐾 as long as its value is in the range of 80 to 200 (for a time horizon of 100000).

8 CONCLUSION
In this paper, we studied the optimal control problem in stochastic bipartite queueing networks,

where we developed an admissible policy with low regret compared to the optimal dynamic policy.

It is a first class of problems that focus on the challenges of combining learning and network control,

where the learning aspect and the network control aspect are not separate and must be co-designed.

We first showed that the expected utility of the optimal dynamic policy is upper bounded by𝑇 times

the solution to a static linear program, where the optimization variables correspond to rates of jobs

from dispatchers to servers and the feasibility region is parameterized by arrival rates and service

rates. We next proposed the CB-JSQ-𝐾 policy for the optimal control problem that is an integration

of an adapted version of the Confidence-Ball algorithm (learning algorithm) and the Dual-Level

JSQ-𝐾 policy (control policy). The Dual-Level JSQ-𝐾 policy relies on the spanning forest structure

induced by the extreme points of the static linear program while the Confidence-Ball algorithm

seeks to learn the optimal extreme point. We proved that the CB-JSQ-𝐾 policy achieves logarithmic

regret, which is superior to techniques in previous works that could only achieve Ω(
√
𝑇)-regret.

There are several future directions. First, it would be interesting to consider utility functions

that depend on the waiting time of the jobs instead of only the dispatcher and the server. The

second direction involves the lower bound of the optimal routing problem Since the optimal control

problem can be considered as a generalization of the multi-armed bandits problem, following from

the lower bound of multi-armed bandits [11], a regret lower bound of Ω(log𝑇) also holds for the

optimal routing problem. An important open problem is thus, whether stronger lower bounds (e.g.

poly-logarithmic to 𝑇) hold for the optimal routing problem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:18 Xinzhe Fu and Eytan Modiano

ACKNOWLEDGMENTS
This work was funded by Office of Naval Research (ONR) grant award N00014-20-1-2119, and by

NSF grants CNS-2148128 and CNS-2148183.

REFERENCES
[1] J. Tsitsiklis and K. Xu. “Queueing system topologies with limited flexibility.” in Proceedings of the ACM SIGMETRICS,

pp: 167-178. 2013.

[2] W. Weng, X. Zhou, and R. Srikant. “Optimal load balancing in bipartite graphs.” arXiv preprint arXiv:2008.08830 (2020).

[3] S. Banerjee, Y. Kanoria, and P. Qian. “State dependent control of closed queueing networks.” in ACM SIGMETRICS
Performance Evaluation Review, Vol. 46, No. 1, pp: 2-4, 2018.

[4] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. “Optimal power allocation in server farms.” in ACM SIGMETRICS
Performance Evaluation Review, Vol. 37, No. 1, pp: 157-168, 2009.

[5] H. Yu, M. Neely, and X.Wei. “Online convex optimization with stochastic constraints.” inAdvances in Neural Information
Processing Systems, 2017.

[6] S. Shalev-Shwartz, “Online learning and online convex optimization.” in Foundations and Trends in Machine Learning,
Vol. 4, No. 2, pp: 107-194, 2012.

[7] A. Agarwal, O. Dekel, and L. Xiao. “Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit

Feedback.” in Conference on Learning Theory, pp: 28-40, 2010.
[8] T. Chen and G. B. Giannakis. “Bandit convex optimization for scalable and dynamic IoT management.” in IEEE Internet

of Things Journal, Vol. 6, No. 1, pp: 1276-1286, 2018.
[9] A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. “Stochastic convex optimization with bandit feedback.”

in SIAM Journal on Optimization, Vol. 23, No. 1, pp: 213-240, 2013.
[10] J. Abernethy, E. Hazan, and A. Rakhlin. “Competing in the dark: An efficient algorithm for bandit linear optimization.”

2009.

[11] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.” in

Machine Learning, Vol. 5, No. 1, pp: 1-122, 2012.
[12] J. He, D. Zhou, and Q. Gu. “Logarithmic regret for reinforcement learning with linear function approximation.” in

International Conference on Machine Learning, pp: 4171-4180, 2021.
[13] L. Zheng and L. Ratliff. “Constrained upper confidence reinforcement learning.” in Learning for Dynamics and Control,

pp: 620-629, 2020.

[14] I. Osband and B. Van Roy. “Near-optimal reinforcement learning in factored mdps.” in Advances in Neural Information
Processing Systems, 2014.

[15] M. Azar, I. Osband, and R. Munos. “Minimax regret bounds for reinforcement learning.” in International Conference on
Machine Learning, pp: 263-272, 2017.

[16] L. Yang and M. Wang. “Reinforcement learning in feature space: Matrix bandit, kernels, and regret bound.” in Interna-
tional Conference on Machine Learning, pp: 10746-10756, 2020.

[17] V. Dani, T. Hayes, and S. Kakade. “Stochastic linear optimization under bandit feedback.”, in Conference on Learning
Theory, 2008.

[18] R. Singh and A. Stolyar. “Maxweight scheduling: Asymptotic behavior of unscaled queue-differentials in heavy traffic.”

in Proceedings of ACM SIGMETRICS, pp: 431-432, 2015.
[19] M. Neely. “Stochastic network optimization with application to communication and queueing systems.” in Synthesis

Lectures on Communication Networks, Vol. 3, No. 1, pp: 1-211, 2010.
[20] X. Lin, N. B. Shroff, and R. Srikant. “A tutorial on cross-layer optimization in wireless networks.” in IEEE Journal on

Selected areas in Communications, Vol. 24, No. 8, pp: 1452-1463, 2006.
[21] T. Stahlbuhk, B. Shrader, and E. Modiano. “Learning algorithms for minimizing queue length regret.” in IEEE Transactions

on Information Theory, Vol. 67, No. 3, pp: 1759-1781, 2021.
[22] S. Krishnasamy, R. Sen, R. Johari, and S. Shakkottai. “Learning unknown service rates in queues: A multiarmed bandit

approach.” in Operations Research, Vol. 69, No. 1, pp: 315-330, 2021.
[23] X. Fu, and E. Modiano. “Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing

Delay.” in Proceedings of ACM Mobihoc, pp. 21-30. 2021.
[24] X. Fu, and E. Modiano. “Elastic job scheduling with unknown utility functions.” in Performance Evaluation, 2021.
[25] A. Vera and S. Banerjee. “The bayesian prophet: A low-regret framework for online decision making.” in Management

Science, Vol. 67, No. 3, pp: 1368-1391, 2021
[26] X. Tan, B. Sun, A. Leon-Garcia, Y. Wu, and D. Tsang. “Mechanism design for online resource allocation: A unified

approach.” in Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 4, No. 2, pp: 1-46, 2020.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:19

[27] Agrawal, Shipra, Zizhuo Wang, and Yinyu Ye. "A dynamic near-optimal algorithm for online linear programming."

Operations Research 62, no. 4 (2014): 876-890.

[28] M. Neely. “Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks.” in IEEE Journal on
Selected Areas in Communications, Vol. 24, No. 8, pp: 1489-1501, 2006.

[29] D. Bertsimas and J. Tsitsiklis. “Introduction to linear optimization.” Vol. 6. Belmont, MA: Athena Scientific, 1997.

[30] V. Pesic and R. Williams. “Dynamic scheduling for parallel server systems in heavy traffic: Graphical structure,

decoupled workload matrix and some sufficient conditions for solvability of the Brownian control problem.” in

Stochastic Systems, Vol. 6, No. 1, pp: 26-89, 2016.
[31] J. M. Harrison and M. J. López. “Heavy traffic resource pooling in parallel-server systems.” in Queueing systems, Vol. 33,

No. 4, pp: 339-368, 1999.

[32] E. Hazan. “Introduction to online convex optimization.” in Foundations and Trends in Optimization, Vol. 2, No. 3-4, pp:
157-325, 2016.

A PROOF OF PROPOSITION 2
Proof. The proof consists of three steps. We first show that the set of essential links forms a

forest in the bipartite network, and each node in G is either connected to an essential link, or is an

idle server, which implies that the essential links and idle servers form a spanning forest. Second,

we prove that each tree in the spanning forest contains at most one slack server. Finally, we argue

that for a non-degenerate extreme point, each tree in the forest contains exactly one slack server.

The proof relies on the connection between the optimization problem P and the network flows in

an extended network
˜G of G, which is defined as follows. An example of the extended network is

shown in Figure 6.

Definition 2 (Extended Network). The extended network is a flow network ˜G with node set
{𝑠} ∪ { ˜𝑑} ∪ U ∪ S. It link set consists of the links of G, one link from 𝑠 to each 𝑢𝑛 ∈ U and one link
from each 𝑠𝑚 ∈ S to ˜𝑑 . The capacity of link (𝑠,𝑢𝑛) is equal to 𝜆𝑛 , the capacity of link (𝑠𝑚, ˜𝑑) is equal
to 𝜇𝑚 , and the capacities of links between U and S are infinity.

Consider the flow polytope formed by the set of 𝑠- ˜𝑑 flows F of value

∑
𝑛 𝜆𝑛 on �̃� . Standard

results in network flow [29] show that the flow polytope is equivalent to the feasibility region of

P, with the equivalence manifested by the flow value between (𝑢𝑛, 𝑠𝑚) in F corresponding to the

value of variable 𝑟𝑛𝑚 in P. It follows that the extreme points of the flow polytope are equivalent

to the extreme points of P. For a 𝑠- ˜𝑑 flow in
˜G, we say a link is unsaturated if the flow value of

the link is smaller than its capacity. The following lemma characterizes the structural property of

extreme points in the flow polytope. It is also a standard result in the network flow literature and

can be found in [29].

Lemma 1. Under an extreme points, unsaturated links with positive flows do not form an undirected
cycle.

