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Information Freshness in Multihop
Wireless Networks
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Abstract— We consider the problem of minimizing age of
information in multihop wireless networks and propose three
classes of policies to solve the problem - stationary randomized,
age difference, and age debt. For the unicast setting with fixed
routes between each source-destination pair, we first develop a
procedure to find age optimal Stationary Randomized policies.
These policies are easy to implement and allow us to derive
closed-form expression for average AoI. Next, for the same
unicast setting, we develop a class of heuristic policies, called
Age Difference, based on the idea that if neighboring nodes try
to reduce their age differential then all nodes will have fresher
updates. This approach is useful in practice since it relies only
on the local age differential between nodes to make scheduling
decisions. Finally, we propose the class of policies called Age Debt,
which can handle 1) non-linear AoI cost functions; 2) unicast,
multicast and broadcast flows; and 3) no fixed routes specified
per flow beforehand. Here, we convert AoI optimization problems
into equivalent network stability problems and use Lyapunov
drift to find scheduling and routing schemes that stabilize the
network. We also provide numerical results comparing our
proposed classes of policies with the best known scheduling and
routing schemes available in the literature for a wide variety of
network settings.

Index Terms— Age of information, wireless networks, schedul-
ing, multi-hop networks.

I. INTRODUCTION

EMERGING applications such as networked control sys-
tems, real-time surveillance and monitoring, augmented

and virtual reality, cloud gaming, and caching at the wire-
less edge rely crucially on the continuous delivery of fresh
updates over communication networks. Further, exchanging
fresh information updates over multi-hop wireless networks
is gaining increasing relevance with the advent of ad-hoc
networked wireless systems such as internet of things (IoT),
vehicular networks, and networks of unmanned aerial vehicles.

These systems differ from the traditional communication
systems in two ways. In traditional communication systems,
data or packet arrival is assumed to be an exogenous process
that cannot be controlled. However, in a lot of real-time
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Fig. 1. Age of Information (AoI) as a function of time. Here, ti is the time
of generation of the ith packet at the source, and t′i is the time of its reception
at the destination node.

applications, the generation of update packets, such as sensor
data, can be controlled. It has been shown [1] that generating
update packets at the right rate can improve freshness, striking
a balance between too high a rate of generation that results in
network congestion and too low a rate that results in updates
being sent too infrequently.

Secondly, traditional communication systems use packet
centric performance measures such as throughput or delay to
characterize performance. These performance measures do not
fully capture the information freshness paradigm. For example,
delay of a stale packet, that got caught in the network due to
network clogging, doesn’t need to be accounted for as long
as the intended ground station gets fresh information regularly
via other, promptly received, update packets.

A new performance measure, called Age of information
(AoI), was proposed in [2] and [1] to measure information
freshness at the destination node. AoI at the destination node
at time t, is the time elapsed since the last received update
packet was generated. Figure 1, plots AoI evolving in time.
Whenever the destination node receives a fresh update packet,
the AoI drops to the time elapsed since the received packet’s
generation time, while it grows linearly otherwise.

Over the past decade, there has been a rapidly growing body
of work analyzing AoI in different queuing models [1], [3],
[4], [5], [6], [7], [8], [9], [10] and as a scheduling metric in
single-hop wireless networks [11], [12], [13], [14], [15], [16],
[17]. Next, we review these works briefly. For detailed surveys
on AoI literature, we point the reader to [18] and [19].

Age for FIFO M/M/1, M/D/1, and D/M/1 queues was
analyzed in [1], multiclass FIFO M/G/1 and G/G/1 queues
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were studied in [3], while last-in-first-out (LIFO) queues under
various arrival and service time distributions were studied
in [4], [5], and [6]. AoI for M/M/2 and M/M/∞ queues was
analyzed in [7] and [8], which primarily studied the impact
of out-of-order delivery of packets on age. Effects of packet
error or packet drop on age for the M/M/1 queue, with FIFO
service, was studied in [9]. Closed-form expressions for the
stationary distribution of AoI in single-server queues were
derived in [10].