Based on Definition 2 and Lemma 1, we are ready to carry out the three steps in proving the

proposition. For the first step, note that as the capacities of the links between U and S are infinity,

those links are unsaturated under any flow. It follows that every essential link (in G) corresponds

to an unsaturated link with positive flow in the extended network
˜G. If the essential links do not

from a forest (i.e., it contains a cycle), then there will be a cycle of unsaturated links with positive

flows in the extended network, which contradicts the condition that {𝑟𝑛𝑚, 𝑦𝑚} is an extreme point

by Lemma 1. Furthermore, for each dispatcher 𝑢𝑛 , as
∑
𝑚∈S𝑢𝑛

𝑟𝑛𝑚 = 𝜆𝑛 > 0, there must exist an

𝑚 ∈ S𝑢𝑛 with 𝑟𝑛𝑚 > 0. Thus, each dispatcher is connected to at least one essential link. For each

server 𝑠𝑚 , note that if 𝑠𝑚 is not connected to any essential link, then we have 𝑦𝑚 = 𝜇𝑚 > 0 and 𝑠𝑚
is an idle server. Therefore, the essential links and idle servers form a spanning forest of G, with
each tree in the forest is either a tree that contains essential links, servers and dispatchers, or a

trivial tree that only contains an idle server.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:20 Xinzhe Fu and Eytan Modiano

1u

2u

3u

1s

2s

3s

4s

s d

1 λ

2 λ

3λ

1µ

2 µ

3 µ

4µ

∞
∞

∞

∞

∞
∞

Fig. 6. An example of the extended network.

For the second step, consider an arbitrary tree in the forest induced by the extreme point. Suppose

for the sake of contradiction, there exist two slack servers 𝑠𝑚 , 𝑠𝑚′ in the tree. Then, the links (𝑠𝑚, ˜𝑑)
and (𝑠𝑚′, ˜𝑑) are unsaturated with positive flows. Furthermore, since 𝑠𝑚 and 𝑠𝑚′ are in the same tree,

there exists a path of essential links connecting 𝑠𝑚 and 𝑠𝑚′ . Therefore, in the extended network �̃� ,

the path together with links (𝑠𝑚, ˜𝑑) and (𝑠𝑚′, ˜𝑑) form a cycle of unsaturated links, which contradicts

Lemma 1. Hence, there is at most one slack server in each tree.

Finally, if the extreme point is non-degenerate, then all variables in the basis must be strictly

positive. Note that there are 𝑁 +𝑀 constraints in P (not including the non-negativity constraints).

Hence, there are 𝑁 +𝑀 variables in the basis. Suppose that under the extreme point, there are 𝑘

trees in the spanning forest. Then, as the spanning forest has 𝑁 +𝑀 nodes, it must have 𝑁 +𝑀 − 𝑘
edges, which correspond to 𝑁 +𝑀 − 𝑘 essential links. Since each essential link corresponds a basis

variable, and as the link is non-degenerate, links with zero flow are not in the basis, it follows that

there are 𝑘 variables 𝑦𝑚 > 0 in the basis that correspond to 𝑘 slack servers. Since in the second step,

we have shown that each tree contains at most one slack server, we thus have each tree contains

exactly one slack server when the extreme point is non-degenerate. □

B REGRET LOWER BOUND OF STATIC POLICIES
In this section, we establish a lower bound on the regret of static policies. We formally define static

policies as ones under which the numbers of jobs sent from each dispatcher 𝑢𝑛 to server 𝑠𝑚 , i.e.,

𝑎𝑛𝑚 (1), . . . , 𝑎𝑛𝑚 (𝑇) at time 𝑡 = 0, . . . ,𝑇 are independent random variables with the same mean.

Note that we only require independence of decisions corresponding to each dispatcher-server pair

across time, but do not ask for independence of 𝑎𝑛𝑚 (𝑡)’s across different dispatcher-server pairs
for the same 𝑡 .6 Also, the requirement is with respect to the routing policy at the dispatchers while

the servers can employ an arbitrary scheduling policy. The lower bound is summarized as follow.

Proposition 4. There exist instances of the optimal control problem in which any static policy has
Ω(

√
𝑇)-regret.

Proof. We consider an instance with one dispatcher (𝑁 = 1) and two servers (𝑀 = 2). Server 𝑠1
has an integer service rate 𝜇1 with its offered service 𝑐1 (𝑡) being an integer chosen from {𝜇1−1, 𝜇1+1}
6
In fact, they are often not independent as they have to satisfy

∑𝑀
𝑚=1 𝑎𝑛𝑚 (𝑡) = 𝑎𝑛 (𝑡) .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:21

uniformly at random. Server 𝑠2 has an integer service rate 𝜇2 with its offered service 𝑐2 (𝑡) being an

integer chosen from {𝜇2 − 1, 𝜇2 + 1} uniformly at random. The underlying utilities 𝑣11 = 𝑣12 + 1.

The arrival process is deterministic, with 𝑎1 (𝑡) = 𝜆 for each 𝑡 . Note that we explicitly specify the

distributions of the arrival and service processes only for concreteness. It should be clear from the

proof that the result holds for a wide range of instances, not restricted to𝑀 = 2 or the distributions

assumed here.

It is easy to see that the optimal solution to the linear program P is 𝑟 ∗
11

= 𝜇1 and 𝑟
∗
12

= 𝜆 − 𝜇1.
Hence, by Proposition 1,

𝑈 (𝜋∗) ≤
𝑇∑
𝑡=0

𝜇1𝑣1 +

𝑇∑
𝑡=0

𝜆 −
𝑇∑
𝑡=0

𝜇1

 𝑣2 . (5)

We consider an arbitrary static routing policy 𝜋 that sends 𝑎11 (𝑡) = 𝜆1, 𝑡 = 0, . . . ,𝑇 jobs to 𝑠1

and 𝑎12 (𝑡) = 𝜆2, 𝑡 = 0, . . . ,𝑇 jobs to 𝑠2. We will show that the gap between (5) and𝑈 (𝜋) is Ω(
√
𝑇).

Although (5) upper-bounds and may not be equal to 𝑈 (𝜋∗), as the CB-JSQ-𝐾 policy achieves

logarithmic regret, having a Ω(
√
𝑇) gap with respect to (5) implies a gap of the same order with

respect to CB-JSQ-𝐾 , from which it will follow that any static policy has Ω(
√
𝑇)-regret.

For the static policy 𝜋 , by definition, we have

𝑈 (𝜋) ≤

𝑇∑
𝑡=0

𝜆1 − E[𝑄1 (𝑇)]
 𝑣1 +

𝑇∑
𝑡=0

(𝜆 − 𝜆1)𝑣2. (6)

It follows that the gap between the right-hand-side of (5) and𝑈 (𝜋) is at least
𝑇∑
𝑡=0

𝜇1 −
𝑇∑
𝑡=0

𝜆1 + E[𝑄1 (𝑇)]
 𝑣1 +

𝑇∑
𝑡=0

(𝜇1 − 𝜆1)𝑣2. (7)

Recall the evolution of 𝑄1 as 𝑄1 (𝑡 + 1) = [𝑄1 (𝑡) + 𝑎11 (𝑡) − 𝑐1 (𝑡)]+ ≥ 𝑄1 (𝑡) + 𝑎11 (𝑡) − 𝑐1 (𝑡). Let
�̃�1 (𝑇) =

∑𝑇
𝑡=0 [𝑎11 (𝑡) − 𝑐1 (𝑡)]. It follows that E[𝑄1 (𝑇)] ≥ P[�̃�1 (𝑇) ≥ 0] · E[�̃�1 (𝑇) | �̃�1 (𝑇) ≥ 0].

For any 𝑡 , 𝑎1 (𝑡) − 𝑐1 (𝑡) takes value in {𝜆1 − 𝜇1 − 1, 𝜆1 − 𝜇1 + 1} uniformly at random. It has the same

distribution as 𝜆1 − 𝜇1 − 1+ 2 ·𝑏 (𝑡) where 𝑏 (𝑡) is a Bernoulli random variable that takes value 0 or 1

with equal probability.
7
Therefore, �̃�1 (𝑇) has the same distribution as

∑𝑇
𝑡=0 (𝜆1−𝜇1)+2 ·𝐵(𝑇 +1, 1/2),

where 𝐵(𝑇 + 1, 1/2) is a binomial random variable with parameters 𝑇 + 1, 1/2. Let 𝛿 = 𝜆1 − 𝜇1. It
follows that E[�̃�1 (𝑇)] =

∑𝑇
𝑡=0 𝛿 and as 𝑎1 (𝑡), 𝑐1 (𝑡) are independent across time, the variance of

�̃�1 (𝑇) is 𝑇 + 1. It follows that if 𝜖 ≥ 0 or |𝜖 | = Ω(1/
√
𝑇), we have

E[𝑄1 (𝑇)] ≥ P[�̃�1 (𝑇) ≥ 0] · E[�̃�1 (𝑇) | �̃�1 (𝑇) ≥ 0] ≥ Ω(𝑇𝜖 +
√
𝑇) = Ω(

√
𝑇).

If 𝜖 < 0 and |𝜖 | = 𝑜 (1/
√
𝑇), as still E[𝑄1 (𝑇)] ≥ 0, we have

(7) ≥ −
𝑇∑
𝑡=0

𝜖 = 𝑇 |𝜖 | = Ω(
√
𝑇) .

Therefore, in either case, the regret of a generic static policy 𝜋 is Ω(
√
𝑇), which concludes the

proof. □

7
Equivalently, 𝑎11 (𝑡) − 𝑐1 (𝑡) = 𝜆1 − 𝜇1 + 𝑟 (𝑡) where 𝑟 (𝑡) is a Rademacher random variable that takes value −1 or 1 with
equal probability. Note that here the distribution of 𝑎11 (𝑡) − 𝑐1 (𝑡) does not matter as long as its variance is a positive

constant.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:22 Xinzhe Fu and Eytan Modiano

C PROOF OF THEOREM 1
Proof. In this section, we give the details of the proof of Theorem 1. Recall that for each

dispatcher 𝑢𝑛 (of priority level 𝐻 − ℎ) with primary servers𝑚1, . . . ,𝑚𝐿 and secondary server𝑚0,

we will establish the following two claims:

Claim (1.1): Starting from 𝑡 = 𝐶1ℎ ln𝑇 ,
∑𝑇
𝑡=𝐶1ℎ ln𝑇

P[∃𝑖 = 1, . . . , 𝐿,𝑄ℎ𝑚𝑖
(𝑡) +𝑄𝑙𝑚𝑖

(𝑡) ≤ (1−𝜖ℎ)𝐾] =
𝑂 (1

𝑇
).

Claim (1.2): The expected total completed service from 𝑢𝑛 at each of the primary server𝑚 is

close to 𝑇 · 𝑟𝑛𝑚 . For each 𝑖 = 1, . . . , 𝐿, 𝑇𝑟𝑛𝑚𝑖
−𝑂 (log𝑇) ≤ ∑𝑇

𝑡=1 E[𝑐𝑛𝑚𝑖
(𝑡)] ≤ 𝑇𝑟𝑛𝑚𝑖

+𝑂 (log𝑇).
For each server 𝑠𝑚 (of priority level 𝐻 − ℎ) with primary dispatchers 𝑛1, . . . , 𝑛𝐿 and secondary

dispatcher 𝑛0, we will establish the following two claims

Claim (2.1): Starting from 𝑡 = 𝐶1ℎ ln𝑇 ,
∑𝑇
𝑡=𝐶1ℎ ln𝑇

P[𝑄ℎ𝑚 (𝑡) ≥ 𝜖ℎ𝐾] = 𝑂 (1
𝑇
).

Claim (2.2): The expected total completed service at 𝑠𝑚 from each of its primary dispatcher 𝑢𝑛 is

close to 𝑇 · 𝑥𝑛𝑚 . For each 𝑖 = 1, . . . , 𝐿, 𝑇𝑟𝑛𝑖𝑚 −𝑂 (log𝑇) ≤ ∑𝑇
𝑡=1 E[𝑐𝑛𝑖𝑚 (𝑡)] ≤ 𝑇𝑟𝑛𝑖𝑚 +𝑂 (log𝑇).

Combining the claims (1.2) and (2.2) of all the dispatchers and servers will conclude the proof of

the theorem.

Base Step: The base step starts from the nodes of priority level 𝐻 − 1, since the nodes of priority

level 𝐻 are leaf nodes (with no children), of which the claims are trivial. We begin by the following

fact, due to the arrivals and offered services being upper bounded by 𝐶 .

Fact: Under JSQ-𝐾 , for any server 𝑠𝑚 , 𝑄
ℎ
𝑚 (𝑡) ≤ 𝐾 +𝐶 and 𝑄𝑙𝑚 (𝑡) ≤ 𝐾 +𝐶 with probability 1.

Base Step – Case 1:We first consider the case where a node of priority level𝐻 −1 is a dispatcher

𝑢𝑛 and prove the claims (1.1) and (1.2) with respect to the node. Note that its primary servers

𝑚1, . . . ,𝑚𝐿 do not have primary dispatchers and are only connected to 𝑢𝑛 as their secondary

dispatcher in the tree.

Claim (1.1): Consider the potential function 𝑍1 (𝑡) := 𝐿 · (𝐾 + 𝐶) − ∑𝐿
𝑖=1𝑄

𝑙
𝑖 (𝑡) (we will write

𝑄𝑙𝑖 (𝑡) for 𝑄𝑙𝑚𝑖
(𝑡) for simplicity of notation). As 𝑄𝑙𝑖 (𝑡) ≤ 𝐾 +𝐶 for all 𝑖 = 1, . . . , 𝐿, we have {∃𝑖 =

1, . . . , 𝐿,𝑄𝑙𝑖 (𝑡) ≤ (1 − 𝜖1)𝐾} ⊆ {∑𝐿
𝑖=1𝑄

𝑙
𝑖 (𝑡) ≤ (𝐿 − 𝜖1)𝐾 + 𝐿𝐶}, which implies that

P{∃𝑖 = 1, . . . , 𝐿,𝑄𝑙𝑖 (𝑡) ≤ (1 − 𝜖1)𝐾} ≤ P


𝐿∑
𝑖=1

𝑄𝑙𝑖 (𝑡) ≤ (𝐿 − 𝜖1)𝐾 + 𝐿𝐶
 = P{𝑍1 (𝑡) ≥ 𝜖1𝐾}. (8)

Therefore, to prove Claim (1.1), we bound the probability that 𝑍1 (𝑡) ≥ 𝜖1𝐾 .
Note that if there exists a primary server with queue length no larger than 𝐾 , the incoming

jobs of 𝑢𝑛 will be sent to one of the primary servers. Also, we have {𝑍1 (𝑡) ≥ 𝐿𝐶} = {∑𝐿
𝑖=1𝑄

𝑙
𝑖 (𝑡) ≤

𝐿 · 𝐾} ⊆ {∃𝑖 ∈ 1, . . . , 𝐿,𝑄𝑙𝑖 (𝑡) ≤ 𝐾}. It follows that

E[𝑍1 (𝑡 + 1) − 𝑍1 (𝑡) | 𝑍1 (𝑡) ≥ 𝐿𝐶] ≤ E[−𝑎𝑛 (𝑡) +
𝐿∑
𝑖=1

𝑐𝑖 (𝑡) | 𝑍1 (𝑡) ≥ 𝐿𝐶] = −𝜆𝑛 +
𝐿∑
𝑖=1

𝜇𝑖 = −𝑟𝑛𝑚0
≤ −Δ2,

(9)

where the last inequality follows from the non-degeneracy of the extreme point.

Therefore, 𝑍1 (𝑡) has conditional negative drift when 𝑍1 (𝑡) is larger than 𝐿 ·𝐶 . On the other hand,

since the arrivals and offered services are bounded by 𝐶 , |𝑍1 (𝑡 + 1) − 𝑍1 (𝑡) | ≤ 𝐿𝐶 with probability

1. Hence, we have

Let 𝜂1 (𝑡) = 𝑍1 (𝑡 + 1) − 𝑍1 (𝑡). We have for constant 𝛾 = 1

4𝐿𝐶
,

𝑒𝛾𝑍1 (𝑡+1) = 𝑒𝛾𝑍1 (𝑡) · 𝑒𝛾𝜂1 (𝑡) ≤ 𝑒𝛾𝑍1 (𝑡) · [1 + 𝛾𝜂1 (𝑡) + 2𝛾2𝜂2
1
(𝑡)] .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:23

It follows that

E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) < 𝐿𝐶] ≤ 𝑒𝛾𝑍1 (𝑡) · 𝑒𝛾𝐿𝐶 (10)

E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) ≥ 𝐿𝐶] ≤ 𝑒𝛾𝑍1 (𝑡) · E[1 + 𝛾𝜂1 (𝑡) − 2𝛾2𝜂2
1
(𝑡)] ≤ 𝑒𝛾𝑍1 (𝑡) ·

[
1 − Δ2

2

𝛾

]
, (11)

where the last inequality follows from E[𝛾𝜂 (𝑡) | 𝑍1 (𝑡) ≥ 𝐿𝐶] = −Δ2𝛾 and 2𝛾2𝜂2
1
(𝑡) ≤ 𝑟 |𝜂1 (𝑡) |

2
for

𝛾 = 1

4𝐿𝐶
.

It follows that

E[𝑒𝛾𝑍1 (𝑡+1)]
=P[𝑍1 (𝑡) ≥ 𝐿𝐶] · E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) ≥ 𝐿𝐶] + P[𝑍1 (𝑡) < 𝐿𝐶] · E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) < 𝐿𝐶] (12)

≤𝑒𝛾𝐿𝐶 · E[𝑒𝛾𝑍1 (𝑡) | 𝑍1 (𝑡) < 𝐿𝐶] · P[𝑍1 (𝑡) < 𝐿𝐶] +
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍1 (𝑡) | 𝑍1 (𝑡) ≥ 𝐿𝐶] · P[𝑍1 (𝑡) ≥ 𝐿𝐶]

(13)

=

[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍1 (𝑡)] +

[
𝑒𝛾𝐿𝐶 −

(
1 − Δ2𝛾

2

)]
· E[𝑒𝛾𝑍1 (𝑡) | 𝑍1 (𝑡) ≤ 𝐿𝐶] · P[𝑍1 (𝑡) ≤ 𝐿𝐶] (14)

≤
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍1 (𝑡)] + 𝑒2𝛾𝐿𝐶 . (15)

Iterating over inequality (15) and noting that 𝑍1 (0) = 𝐿(𝐾 +𝐶), we obtain

E[𝑒𝛾𝑍1 (𝑡)] ≤ 2𝑒2𝛾𝐿𝐶

Δ2𝛾
+
[
1 − Δ2𝛾

2

]𝑡
𝑒𝛾𝐿 (𝐾+𝐶) . (16)

It follows that after 𝑡 ≥ 𝐶1 ln𝑇 ,

[
1 − Δ2𝛾

2

]𝑡
𝑒𝛾𝐿 (𝐾+𝐶) ≤ 1. Therefore,

P[𝑍1 (𝑡) > 𝜖1𝐾] = P[𝑒𝛾𝑍1 (𝑡) ≥ 𝑒𝜖1𝛾𝐾] ≤ E[𝑒
𝛾𝑍1 (𝑡)]
𝑒𝜖1𝑟𝐾

(17)

≤ 2𝑒𝛾 (2𝐶−𝜖1𝐾)

Δ2𝛾
+ 1

𝑒𝜖1𝛾𝐾
≤ 2

𝑇 2
, (18)

Thus, we have

∑𝑇
𝑡=𝐶1 log𝑇

P[∃𝑖 = 1, . . . , 𝐿,𝑄𝑙𝑚𝑖
(𝑡) ≤ (1 − 𝜖1)𝐾] ≤ 𝑇 · 2

𝑇 2
= 𝑂 (1

𝑇
), which implies

Claim (1.1).