More recently, a number of works have also looked at AoI
as a metric for designing wireless scheduling policies and
solving the problem of minimizing AoI in single-hop wireless
networks. In [11], [12], [13], [14], [15], [16], and [17], the
authors consider the problem of minimizing AoI in multiple
access type networks with nodes and a single base station,
where only a few links can be activated at any given time.
These works typically prove constant factor optimality of three
classes of policies - randomized, max-weight and Whittle
index based; under both reliable and unreliable channels.
Slotted ALOHA-like random access for AoI minimization has
also been studied in multiple recent works [20], [21], [22].
Further, minimizing general non-linear cost functions of AoI
in single-hop wireless networks has been considered in [23]
and [24].

AoI in multi-hop networks has received limited attention.
AoI in multi-hop networks of queues was studied in [25],
where LIFO queue service was shown to reduce age. Scaling
of AoI in multihop multicast networks was studied in [26].
The optimization of routing paths for a single source sending
updates has been considered in [27]. These works analyze AoI
for specific network settings and do not consider schedul-
ing policy design or handling of multiple sources, different
flow-types or general AoI cost functions.

The main focus of our work is designing scheduling and
routing policies to minimize AoI cost functions over general
multi-hop wireless networks, while handling multiple sources;
unicast, multicast and broadcast flows; as well as unreliable
links. Closer to our work, for the specific case of multihop
wireless networks with only all-to-all broadcast flows, AoI
minimization has been considered in [28] and [29].

We observe that finding low complexity near optimal
scheduling and routing schemes for AoI minimization which
handle general network topologies, interference constraints,
cost functions, different types of flows and link reliabilities
has remained an open problem.

A. Contributions

In this work, we develop a unifying framework for making
routing and scheduling decisions that minimize AoI cost in
general multihop networks. In Section II, we describe the
system model for multihop networks with general interference
constraints; unicast, multicast and broadcast flows; general
non-linear cost functions of AoI; and unreliable links. We con-
sider the problem of minimizing long-term AoI cost over such
networks.

In Section III, we consider the simple class of stationary ran-
domized policies, where scheduling and routing decisions are

taken in an i.i.d. manner from a fixed probability distribution.
We restrict analysis of this class of policies to weighted-sum
AoI minimization over multihop networks with only unicast
flows and known, fixed paths between each source-destination
pair, i.e. we only need to make scheduling decisions and not
routing decisions. First, we derive a closed form expression
for the average AoI for each source-destination pair under
any specified randomized policy. We then show that finding
the best stationary randomized policy for AoI minimization
over multihop networks can be converted into an equivalent
single-hop AoI minimization problem. We discuss examples
of how to solve this optimization problem and provide perfor-
mance bounds which suggest that even the best randomized
policies can be far from optimal in large networks.

In Section IV, we develop a heuristic policy called the Age
Difference policy, based on the idea that if the age differential
between nodes is small, all nodes can get fresh updates and
have low AoI. We also restrict the discussion of this policy
to weighted-sum AoI minimization over multihop networks
with only unicast flows and known, fixed paths between each
source-destination pair. We show that the age difference policy
is a myopic policy that greedily optimizes for a specific AoI
cost in every time-slot. We further discuss simple examples
that illustrate how the age difference policy outperforms all
stationary randomized policies.

In Section V, we consider the multihop problem in full
generality - 1) with non-linear AoI cost functions; 2) unicast,
multicast and broadcast flows and 3) considering both schedul-
ing and routing decisions for optimization. We provide a recipe
to transform AoI optimization problems into network stability
problems. Instead of trying to solve for the best scheduling
and routing policies directly, we assume that we have access
to a set of target values which represent the average age
cost for every flow in the network. These target values could
be application specific freshness requirements provided by a
network administrator, or they could be the solution to an
optimization program that optimizes some utility function of
the average age costs.

In Section V-A, we introduce the notion of Age Debt and
set up a virtual queuing network that is stable if and only if
there exists a feasible network control policy that can achieve
the specified target costs. In Section V-B, we use Lyapunov
drift based methods to stabilize this system of virtual queues
and achieve the desired target age costs. In Section V-D,
we further discuss how to choose the right age cost targets,
when there is no access to either an optimization oracle or
a system administrator specifying requirements for each flow.
Finally, in Section VI, we provide detailed simulation results
that compare our proposed AoI optimization methods with
prior works. We find that Age Debt and its variants perform
as well as or better than the best known scheduling and routing
schemes in a wide variety of network settings.