Claim (1.2): For Claim (1.2), recall that 𝑐𝑚 (𝜔, 𝑡) is the offered service of server𝑚 at time 𝑡 on

the sample path 𝜔 . Note that by construction, 𝑟𝑛𝑚𝑖
= 𝜇𝑖 . Hence, we first have for each 𝑖 = 1, . . . , 𝐿,∑𝑇

𝑡=1 E[𝑐𝑛𝑚𝑖
(𝑡)] ≤ ∑𝑇

𝑡=1 E[𝑐𝑛𝑚𝑖
(𝑡, 𝜔)] =

∑𝑇
𝑡=1 𝜇𝑖 = 𝑇𝑟𝑛𝑚𝑖

. Next, as 𝑐𝑛𝑚𝑖
(𝑡) = 𝑐𝑛𝑚𝑖

(𝑡) on sample

paths where there is no idleness in the queue of server 𝑠𝑚 , we have that 𝑄
𝑙
𝑖 (𝑡) ≥ (1 − 𝜖1) · 𝐾 > 𝐶

implies 𝑐𝑛𝑚𝑖
(𝑡) = 𝑐𝑛𝑚𝑖

(𝑡). It follows that
𝑇∑
𝑡=1

E[𝑐𝑛𝑚𝑖
(𝑡)] ≥

𝑇∑
𝑡=1

E[𝑐𝑛𝑚𝑖
(𝑡)] −

𝑇∑
𝑡=1

𝐶 · P[𝑄𝑙𝑖 (𝑡) < (1 − 𝜖1) · 𝐾]

≥𝑇𝑟𝑛𝑚𝑖
−

𝑇∑
𝑡=𝐶1 ln𝑇

𝐶 · P[𝑄𝑙𝑖 (𝑡) < (1 − 𝜖1) · 𝐾] −𝐶 ·𝐶1 ln𝑇 ≥ 𝑇𝑟𝑛𝑚𝑖
−𝑂 (log𝑇),

where the last inequality holds because of Claim (1.1) we just proved. This concludes the proof for

the first case of the base step.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:24 Xinzhe Fu and Eytan Modiano

Base Step – Case 2:We next consider the case where a node of priority level𝐻 − 1 is a server 𝑠𝑚
and prove the claims (2.1) and (2.2) with respect to the nodes. Note that here, the server’s primary

dispatchers𝑚1, . . . ,𝑚𝐿 are only connected to 𝑠𝑚 as their secondary server in the tree.

Claim (2.1): In this case, the high-priority queue length 𝑄ℎ𝑚 (𝑡) it self can be used as the potential

function for our analysis. For simplicity of notation, we will write 𝑍2 (𝑡) := 𝑄ℎ𝑚 (𝑡). When 𝑍2 (𝑡) ≥ 𝐶 ,
there will be no idleness for the high-priority queue at server 𝑠𝑚 at time 𝑡 . Therefore,

E[𝑍2 (𝑡 + 1) − 𝑍2 (𝑡) | 𝑍2 (𝑡) ≥ 𝐶] ≤ E

𝐿∑
𝑖=1

𝑎𝑖 (𝑡) − 𝑐𝑚 (𝑡) | 𝑍2 (𝑡) ≥ 𝐶
 =

𝐿∑
𝑖=1

𝜆𝑖 − 𝜇𝑚 = −𝑟𝑛0𝑚 ≤ −Δ2,

(19)

where the last inequality is due to the non-degeneracy of the extreme point. Also, |𝑍2 (𝑡+1)−𝑍2 (𝑡) | ≤
𝐿𝐶 with probability 1. Therefore, let 𝜂2 (𝑡) = 𝑍2 (𝑡 + 1) − 𝑍2 (𝑡), We have for constant 𝛾 = 1

4𝐿𝐶
,

𝑒𝛾𝑍2 (𝑡+1) = 𝑒𝛾𝑍2 (𝑡) · 𝑒𝛾𝜂2 (𝑡) ≤ 𝑒𝛾𝑍2 (𝑡) · [1 + 𝛾𝜂2 (𝑡) + 2𝛾2𝜂2
2
(𝑡)] .

It follows similarly as in (10) and (11) that

E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍2 (𝑡) < 𝐶] ≤ 𝑒𝛾𝑍2 (𝑡) · 𝑒𝛾𝐿𝐶 (20)

E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍2 (𝑡) ≥ 𝐶] ≤ 𝑒𝛾𝑍2 (𝑡) · [1 + 𝛾𝜂2 (𝑡) − 2𝛾2𝜂2
2
(𝑡)] ≤ 𝑒𝛾𝑍2 (𝑡) ·

[
1 − Δ2

2

𝛾

]
. (21)

Thus, we have

E[𝑒𝛾𝑍2 (𝑡+1)]
=P[𝑍2 (𝑡) ≥ 𝐶] · E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍2 (𝑡) ≥ 𝐶] + P[𝑍2 (𝑡) < 𝐶] · E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍1 (𝑡) < 𝐶] (22)

≤𝑒𝛾𝐿𝐶 · E[𝑒𝛾𝑍2 (𝑡) | 𝑍2 (𝑡) < 𝐶] · P[𝑍2 (𝑡) < 𝐶] +
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍2 (𝑡) | 𝑍2 (𝑡) ≥ 𝐶] · P[𝑍2 (𝑡) ≥ 𝐶]

(23)

=

[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍2 (𝑡)] +

[
𝑒𝛾𝐿𝐶 −

(
1 − Δ2𝛾

2

)]
· E[𝑒𝛾𝑍2 (𝑡) | 𝑍2 (𝑡) ≤ 𝐶] · P[𝑍2 (𝑡) ≤ 𝐶] (24)

≤
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍2 (𝑡)] + 𝑒𝛾 (𝐿+1)𝐶 . (25)

Iterating over inequality (25) and noting that 𝑍2 (0) = 0, we obtain

E[𝑒𝛾𝑍2 (𝑡)] ≤ 2𝑒𝛾 (𝐿+1)𝐶

Δ2𝛾
+
[
1 − Δ2𝛾

2

]𝑡
. (26)

It follows that,

P[𝑍2 (𝑡) > 𝜖1𝐾] = P[𝑒𝛾𝑍2 (𝑡) ≥ 𝑒𝛾𝜖1𝐾] ≤ E[𝑒
𝛾𝑍2 (𝑡)]
𝑒𝛾𝜖1𝐾

(27)

≤ 2𝑒𝛾 (2𝐶−𝜖1𝐾)

Δ2𝛾
+ 1

𝑒𝛾𝜖1𝐾
≤ 2

𝑇 2
, (28)

Thus, we have

∑𝑇
𝑡=1 P[𝑄ℎ𝑚 (𝑡) > 𝜖1𝐾] = 𝑂 (1), which implies the claim.

Claim (2.2): By definition of our JSQ-𝐾 policy, 𝑟𝑛𝑖𝑚 = 𝜆𝑖 . Hence, we first have for each 𝑖 = 1, . . . , 𝐿,∑𝑇
𝑡=1 E[𝑐𝑛𝑖𝑚 (𝑡)] ≤ ∑𝑇

𝑡=1 E[𝑎𝑛 (𝑡)] =
∑𝑇
𝑡=1 𝜇𝑖 = 𝑇𝑟𝑛𝑖𝑚 . Next, note that the incoming jobs from

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:25

dispatcher 𝑢𝑖 are either discarded, still in the queue, or completed by𝑇 , and job discarding can only

happen when 𝑄ℎ𝑚 (𝑡) > 𝐾 . It follows that,

𝑇∑
𝑡=1

E[𝑐𝑛𝑖𝑚 (𝑡)] ≥
𝑇∑
𝑡=1

E[𝑎𝑛 (𝑡)] −𝐶 ·
𝑇∑
𝑡=1

P[𝑄ℎ𝑚 (𝑡) > 𝐾] − E[𝑄ℎ𝑚 (𝑇)] ≥ 𝑇𝑟𝑛𝑖𝑚 −𝑂 (log𝑇), (29)

where the last inequality holds because of Claim (2.1) we just proved and that 𝑄ℎ𝑚 (𝑇) no larger

than 𝐾 +𝐶 almost surely. The concludes the proof for the second case of the base step.

Induction Step:We now proceed to the induction step of the proof. Suppose that Claims (1.1),

(1.2), (2.1), (2.2) hold for nodes (dispatchers, servers) of priority levels 𝐻,𝐻 − 1, . . . , 𝐻 − ℎ + 1. We

consider a node of priority level 𝐻 − ℎ.
Induction Step – Case 1: Consider a dispatcher node 𝑢𝑛 of priority level 𝐻 − ℎ. It is connected

to its primary servers𝑚1, . . . ,𝑚𝐿 of priority level 𝐻 − ℎ + 1, and its secondary server𝑚0 of priority

level 𝐻 − ℎ − 1.

Claim (1.1): We consider the sub-tree rooted at 𝑢𝑛 . Denote the set of dispatchers in the sub-tree

(including 𝑢𝑛) asU𝑛 and the set of servers in the sub-tree asM𝑛 . LetM 𝑗 be the set of server nodes

of priority level𝐻−ℎ+ 𝑗 in the sub-tree. Note thatM1 = {𝑚0, . . . ,𝑚𝐿}. Let J := {3, 5, . . . , ℎ−1 or ℎ}
be the values of 𝑗 corresponding to the server nodes in the sub-tree that are not directly connected to

𝑢𝑛 . Let𝑀ℎ =
∑
𝑗 ∈J |M 𝑗 |, i.e., the total number of servers in the sub-tree. We consider the potential

function 𝑍1 (𝑡) := (𝑀ℎ + 𝐿) · (𝐾 +𝐶) −∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] −∑𝐿
𝑖=1 [𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)].

Note that by the induction hypothesis onClaim (1.1), we have that for each 𝑗 ∈ J ,

∑𝑇
𝑡=𝐶1 (ℎ−1) ln𝑇 P{∃𝑚 ∈

M 𝑗 , 𝑄
ℎ
𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡) ≤ (1−𝜖 𝑗)𝐾} = 𝑂 (1/𝑇). Furthermore, by the induction hypothesis on Claim 2.1,

we have that for each 𝑖 ∈ {1, . . . , 𝐿}, ∑𝑇
𝑡=𝐶1 (ℎ−1) ln𝑇 P{𝑄

ℎ
𝑖 (𝑡) ≥ 𝜖ℎ−1𝐾} = 𝑂 (1/𝑇). We will focus on

the sample paths where none of the above holds, which have a total probability mass of 1−𝑂 (1/𝑇).
This does not affect our regret bound since sample paths of mass 𝑂 (1/𝑇) can only contribute

𝑂 (1)-regret. Furthermore, it also does not affect the conditional expectations since if we condition

on an event with probability 1 −𝑂 (1/𝑇), the expectation is going to change by at most 𝑂 (1/𝑇).
Let 𝑡0 = 𝐶1 (ℎ − 1) ln𝑇 . For 𝑡 ≥ 𝑡0, we have the following observations:

• As𝑄ℎ𝑖 (𝑡) ≤ 𝜖ℎ−1𝐾 and𝑄𝑙𝑖 (𝑡) ≤ 𝐾+𝐶 for all 𝑖 = 1, . . . , 𝐿, we have𝑄ℎ𝑖 (𝑡)+𝑄𝑙𝑖 (𝑡) ≤ (1+𝜖ℎ−1)𝐾+𝐶 .
• It follows that{
∃𝑖 = 1, . . . , 𝐿,𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ (1 − 𝜖ℎ)𝐾

}
⊆


𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)] ≤ (𝐿 − 1) ((1 + 𝜖ℎ−1)𝐾 +𝐶) + (1 − 𝜖ℎ)𝐾


(30)

=


𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)] ≤ (𝐿 − (𝜖ℎ − (𝐿 − 1)𝜖ℎ−1))𝐾 + (𝐿 − 1)𝐶
 . (31)

• Since for each 𝑗 ∈ J ,𝑚 ∈ M 𝑗 , 𝑄
ℎ
𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡) ≤ (1 + 𝜖 𝑗)𝐾 +𝐶 , we have

𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)] ≤ (𝐿 − (𝜖ℎ − (𝐿 − 1)𝜖ℎ−1))𝐾 + (𝐿 − 1)𝐶
 (32)

⊆

∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] +
𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:26 Xinzhe Fu and Eytan Modiano

≤
∑
𝑗 ∈J

∑
𝑚∈M 𝑗

((1 + 𝜖 𝑗)𝐾 +𝐶) + (𝐿 − (𝜖ℎ − (𝐿 − 1)𝜖ℎ−1))𝐾 + (𝐿 − 1)𝐶
 (33)

=


∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] +
𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)]

≤ 𝑀ℎ (𝐾 +𝐶) + ©­«
∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗
ª®¬𝐾 + (𝐿 − (𝜖ℎ − (𝐿 − 1)𝜖ℎ−1))𝐾 + (𝐿 − 1)𝐶

 (34)

⊆
𝑍1 (𝑡) ≥

©­«𝜖ℎ − (𝐿 − 1)𝜖ℎ−1 −
∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗
ª®¬𝐾

 . (35)

Let 𝛼1 be

(
𝜖ℎ − (𝐿 − 1)𝜖ℎ−1 −

∑
𝑗 ∈J |M 𝑗 |𝜖 𝑗

)
. To prove the claim, it suffices to bound the probability

of 𝑍1 (𝑡) ≥ 𝛼1𝐾 . On the other hand, note that when there exists 𝑖 = 1, . . . , 𝐿 with 𝑄𝑙𝑖 (𝑡) ≤ 𝐾 , the

incoming jobs from 𝑢𝑛 will be sent to one of the servers𝑚1, . . . ,𝑚𝐿 . In this regard, we have the

following observations:

•
{
∃𝑖 = 1, . . . , 𝐿, 𝑄𝑙𝑖 (𝑡) ≤ 𝐾

}
⊇
{∑𝐿

𝑖=1𝑄
ℎ
𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ 𝐿𝐾

}
.

• Since for each 𝑗 ∈ J ,𝑚 ∈ M 𝑗 , 𝑄
ℎ
𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡) > (1 − 𝜖 𝑗)𝐾, we have

𝐿∑
𝑖=1

𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ 𝐿𝐾

 (36)

⊇

∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] +
𝐿∑
𝑖=1

[𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡)] ≤
∑
𝑗 ∈J

|M 𝑗 | (1 − 𝜖 𝑗)𝐾 + 𝐿𝐾
 (37)

=

𝑍1 (𝑡) ≥
∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗𝐾 + (𝑀ℎ + 𝐿)𝐶
 (38)

Let 𝛽1 be
∑
𝑗 ∈J |M 𝑗 |𝜖 𝑗 . It follows that

E
[
𝑍1 (𝑡 + 1) − 𝑍1 (𝑡) | 𝑍1 (𝑡) ≥ 𝛽1𝐾 + (𝑀ℎ + 𝐿)𝐶

]
(39)

≤E

∑

𝑚∈M𝑛

𝑐𝑚 (𝑡) −
∑
𝑛′∈U𝑛

𝑎𝑛′ (𝑡) | 𝑍1 (𝑡) ≥ 𝛽1𝐾 + (𝑀ℎ + 𝐿)𝐶
 (40)

=
∑

𝑚∈M𝑛

𝜇𝑚 −
∑
𝑛′∈U𝑛

𝜆𝑛′ = −𝑟𝑛𝑚0
≤ −Δ2. (41)

Let 𝜂1 (𝑡) = |𝑍1 (𝑡 + 1) −𝑍1 (𝑡) |. We have that |𝜂1 (𝑡) | ≤ 2(|M𝑛 | + |U𝑛 |)𝐶 := 𝐺1 ·𝐶 with probability

1. It follows that,

We have for any constant 𝑟 = 1

4𝐺1𝐶
,

𝑒𝛾𝑍1 (𝑡+1) = 𝑒𝛾𝑍1 (𝑡) · 𝑒𝛾𝜂1 (𝑡) ≤ 𝑒𝛾𝑍1 (𝑡) · [1 + 𝛾𝜂1 (𝑡) + 2𝛾2𝜂2
1
(𝑡)] .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:27

Similarly as in (10) and (11), it follows that

E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) < 𝛽1𝐾 + (𝑀ℎ + 𝐿)𝐶] ≤ 𝑒𝛾𝑍1 (𝑡) · 𝑒𝛾𝐺1𝐶
(42)

E[𝑒𝛾𝑍1 (𝑡+1) | 𝑍1 (𝑡) ≥ 𝛽1𝐾 + (𝑀ℎ + 𝐿)𝐶] ≤ 𝑒𝛾𝑍1 (𝑡) · [1 + 𝛾𝜂1 (𝑡) − 2𝛾2𝜂2
1
(𝑡)] ≤ 𝑒𝛾𝑍1 (𝑡) ·

[
1 − Δ2

2

𝛾

]
,

(43)

Going through a similar derivation as (15), we obtain that

E[𝑒𝛾𝑍1 (𝑡+1)] ≤
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍1 (𝑡)] + 𝑒𝛾 (𝐺1𝐶+𝛽1𝐾+(𝑀ℎ+𝐿)𝐶) . (44)

Iterating over inequality (15) and noting that 𝑍1 (𝑡0) ≤ (𝑀ℎ + 𝐿) (𝐾 +𝐶), we obtain

E[𝑒𝛾𝑍1 (𝑡)] ≤ 2𝑒𝛾 ((𝐺1+𝑀+𝐿)𝐶+𝛽1𝐾)

Δ2𝛾
+
[
1 − Δ2𝛾

2

]𝑡−𝑡0
𝑒𝛾 (𝑀ℎ+𝐿) (𝐾+𝐶) . (45)

It follows that after 𝑡 − 𝑡0 ≥ 𝐶1 ln𝑇 ,

[
1 − Δ2𝛾

2

]𝑡
𝑒𝛾 (𝑀ℎ+𝐿) (𝐾+𝐶) ≤ 1, i.e., 𝑡 ≥ 𝐶1ℎ ln𝑇 ,

P[𝑍1 (𝑡) > 𝛼1𝐾] = P[𝑒𝛾𝑍1 (𝑡) ≥ 𝑒𝛼1𝐾𝑟] ≤ E[𝑒
𝛾𝑍1 (𝑡)]
𝑒𝛼1𝐾𝑟

(46)

≤ 2𝑒𝛾 ((𝐺1+𝑀+𝐿)𝐶−(𝛼1−𝛽1)𝐾)

Δ2𝛾
+ 1

𝑒𝛼1𝐾𝑟
, (47)

Observe that

𝛼1 − 𝛽1 =
©­«𝜖ℎ − (𝐿 − 1)𝜖ℎ−1 −

∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗
ª®¬ − ©­«

∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗
ª®¬

=𝜖ℎ − (𝐿 − 1)𝜖ℎ−1 − 2

∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗 ≥
𝜖ℎ

4

=
1

4 · (4(𝑀 + 𝑁))𝐻−ℎ .

It follows from (47) that P[𝑍1 (𝑡) ≥ 𝛼1𝐾] ≤ 2

𝑇 2
for 𝑡 ≥ 𝐶1ℎ ln𝑇 . Thus, we have

∑𝑇
𝑡=𝐶1ℎ ln𝑇

P[∃𝑖 =
1, . . . , 𝐿,𝑄ℎ𝑚𝑖

(𝑡) +𝑄𝑙𝑚𝑖
(𝑡) ≤ (1 − 𝜖ℎ)𝐾] = 𝑂 (1

𝑇
).