B. Prior Versions

Preliminary versions of this work appeared in Allerton
2017 [30] and in the INFOCOM AoI Workshop 2021 [31].
In [30], we introduced stationary randomized policies for
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multihop networks while in [31], we introduced the Age
Debt policy. This paper combines these two lines of inquiry
into a general framework for AoI optimization over multihop
wireless networks. In addition, we also propose and analyze a
third policy for AoI minimization called Age Difference and
provide more substantial numerical results.

II. SYSTEM MODEL

Consider a network with N nodes connected by a fixed
undirected graph G(V, E). An edge (i, j) means that nodes i
and j can send packets to one another directly. We assume
that at most one update can be sent over an edge in any
given time-slot and takes exactly one time-slot to get delivered.
We normalize the time-slot duration to unity.

Flows. The network consists of K (≤ N ) source nodes that
generate information updates. All the sources are active, i.e.
they generate fresh updates on demand. A source node k has
to send these updates to a set of Dk ⊂ N destination nodes
in the network. We assume that a set of nodes Ck ⊂ N is
commissioned for each flow k to forward its update packets to
destination nodes. For example, a network administrator could
restrict the paths over which certain flows are allowed. A flow
is characterized by the triplet of source node, its commissioned
nodes, and the destination nodes, namely (k, Ck, Dk). For
simplicity, we use k to denote both the source node k and the
flow corresponding to source node k. Note that a node could
be both a destination node and also a commissioned node
forwarding packets for flow k, i.e. Ck ∩Dk is not necessarily
empty.

Flows can be of three types depending on the number of
destination nodes: (1) unicast: the flow has a single destination
node. (2) multicast: the flow has multiple destination nodes,
which are a strict subset of the remaining nodes. (3) broadcast:
every node other than the source itself is a destination node.
The commissioned nodes can be either a small subset of nodes
in the network needed to reach all the destination nodes, or the
entire network. We assume there to be no queuing at any node
and that each node maintains a single packet buffer for the
freshest packet of each flow. 1

Interference and Link States. We consider unreliable links
as well as general interference constraints, i.e., transmission
on all the links cannot happen simultaneously. We enumerate
the set of all possible interference free choices of links and
corresponding flow transmissions in the set A. Thus, a member
of set A contains a subset of links and corresponding flows
which can be sent on these links in a single time-slot without
interference. A valid network control policy must choose an
action that is a member of the set A in every time-slot.
Note that this description of A is very general and allows
for interference constraints that depend on flow assignments.
For example, consider a setting where a node is allowed to
broadcast updates of a single flow to all of its neighbors in a
single timestep but not send updates regarding different flows
to each neighbor simultaneously.

1Discarding older packets, or equivalently, preemptive LCFS (last come
first serve) is known to be the optimal queuing discipline for AoI minimiza-
tion [32].

For link (i, j) ∈ E, we use Uk
ij(t) and Sij(t) (both ∈ {0, 1})

to denote the transmission decision and link state of the link
(i, j) at time t. Uk

ij(t) is 1 if a transmission of a flow-k
update is scheduled on the link, at time t, and is 0 otherwise.
Whereas, Sij (t) is 1 if a scheduled transmission on the link,
at time t, will succeed; provided there is no interference.
We assume {Sij(t)}t,(i,j) to be independent and identically
distributed processes across time t and links (i, j), with γij =
P [Sij(t) = 1].

Age Evolution. For a flow k, each commissioned and
destination node keeps track of the age of the freshest packet
it has received. For a node j ∈ Ck ∪ Dk, we denote its age
for the kth flow by Ak

j (t) and it evolves as:

Ak
j (t + 1)=

{
min(Ak

j (t), Ak
i (t)) + 1 if Uk

ij(t)Sij(t) = 1
Ak

j (t) + 1, if Uk
ij(t)Sij(t) = 0,

(1)

for all i ∈ {k} ∪ Ck, j ∈ Ck ∪ Dk, and link (i, j) ∈ E. Note
that for any flow, the source node and the commissioned nodes
transmit the update packets, while other commissioned nodes
and the destination nodes receive them.