Claim (1.2): For each primary server 𝑖 = 1, . . . , 𝐿 of 𝑢𝑛 , we denote its set of primary dispatchers

asU𝑖 . The number of jobs from 𝑢𝑛 completed at each 𝑠𝑖 is equal to the difference between the total

number of jobs completed at 𝑠𝑖 and the number of jobs from U𝑖 completed at 𝑠𝑖 . To establish an

upper bound on

∑𝑇
𝑡=1 E[𝑐𝑛𝑚𝑖

(𝑡)], we observe that

𝑇∑
𝑡=1

E[𝑐𝑛𝑚𝑖
(𝑡)] ≤

𝑇∑
𝑡=1

E

𝑐𝑚𝑖
(𝑡) −

∑
𝑛′∈U𝑖

𝑐𝑛′𝑚𝑖
(𝑡)

 . (48)

Since by induction hypothesis of Claim (1.2) for the dispatchers inU𝑖 , we have for each 𝑛
′ ∈ U𝑖 ,

E[∑𝑇
𝑡=1 𝑐𝑛′𝑚𝑖

(𝑡)] ≥ 𝑇𝑥𝑛′𝑚𝑖
−𝑂 (log𝑇). Hence,

𝑇∑
𝑡=1

E

𝑐𝑚𝑖
(𝑡) −

∑
𝑛′∈U𝑖

𝑐𝑛′𝑚𝑖
(𝑡)

 ≤ 𝑇 · ©­«𝜆𝑖 −
∑
𝑛′∈U

𝑥𝑛′𝑚𝑖

ª®¬ +𝑂 (log𝑇) = 𝑇 · 𝑥𝑛𝑚𝑖
+𝑂 (log𝑇), (49)

where the last equality follows from the constraint satisfied by the extreme point.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:28 Xinzhe Fu and Eytan Modiano

To establish a lower bound on

∑𝑇
𝑡=1 E[𝑐𝑛𝑚𝑖

(𝑡)], we observe that
𝑇∑
𝑡=1

E[𝑐𝑛𝑚𝑖
(𝑡)] (50)

≥
𝑇∑
𝑡=1

E

𝑐𝑚𝑖
(𝑡) −

∑
𝑛′∈U𝑖

𝑐𝑛′𝑚𝑖
(𝑡)

 −𝐶 ·
𝑇∑
𝑡=1

P{𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ 𝐶}, (51)

as 𝐶 · ∑𝑇
𝑡=1 P{𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ 𝐶} upper-bounds the total amount of wasted service at server𝑚𝑖

due to idleness. By the induction hypothesis for dispatchers in U𝑖 , we have for each 𝑛′ ∈ U𝑖 ,

E[∑𝑇
𝑡=1 𝑐𝑛′𝑚𝑖

(𝑡)] ≤ 𝑇𝑟𝑛′𝑚𝑖
+𝑂 (log𝑇). Combining this with the Claim (1.1) for dispatcher 𝑢𝑛 that

we just proved, we have

𝑇∑
𝑡=1

E

𝑐𝑚𝑖
(𝑡) −

∑
𝑛′∈U𝑖

𝑐𝑛′𝑚𝑖
(𝑡)

 −𝐶 ·
𝑇∑
𝑡=1

E[P{𝑄ℎ𝑖 (𝑡) +𝑄𝑙𝑖 (𝑡) ≤ 𝐶}] (52)

≥𝑇 · ©­«𝜆𝑖 −
∑
𝑛′∈U

𝑟𝑛′𝑚𝑖

ª®¬ −𝑂 (log𝑇) −𝑂 (log𝑇) = 𝑇 · 𝑟𝑛𝑚𝑖
−𝑂 (log𝑇), (53)

from which Claim (1.2) follows.

Induction Step – Case 2. Consider a server node 𝑠𝑚 of priority level 𝐻 − ℎ. It is connected to

its primary dispatchers 𝑛1, . . . , 𝑛𝐿 of priority level 𝐻 − ℎ + 1, and its secondary dispatcher 𝑛0 of

priority level 𝐻 − ℎ − 1.

Claim (2.1): We consider the sub-tree rooted at 𝑠𝑚 . Denote the set of dispatchers in the sub-tree

as U𝑚 and the set of servers in the sub-tree (including 𝑠𝑚) as S𝑚 . Let M 𝑗 be the set of server

nodes of priority level 𝐻 − ℎ + 𝑗 in the sub-tree. Let J := {2, 4, . . . , ℎ − 1 or ℎ} be the values of
𝑗 corresponding to the server nodes in the sub-tree that are not 𝑠𝑚 . Let 𝑀ℎ =

∑
𝑗 ∈J |M 𝑗 |, i.e.,

the total number of servers (excluding 𝑠𝑚) in the sub-tree. We consider the potential function

𝑍2 (𝑡) :=
∑
𝑗 ∈J

∑
𝑚′∈M 𝑗

[𝑄ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡)] +𝑄ℎ𝑚 (𝑡).

Again, similar as in the induction step of Claim (1.1), we focus on the sample paths where

the high probability events of the inductive hypothesis hold, which have a probability mass of

1 − 𝑂 (1/𝑇). For 𝑡 ≥ 𝑡0 = 𝐶 − 1(ℎ − 1) ln𝑇 , according to the induction hypothesis, we have the

following observations:

• Using Claim (1.1) of the induction hypothesis, for each 𝑗 ∈ J ,𝑚′ ∈ M 𝑗 , 𝑄
ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡) >

(1 − 𝜖 𝑗)𝐾 , we have{
𝑄ℎ𝑚 (𝑡) ≥ 𝛿ℎ𝐾

}
(54)

⊆

∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] +𝑄ℎ𝑚 (𝑡) ≥
∑
𝑗 ∈J

|M 𝑗 | (1 − 𝜖 𝑗)𝐾 + 𝜖ℎ𝐾
 (55)

=

𝑍2 (𝑡) ≥
∑
𝑗 ∈J

|M 𝑗 | (1 − 𝜖 𝑗)𝐾 + 𝜖ℎ𝐾
 (56)

Let 𝛼2 =
∑
𝑗 ∈J |M 𝑗 | (1 − 𝜖 𝑗) + 𝜖ℎ . To establish the claim, it suffices to bound the probability

of 𝑍2 (𝑡) ≥ 𝛼2𝐾 .
• Using Claim (2.1) of the induction hypothesis, and that 𝑄𝑙

𝑚′ (𝑡) ≤ 𝐾 +𝐶 for all𝑚′
, we have

that for𝑚′ ∈ M 𝑗 , 𝑄
ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡) ≤ (1 + 𝜖 𝑗)𝐾 +𝐶 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:29

• When 𝑄ℎ𝑚 (𝑡) ≥ 𝐶 , since 𝑄ℎ𝑚 (𝑡) is the high-priority queue of 𝑠𝑚 and the offered service

𝑐𝑚 (𝑡) ≤ 𝐶 , at time 𝑡 , all of the offered service of 𝑠𝑚 will be used on the queue 𝑄ℎ𝑚 (𝑡).
Furthermore,

{𝑄ℎ𝑚 (𝑡) ≥ 𝐶} (57)

⊇

∑
𝑗 ∈J

∑
𝑚∈M 𝑗

[𝑄ℎ𝑚 (𝑡) +𝑄𝑙𝑚 (𝑡)] +𝑄ℎ𝑚 (𝑡) ≥ 𝐶 +
∑
𝑗 ∈J

∑
𝑚∈M 𝑗

((1 + 𝜖 𝑗)𝐾 +𝐶)
 (58)

=

𝑍2 (𝑡) ≥
∑
𝑗 ∈J

|M 𝑗 | (1 + 𝜖 𝑗)𝐾 + (𝑀ℎ + 1)𝐶
 . (59)

Furthermore, after 𝑡 ≥ 𝑡0, for each 𝑗 ∈ J ,𝑚′ ∈ M 𝑗 in the tree, 𝑄ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡) ≥ (1 − 𝜖 𝑗)𝐾 > 𝐶 .

Hence, there will be no idleness in server 𝑠𝑚′ . Let 𝛽2 =
∑
𝑗 ∈J |M 𝑗 | (1 + 𝜖 𝑗). We have

E
[
𝑍2 (𝑡 + 1) − 𝑍2 (𝑡) | 𝑍2 (𝑡) ≥ 𝛽2𝐾 + (𝑀ℎ + 1)𝐶

]
(60)

≤E

∑
𝑛∈U𝑚

𝑎𝑛 (𝑡) −
∑

𝑚′∈M𝑚

𝑐 ′𝑚 (𝑡) | 𝑍2 (𝑡) ≥ 𝛽2𝐾 + (𝑀ℎ + 1)𝐶
 (61)

=
∑

𝑚′∈M𝑚

𝜆′𝑚 −
∑
𝑛∈U𝑚

𝜇𝑛 = −𝑟𝑛0𝑚 ≤ −Δ2, (62)

Let 𝜂2 (𝑡) := 𝑍2 (𝑡 + 1) − 𝑍2 (𝑡), and note that |𝜂2 (𝑡) | ≤ (|M𝑚 | + |U𝑛 |)𝐶 := 𝐺2𝐶 with probability 1.

It follows that, have for any constant 𝑟 = 1

4𝐺2𝐶
,

𝑒𝛾𝑍2 (𝑡+1) = 𝑒𝛾𝑍2 (𝑡) · 𝑒𝛾𝜂2 (𝑡) ≤ 𝑒𝛾𝑍2 (𝑡) · [1 + 𝑟𝜂2 (𝑡) + 2𝛾2𝜂2
2
(𝑡)] .

Similarly as in (10) and (11), we have

E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍2 (𝑡) < 𝛽2𝐾 + (𝑀ℎ + 1)𝐶] ≤ 𝑒𝛾𝑍2 (𝑡) · 𝑒𝛾𝐺2𝐶
(63)

E[𝑒𝛾𝑍2 (𝑡+1) | 𝑍2 (𝑡) ≥ 𝛽2𝐾 + (𝑀ℎ + 1)𝐶] ≤ 𝑒𝛾𝑍2 (𝑡) · [1 + 𝑟𝜂2 (𝑡) − 2𝛾2𝜂2
2
(𝑡)] ≤ 𝑒𝛾𝑍2 (𝑡) ·

[
1 − Δ2

2

𝛾

]
.

(64)

Going through a similar derivation as in (15), we obtain that

E[𝑒𝛾𝑍2 (𝑡+1)] ≤
[
1 − Δ2𝛾

2

]
· E[𝑒𝛾𝑍2 (𝑡)] + 𝑒𝛾 ((𝐺2+𝑀ℎ+1)𝐶+𝛽2) . (65)

Iterating over inequality (65) and noting that 𝑍2 (𝑡0) ≤ (𝑀ℎ + 1) · (𝐾 +𝐶), we obtain

E[𝑒𝛾𝑍1 (𝑡)] ≤ 2𝑒𝛾 ((𝐺1+𝑀+𝐿)𝐶+𝛽1𝐾)

Δ2𝛾
+
[
1 − Δ2𝛾

2

]𝑡−𝑡0
𝑒𝛾 (𝑀ℎ+𝐿) (𝐾+𝐶) . (66)

It follows that after 𝑡 − 𝑡0 ≥ 𝐶1 ln𝑇 ,

[
1 − Δ2𝛾

2

]𝑡
𝑒𝛾 (𝑀ℎ+1) (𝐾+𝐶) ≤ 1, i.e., 𝑡 ≥ 𝐶1ℎ ln𝑇 ,

P[𝑍2 (𝑡) > 𝛼2𝐾] = P[𝑒𝛾𝑍1 (𝑡) ≥ 𝑒𝛼2𝐾𝛾] ≤ E[𝑒
𝛾𝑍1 (𝑡)]
𝑒𝛼2𝐾𝛾

(67)

≤ 2𝑒𝛾 (𝐺2+𝑀ℎ+1)𝐶−(𝛼2−𝛽2)𝐾)

Δ2𝛾
+ 1

𝑒𝛼2𝐾𝑟
, (68)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:30 Xinzhe Fu and Eytan Modiano

Observe that

𝛼2 − 𝛽2 =
©­«
∑
𝑗 ∈J

|M 𝑗 | (1 − 𝜖 𝑗) + 𝜖ℎ
ª®¬ − ©­«

∑
𝑗 ∈J

|M 𝑗 | (1 + 𝜖 𝑗)
ª®¬

=𝜖ℎ − 2

∑
𝑗 ∈J

|M 𝑗 |𝜖 𝑗 ≥
1

4𝜖ℎ
=

1

4 · (4(𝑀 + 𝑁))𝐻−ℎ .

It follows from (68) that P[𝑍2 (𝑡) ≥ 𝛼2𝐾] ≤ 2

𝑇 2
for 𝑡 ≥ 𝐶1ℎ ln𝑇 . Thus, we have

∑𝑇
𝑡=𝐶1ℎ log𝑇

P[𝑄ℎ𝑚 (𝑡) ≥
𝜖ℎ𝐾] = 𝑂 (1

𝑇
).

Claim (2.2): For each 𝑖 = 1, . . . , 𝐿, we first note that the number of jobs from 𝑢𝑖 completed at 𝑠𝑚
is upper bounded by the total number of jobs sent to 𝑠𝑚 from 𝑢𝑖 , which is further upper bounded

by the difference between the total incoming jobs from 𝑢𝑖 and the number of jobs completed by the

primary servers of 𝑢𝑖 . More formally, letM𝑖 be the set of primary servers of 𝑢𝑖 , we have

𝑇∑
𝑡=1

E[𝑐𝑛𝑖𝑚 (𝑡)] ≥
𝑇∑
𝑡=1

E[𝑎𝑛𝑖 (𝑡)] −
𝑇∑
𝑡=1

∑
𝑚′∈M𝑖

E[𝑐𝑛𝑖𝑚′ (𝑡)] . (69)

Thus, invoking the induction hypothesis on Claim (1.2) of 𝑢𝑖 , we obtain that

𝑇∑
𝑡=1

E[𝑐𝑛𝑖𝑚 (𝑡)] ≥ 𝑇 · ©­«𝜆𝑖 −
∑

𝑚′∈M𝑖

𝑟𝑛𝑖𝑚′
ª®¬ −𝑂 (log𝑇) = 𝑇𝑟𝑛𝑖𝑚 −𝑂 (log𝑇) . (70)

On the other hand, the total number of jobs completed at 𝑠𝑚 from 𝑢𝑖 is lower bounded by the total

number of incoming jobs from 𝑢𝑖 minus the total number of jobs completed at the primary servers

of 𝑢𝑖 , the number of unfinished jobs from 𝑢𝑖 (in the queues), and the total number of jobs discarded

from 𝑢𝑖 due to all of its primary servers and secondary server (𝑠𝑚) having queue length larger than

𝐾 . It follows that,

𝑇∑
𝑡=1

E[𝑐𝑛𝑖𝑚 (𝑡)] (71)

≥
𝑇∑
𝑡=1

E[𝑎𝑛𝑖 (𝑡)] −
𝑇∑
𝑡=1

∑
𝑚′∈M𝑖

E[𝑐𝑛𝑖𝑚′ (𝑡)] −
∑

𝑚′∈M𝑖

E[𝑄𝑙𝑚′ (𝑇)] − E[𝑄ℎ𝑚 (𝑇)] −𝐶 ·
𝑇∑
𝑡=1

P{𝑄ℎ𝑚 (𝑡) > 𝐾}

(72)

≥ ©­«𝜆𝑖 −
∑

𝑚′∈M𝑖

𝑟𝑛𝑖𝑚′
ª®¬ −𝑂 (log𝑇) −𝑂 (log𝑇) −𝑂 (log𝑇) = 𝑇𝑟𝑛𝑖𝑚 −𝑂 (log𝑇), (73)

where the last inequality follows from Claim (2.1) of 𝑠𝑚 that we just proved and the induction

hypothesis of Claim (1.2) on 𝑢𝑖 . □

Remark: from the proof of Theorem 1 we see that to achieve a logarithmic utility gap, it suffices

to set 𝐾 as 8 · [4(𝑀 +𝑁)]𝐻 log𝑇 , where 𝐻 is the maximum height of the trees in the forest induced

by the extreme point. Therefore, the value of 𝐾 need not depend on Δ2 (although the upper bound

on the utility gap is proportional to
1

Δ2

). Moreover, as we did not tighten the bound in terms of

constant factors the constant factor in the value of 𝐾 could actually be set as a much smaller value.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

Joint Learning and Control in Stochastic Queueing Networks with Unknown Utilities 58:31

D PROOF OF THEOREM 2
Proof. Throughout the proof, we will refer to the events that happen with probability at least

1 −𝑂 (1
𝑇
) as events “with high probability”. Similarly as in Theorem 1, the threshold 𝐾 is chosen

to be 8(4(𝑀 + 𝑁))𝐻 log𝑇 , where 𝐻 upper-bounds the maximum height of the tree in the forest

induced by any extreme point (e.g. 𝐻 = 𝑀 + 𝑁). Throughout the proof, we will make arguments

about the extreme points of P, which are most conveniently stated with respect to the standard

form of P. Recall that the standard form of P has a feasibility region of the form 𝐷 = {𝒙 | 𝑨𝒙 = 𝒃},
where 𝒙 = {𝑟𝑛𝑚, 𝑦𝑚} and 𝑨 represents the constraint matrix and 𝒃 represents the constraint vector

(formed by the arrival rates and service rates). We use 𝑩 ⊆ 𝑨 to denote a generic basis (𝑘 columns

of 𝑨). We will use 𝒙 or 𝒓 (when we are only focusing on the {𝑟𝑛𝑚} components) to denote a generic

extreme point.

The key of the proof is to show the claim that with high probability, we will be able obtain at

least one utility observation of (𝑢𝑛, 𝑠𝑚)-job for each 𝑟𝑛𝑚 > 0. This, combined with Corollary 3 and

Theorem 1 will lead to the proof of the theorem. We formally state the claim in the Lemma 2.

Lemma 2. With probability 1 −𝑂 (1
𝑇
), for each episode 𝑒 ≥ 2, at least one (𝑢𝑛, 𝑠𝑚)-job is completed

during episode 𝑒 for every 𝑟𝑒𝑛𝑚 > 0.

Proof of Lemma 2: First, we note that after 𝑒 ≥ 2, 𝑡𝑒 ≥ log
2𝑇 . It follows from Azuma-Hoeffding

inequality that with high probability, | ˆ𝜆𝑡𝑛 − 𝜆𝑛 | = 𝑂

(√
1

log𝑇

)
, |𝜇𝑡𝑚 − 𝜇𝑚 | = 𝑂

(√
1

log𝑇

)
for all

𝑛,𝑚, 𝑡 ≥ 𝑡𝑒 . Consider a generic episode 𝑒 ≥ 2 with the extreme point 𝒓𝑒 of �̂�𝑒 used in the CB-JSQ-𝐾

policy.