Information Freshness. We consider two metrics of infor-
mation freshness. The first is the average weighted sum AoI
at the destination nodes:

Aave = lim
T→∞

E

⎡
⎣ 1

T

T∑
t=1

K∑
k=1

∑
j∈Dk

wk
j Ak

j (t)

⎤
⎦ , (2)

where wk
j denote constant weights, which determines the

relative importance of a destination j and flow k, with respect
to others. For the second metric, we consider general possibly
non-linear functions of age. We associate a monotone increas-
ing age cost function for each source-destination pair (k, j),
where j ∈ Dk, denoted by gk

j (·). We define the non-linear,
effective age process to be:

Bk
j (t) � gk

j (Ak
j (t)), (3)

for all t ≥ 1. The non-linear age metric is defined as:

Bave = lim
T→∞

E

⎡
⎣ 1

T

T∑
t=1

K∑
k=1

∑
j∈Dk

Bk
j (t)

⎤
⎦ , (4)

which is a generalized version of Aave in (2).
Our goal is to minimize either Aave or Bave for a general,

multi-hop network, by determining a policy that controls the
link transmissions. A control policy needs to specify not only
which links should be scheduled in each time-slot but also
which flows should be transmitted along each link. We assume
a centralized controller.

In the next three sections, we propose three different
policies, in the order of their complexity and performance,
to minimize the information freshness metrics.

III. STATIONARY RANDOMIZED POLICY

In this section, we look at the simplest case of our general
multi-hop model. We consider a class of policies called station-
ary randomized policies, in which each feasible action a ∈ A

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:46:32 UTC from IEEE Xplore.  Restrictions apply. 



TRIPATHI et al.: INFORMATION FRESHNESS IN MULTIHOP WIRELESS NETWORKS 787

is activated with a given probability, independently across
time. The analysis of these policies is limited to the setting
where each flow is unicast and consists of a single known
path to forward updates from the source to each destination.
We derive the exact expression of the average age metric in
this case and show how to optimize it over the interference
constraints.

A. Stationary Randomized Policies

We first define the space of stationary randomized policies
over a multi-hop network. Let Ek

(i,j)(t) be the event that a
transmission over link (i, j) is attempted, to send updates of
flow k, at time-slot t.

Definition π is a stationary randomized policy if the events
Ek
(i,j)(t) and Ek

(i,j)(t
′) are independent and stationary for any

t 	= t′, for all links (i, j) and flows k. Further

P

[
Ek
(i,j)(t)

]
= P

[
Ek
(i,j)(t

′)
]

= fk
ij ,

for all time-slots t and t′. Here fk
ij is the frequency of

occurrence of the event Ek
(i,j).

The definition above is standard for the class of stationary
randomized policies in networking literature. However, works
analyzing Markov decision processes (MDPs) often use a
different way to define randomized policies - where actions are
sampled from a distribution that can also depend on the current
state. In this section, we will focus on stationary randomized
policies where actions are sampled independent of network
state.

Note that all stationary randomized policies are associated
with probabilities fk

ij . We refer to fk
ij as the link activation

frequency of link (i, j) for flow k, and use fk to denote
the tuple {fk

ij}(i,j)∈E . A way to generate the space of all
stationary randomized policies possible with a centralized
scheduler is the following: transmit on all links the correspond-
ing flow choices for an action m ∈ A, with probability xm,
independently across time-slots t. The probabilities xm can
be varied to produce different stationary randomized policies,
but are naturally constrained by the fact that they must sum to
unity, namely,

∑
m∈A xm = 1. We use X to denote the space

of x = (xm)m∈A such that xms sum to unity.
This induces the link activation frequency fk

ij given by

fk
ij =

∑
{m∈A: (Uk

ij=1)∈m}
xm, (5)

for all links (i, j) and flows k. The above equation simply
states that the link activation frequency fk

ij is the sum of the
activation probabilities of all actions m ∈ A in which a flow k
packet is transmitted over link (i, j), i.e. Uk

ij = 1. We use f =
Mx to denote (5) and F to denote the space of all feasible link
activation frequencies {fk}k = f . We will see that this space
plays a critical role in determining the stationary randomized
policy that minimizes average age.