Let 𝑩𝑒 be the basis corresponding to 𝒓𝑒 . We will begin by showing that 𝑩𝑒 is a feasible basis with
respect to the true feasibility region 𝐷 of P. Indeed, let 𝒃𝑒 be the constraint vector of �̂�𝑒 based
on the empirical means of arrivals and services. Since 𝒓𝑒 is feasible with respect to �̂�𝑒 , we have

𝑩−1
𝑒 𝒃𝑒 ≥ 0. Recall that 𝒃 is the constraint vector of the true feasibility region 𝐷 . Since with high

probability, | |𝒃 − 𝒃𝑒 | | = 𝑂 (
√

1

log𝑇
), for each component 𝑖 , (𝑩−1

𝑒 𝒃)𝑖 ≥ −𝐶 ·
√

1

log𝑇
for some constant

𝐶 . Suppose for the sake of contradiction that 𝑩𝑒 is not feasible with respect to 𝐷 , then by condition

2, there exists a component 𝑖 such that (𝑩−1
𝑒 𝒃)𝑖 ≤ −Δ2, which leads to a contradiction. Therefore,

𝑩𝑒 is a feasible basis with respect to 𝐷 . It follows that all the drift inequalities (under the arrival

rates {𝜆𝑛} and service rates {𝜇𝑚}) in the proof of Theorem 1 holds for the JSQ-𝐾 policy based

on the forest T𝑒 except possibly for the root servers (since the extreme point can be degenerate).

Thus, after𝑂 (log𝑇) time slots from the beginning of the episode, with high probability, the servers

(except for the root servers) are never idle, and the dispatchers never discard incoming jobs (except

possibly for the dispatchers directly connected to a root server). We will again focus on this set of

sample paths, which as have been shown will not affect the regret analysis.

Now, we will show the claim that with high probability, at least one (𝑢𝑛, 𝑠𝑚)-job is completed for

every 𝑟𝑒𝑛𝑚 > 0 during episode 𝑒 . First, we consider the case where 𝑢𝑛 is a primary dispatcher of

𝑠𝑚 , i.e., the jobs from 𝑢𝑛 receives priority service at 𝑠𝑚 in its (virtual) priority queue 𝑄ℎ𝑚 . Note that

as 𝑄ℎ𝑚 (𝑡) ≤ 𝐾 +𝐶 = 𝑂 (log𝑇), the queueing delay experienced by any (𝑢𝑛, 𝑠𝑚)-job is in 𝑂 (log𝑇)
with high probability. Furthermore, we show that within 𝑂 (log𝑇) time slots from 𝑡𝑒 , dispatcher

𝑢𝑛 will send at least one job to 𝑄ℎ𝑚 . This, combined with the previous argument will prove the

claim. Indeed, let𝑚1, . . . ,𝑚𝐿 be the primary servers of 𝑢𝑛 . By the construction of JQS-𝐾 , dispatcher

𝑢𝑛 will send incoming jobs to 𝑠𝑚 when 𝑄𝑙𝑚𝑖
> 𝐾 for all 𝑖 = 1, . . . , 𝐿. Let M𝑛 be the set of servers

in the sub-tree of 𝑢𝑛 . From previous discussion and using condition 2, we have that the function∑
𝑚′∈M𝑛

𝑄ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡) has positive drift of at least Δ2 if there exists 𝑖 = 1, . . . , 𝐿 with𝑄𝑙𝑚𝑖

(𝑡) ≤ 𝐾 .

Note that this still holds even when 𝑠𝑚 is a root server. Hence, following a similar drift analysis in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

58:32 Xinzhe Fu and Eytan Modiano

the proof of Theorem 1, after at most 𝑂 (log𝑇) time slots, all queues 𝑄𝑙𝑚𝑖
for 𝑖 = 1, . . . , 𝐿 will be

greater than 𝐾 and the 𝑢𝑛 will send the incoming jobs to 𝑠𝑚 .

Second, we consider the case where 𝑢𝑛 is the secondary dispatcher of 𝑠𝑚 , i.e., the jobs from 𝑢𝑛
receives service at 𝑠𝑚 in its (virtual) low-priority queue 𝑄𝑙𝑚 when 𝑄ℎ𝑚 is empty. We will show that

with high probability, 𝑄ℎ𝑚 will be empty (and jobs in 𝑄𝑙𝑚 will be served) every 𝑂 (log𝑇) time slots.

Indeed, consider the sub-tree at 𝑠𝑚 and letM𝑚 be the set of servers in the sub-tree (not including

𝑠𝑚). From previous discussion, we have that the function 𝑄𝑎𝑚 (𝑡) +∑
𝑚′∈M𝑚

𝑄ℎ
𝑚′ (𝑡) +𝑄𝑙𝑚′ (𝑡) has a

negative drift of at least Δ2 when 𝑄
𝑎
𝑚 (𝑡) is not idle. Hence, following a similar drift analysis in the

proof of Theorem 1, after at most 𝑂 (log𝑇) time slots, 𝑄ℎ𝑚 will be idle and 𝑄𝑙𝑚 will receive service.

Since𝑄𝑙𝑚 is bounded by 𝐾 +𝐶 = 𝑂 (log𝑇), it will follow that the queueing delay experienced by any

job in 𝑄𝑙𝑚 is in 𝑂 (log2𝑇). As 𝑠𝑚 is a primary server of 𝑢𝑛 , there will be at least one (𝑢𝑛, 𝑠𝑚)-job in
𝑄𝑙𝑚 within 𝑂 (log𝑇) slots from 𝑡𝑒 . Combining the above arguments, we prove that there is at least

one (𝑢𝑛, 𝑠𝑚)-job completed in the episode of length𝑊 = log
2𝑇 log log𝑇 with high probability. □

From Lemma 2, we see that we can focus on the set of sample paths where the necessary utility

observations are obtained for every episode 𝑒 ≥ 2. Let 𝒓∗𝑒 be the optimal extreme point (with respect

to the true utility vector 𝒗) of �̂�𝑒 . The analysis in [17] directly implies the following extension of

Corollary 3 that with probability at least 1 − 1

𝑇
, 𝒓𝑒 ≠ 𝒓∗𝑒 for 𝑂 (log3𝑇) episodes. We will proceed to

show in Lemma 3 that for 𝑒 ≥ 2, 𝒓∗𝑒 induces the same forest as the optimal extreme point 𝒓∗ of 𝐷 .

Lemma 3. For 𝑒 ≥ 2, the optimal extreme point of �̂�𝑒 induces the same forest as the optimal extreme
point of 𝐷 .

Proof of Lemma 3: Let 𝐵∗ be the basis of the optimal extreme point 𝒓∗ of 𝐷 . Since from the

previous discussion, for 𝑒 ≥ 2, | |𝒃 − 𝒃𝑒 | | = 𝑂 (
√

1

log𝑇
) with high probability, we have that 𝑩∗

is

also a feasible basis for �̂�𝑒 . Suppose for the sake of contradiction, the optimal extreme point 𝒓𝑒 of
�̂�𝑒 has a different basis 𝑩𝑒 . From the proof of Lemma 3, we see that 𝑩𝑒 is also a feasible extreme

point of 𝐷 . Let �̃� := 𝑩−1
𝑒 𝒃 be the extreme point of 𝐷 with respect to 𝑩𝑒 , and 𝒓∗𝑒 := (𝑩∗)−1𝒃𝑒 be

the extreme point of �̂�𝑒 corresponding to the basis 𝑩∗
. We have that | |𝒓∗𝑒 − 𝒓∗ | | = 𝑂 (

√
1

log𝑇
) and

| |𝒓𝑒 − �̃� | | = 𝑂 (
√

1

log𝑇
). It follows that |𝒗 · 𝒓∗ − 𝒗 · �̃� | = 𝑂 (

√
1

log𝑇
), which contradicts condition 1.

Thus, we conclude the proof of the lemma.

From Lemma 3, we conclude that with high probability, there are at most 𝑂 (log3𝑇) episodes
where T𝑒 is not equal to the forest induced by the optimal extreme point 𝒓∗. We divide the time

horizon into periods, where each period is formed by consecutive episodes with the same forest. The

regret of the CB-JSQ-𝐾 policy is the sum of the regret over each period. We will call a period/episode

correct if the spanning forest of the period/episode coincides with the optimal, and a period/episode

incorrect otherwise. Since there are at most𝑂 (log3𝑇) episodes where T𝑒 is not equal to the optimal

forest, there are at most 𝑂 (log3𝑇) periods. The total length of incorrect period is upper bounded

by the total number of incorrect episodes times the episode length, which is 𝑂 (log5𝑇 log log𝑇)
time slots. Therefore, the regret incurred in incorrect period is in 𝑂 (log5𝑇 log log𝑇). Whenever

the policy switches between periods, it discards all the jobs in the queue, which will in total incur

𝑂 (log4𝑇)-regret as the total queue length is in 𝑂 (log𝑇). Finally, by Theorem 1, as the optimal

extreme point is non-degenerate, the regret incurred in each correct period is 𝑂 (log𝑇). Therefore,
in summary, the regret of the CB-JSQ-𝐾 policy is in 𝑂 (log5𝑇 log log𝑇).

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 58. Publication date: December 2022.

	Abstract
	1 Introduction
	2 Model and Problem Formulation
	3 Preliminaries
	3.1 The Static Linear Program
	3.2 Structure of the Extreme Points
	3.3 Conditions on Network Statistics

	4 Overview and Discussion of Results
	4.1 Overview of Results
	4.2 Discussion

	5 The Dual-Level JSQ-K Policy
	5.1 Priority Levels Induced by Extreme Point
	5.2 The Control Policy
	5.3 Analysis

	6 Learning Algorithm and the Joint Policy
	6.1 Learning Algorithm: The Confidence-Ball Algorithm
	6.2 The Confidence-Ball JSQ-K Policy

	7 Simulations
	8 Conclusion
	Acknowledgments
	References
	A Proof of Proposition 2
	B Regret Lower Bound of static Policies
	C Proof of Theorem 1
	D Proof of Theorem 2

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 39.90, 56.83 Width 406.20 Height 79.01 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 39.9021 56.8271 406.2033 79.0061

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 32
 0
 1

 1

 HistoryList_V1
 qi2base