B. General Network

We now consider the average age minimization problem
with K flows. We assume a single destination node for every

flow. Each source node k is assigned a set of nodes Ck

in the network that forms a single connected path from the
source to the destination node dk. We use pk to denote the set
of all links on the source-destination path induced by nodes
{k}∪Ck∪{dk}. The goal is to determine the optimal stationary
randomized scheduling policy that minimizes the weighted
average age in (2). For simplicity, we denote the weight for
each source-destination pair (k, dk) by just wk, since we are
only consider unicast flows.

To analyze the multi-hop setting, we first start by analyzing
a line network with a single source and a single destination.
Consider the line network G = (V, E), where V = {1, . . .N}
and E = {(1, 2), (2, 3), . . . (N − 1, N)} denote the N nodes
and N − 1 links, respectively. The network contains a single
flow with source node s = 1 and this flow has a destination
node D1 = {N}. The commissioned nodes include all other
nodes, to forward updates from the source to the destination,
i.e. C1 = {2, 3, . . .N−1}. The source s generates fresh update
packets that are transmitted over the line network to reach the
destination node N .

In Section III-A, we saw that every stationary policy π
is associated with link activation frequencies fk

ij . For this
simple line network, we now characterize the average age at
the destination node N as a function of the link activation
frequencies.

Theorem 1: If fe > 0 is the link activation frequency for
link e ∈ E under a stationary policy π then the average age
at node N is given by

Aave = lim
T→∞

E

[
1
T

T∑
t=1

AN (t)

]
=

∑
e∈E

1
γefe

, (6)

where γe denotes the channel state probability for link e ∈ E.
Proof: See Appendix B.

Let π be a stationary randomized policy with link activation
frequencies {fk}k. Applying Theorem 1, we can write the
average age for flow k to be:

Ak
ave = lim

T→∞
E

[
1
T

T∑
t=1

Ak
dk

(t)

]
=

∑
e∈pk

1
γefk

e

. (7)

This is because the set of nodes {k}∪Ck ∪{dk} form a path
from the source k to the destination node dk. The weighted
average age (in (2)) can be written as:

Aave = lim
T→∞

E

[
1
T

T∑
t=1

K∑
k=1

wkAk
dk

(t)

]
, (8)

=
∑

k∈[K]

∑
e∈pk

wk

γefk
e

. (9)

The average age minimization problem can be written as:

Minimize
x∈X

∑
k∈[K]

∑
e∈pk

wk

γefk
e

,

subject to f = Mx. (10)

We now observe that (10) can be viewed as an equivalent
single-hop age problem.
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Lemma 1: The multihop average age minimization problem
over stationary randomized policies given by (10)) can be
viewed as an equivalent single-hop age problem.

Proof: See Appendix C.
In this section, we developed a procedure to find age optimal

stationary randomized policies in settings with known single
commissioned paths between sources and destinations. These
policies are easy to implement and analyze. They further
allow us to derive closed form expressions of average age and
provide performance guarantees. However, as we will see in
the coming sections, these policies can only be used in limited
settings and their performance is significantly far from optimal
in practice.

IV. AGE DIFFERENCE POLICY

We now discuss a heuristic policy that yields a much lower
average age, in practice, than even the optimal stationary
randomized policy. We are still restricted to the setting with
only unicast flows and known commissioned paths for each
source-destination pair.

The basic idea is as follows: in the propagation of infor-
mation updates, it is important to keep the age differential
between two neighboring nodes to as small a value as possible.

Example: To illustrate this, consider a line network with N
nodes and N − 1 links, with the single source and destination
node placed at the two ends of the network. Assume all
other nodes are commissioned for sending updates from the
source to the destination node. Let the probability of successful
transmission γe be 1 and the interference constraint be such
that a transmission can occur only on one of the N − 1 links,
at any given time.

For this network, we can deduce from Section III that the
average age, given by Aave =

∑N
j=2

1
fej

, is minimized at fej =
1/(N − 1) for all j and equals A∗

ave = (N − 1)2 = O(N2).
Now, consider a scheduling policy that works to minimize

the age differential between any two nodes that share a link.
This is done by scheduling the link ej that has the maximum
age differential. We schedule link ej∗ , at time t, such that

j∗ = argmax
j

[
Aj(t) − Aj−1(t)

]+
. (11)

It can be deduced that under this scheduling policy over
the line network the age at the destination node records the
periodic pattern: {N−1, N, N+2, . . .2(N−1), N−1, N, N+
2, . . . 2(N − 1), N − 1, N, . . .}. Thus, the average age at the
destination node can be computed to be Aave = (N − 1) +
N/2 = O(N). Note that this is a significant improvement over
the average age optimal stationary randomized policy.

Age-Difference Policy. We now articulate this
age-difference heuristic for the general multi-flow, multi-hop
network. Let Δk

ij(t) be the age difference weight for link
(i, j) and flow k given by

Δk
ij(t) � wk

j Sij(t)
[
Ak

j (t) − Ak
i (t)

]+
, (12)

for all j ∈ Ck ∪ Dk, i ∈ {k} ∪ Ck, and flow k ∈ [K]. Note
that wk

j denote the flow k weights for all the commissioned
and the destination nodes. The wk

j s, for the destination nodes

j ∈ Dk, were defined in the average age cost function in (2).
For all commissioned nodes, these weights are set to 1, i.e.

wk
j =

{
wk

j if k ∈ Dk

1 otherwise.

Note that this choice is heuristic, and other sets of weights
might lead to slightly different scheduling behavior.

The age-difference policy schedules a feasible set m(t) that
maximizes the age-difference weight, namely:

m(t) = argmax
m∈A

∑
(e,k)∈m

Δk
e(t). (13)

Result. We now show that the age-difference policy is in
fact a one-step greedy policy for the average age minimization
problem in (2), albeit with a modified age cost per time-slot.

Lemma 2: The age-difference policy is a myopic greedy
policy in minimizing the average age

Aave = lim
T→∞

E

⎡
⎣ 1

T

T∑
t=1

K∑
k=1

∑
j∈Ck∪Dk

wk
j Ak

j (t)

⎤
⎦ . (14)

Proof: See Appendix D.
The average age in (14), differs from the average age

defined in (2), in that it takes into account the age of also
the commissioned nodes, for every flow k.

Greedy/myopic policies with similar structures have been
shown to be constant factor optimal in the single-hop AoI
minimization setting in [15] and [16].

The age-difference policy overcomes a key limitation of
the stationary randomized policy, i.e. better performance in
practice. However, it is still restricted to settings with a) only
unicast flows, and b) source-destination paths that are fixed
and known beforehand, and c) weighted sum AoI cost.

In the following section, we develop a general policy design
framework that can address settings without any of these
limitations.

V. AGE DEBT POLICY

In this section, we develop the age-debt framework for AoI
minimization, based on ideas from Lyapunov optimization.
To do so, we first introduce the notions of age-achievability
and age debt virtual queues. We then show how stabilizing
this network of virtual queues leads to minimization of AoI.
Finally, we use quadratic Lyapunov drift to propose a heuristic
scheme to achieve this stabilization in general multi-hop
networks.

Note that in this section, we consider settings with a) general
increasing cost functions of AoI, b) no knowledge of fixed
routing paths, i.e. the scheduler also needs to make routing
decisions and c) unicast, multicast and broadcast flows in the
same network. The general AoI optimization problem can be
formulated as:

π∗ = argmin
π

(
lim

T→∞
E

[
1
T

T∑
t=1

K∑
k=1

∑
j∈Dk

Bk
j (t)

])
, (15)

where Bk
j (t) are the effective age processes and π(t) ∈ A, ∀t.

This setting is more general than the ones considered in
Section III and Section IV.
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A. Age Debt

We start by assuming that we have been given a target
value of time average age cost for each source-destination pair;
denoted by αk

j for the source-destination pair (k, j). We aggre-
gate the target values associated with each source-destination
pair in the vector α. For any such target vector α, we define
the notion of age-achievability below.

Definition A vector α is age-achievable if there exists a
feasible network control policy π such that

lim
T→∞

1
T

T∑
t=1

Bk
j (t) ≤ αk

j , ∀j ∈ Dk, ∀k w.p. 1. (16)

In other words, a vector α is age-achievable if the
time-average of the effective age process for every source-
destination pair (k, j) is upper bounded by the target value
αkj , under some feasible network control policy.

Note that the combination of general cost functions and
achievability targets allows us to capture very general fresh-
ness requirements which might be useful in practical system
specifications. For example, if an application requires that the
empirical distribution of the age process Ak

j (t) should satisfy
P(Ak

j (t) ≥ M) ≤ �, then we can capture this by setting the
cost function gk

j (h) = 1{h≥M} and the corresponding target
to be αk

j = �.
We now define a set of virtual queues called age-debt queues

for every source-destination pair (k, j). These queues measure
how much the effective age process exceeds its target value
αkj , summed over time. Our definition of debt is inspired by
the notion of throughput debt as introduced in [33].

Definition Given a target vector α, the age debt queue for
source-destination pair (k, j) at time t, given by Qk

j (t), evolves
as

Qk
j (t + 1) =

[
Qk

j (t) + Bk
j (t + 1) − αk

j

]+

,

∀j ∈ Dk, and ∀k ∈ {1, . . . , K}. (17)

To complete the definition, each age debt queue starts at zero,
i.e. Qk

j (0) = 0, ∀j, k.

We now introduce a notion of stability for these age debt
queues. This is similar to how rate stability is typically defined
in queueing networks [34].

Definition We say that the network of age debt queues is
stable under a policy π and a given target vector α if the
following condition holds:

lim
T→∞

E

[ K∑
k=1

∑
j∈Dk

Qk
j (T )
T

]
= 0, (18)

where the expectation is taken over the randomness in the
channel processes and the scheduling policy π.

We also establish an equivalence relationship between
age-achievability of a vector α and the stability of the cor-
responding network of age debt queues.

Lemma 3: A target vector α is age-achievable if and only
if there exists a network control policy π, that stabilizes the
network of source-destination age debt queues.

Proof: See Appendix E.
Next, we define a debt-stable scheduling policy. Such a

policy takes a target vector α as an input and stabilizes the
network of corresponding age debt queues.

Definition A debt-stable scheduling policy π stabilizes the
set of age-debt queues for any given target vector α that is
age-achievable.

The notions introduced until now effectively allow us to
convert the minimum age cost problem described by (15)
into a network stability problem. Suppose π∗ is a solution
to the optimization problem (15). Further, suppose that the
time average of the effective age process for pair (k, j) under
π∗ is given by

lim
T→∞

E

[
1
T

T∑
t=1

Bk∗
j (t)

]
= αk∗

j , ∀(k, j). (19)

Clearly, if we have oracle access to an optimal age cost vector
α∗ = {αk∗

j }(k,j) and know how to design a debt-stable policy
then we can perform minimum age cost scheduling. If the
debt-stable policy is much lower in computational complexity
than solving (15) directly, then we can also solve (15) at
the same lower complexity (assuming oracle access to α∗).
We now discuss a heuristic approach to designing debt-stable
policies.

B. Lyapunov Drift Approach

1) Single-Hop Broadcast: We first consider the special case
of single-hop broadcast networks. This setting is easier to
analyze since it only requires scheduling and no routing and it
also highlights key structural properties of our proposed policy.

Consider a N node star network where each of the nodes
1, . . . , N − 1 has an edge to node N . These nodes wish to
send packets to the central node N . The edges are numbered
e1, . . . , eN−1. Due to broadcast interference constraints, only
one node can transmit in any given time-slot. Since the
destination for every flow is N , we can drop the destination
in our notation. The age evolution is given by

Ai(t + 1) =

{
Ai(t) + 1, if Uei(t)Sei (t) = 0
1, if Uei(t)Sei (t) = 1.

(20)

Given an age-cost function gi(Ai(t)) and a corresponding
target value αi, the debt queue evolution for node i is given
by:

Qi(t + 1) =
[
Qi(t) + gi(Ai(t + 1)) − αi

]+

. (21)

Given a target vector α, we will use a Lyapunov drift based
scheduling scheme to try and achieve debt stability. To do so,
we first define a Lyapunov function for our system of virtual
queues:

L(t) �
N−1∑
i=1

Q2
i (t). (22)
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Fig. 2. Example of a line network with a unicast flow from node 1 to node 3.

Using this Lyapunov function, we then define the age debt
scheduling policy πAD as:

πAD(t) = argmin
a∈A

(
E
[
L(t + 1) − L(t)

])
, (23)

where the expectation is taken over the randomness in channel
reliabilities S(t).

In the following remark, we consider a variant of the
age-debt policy that minimizes an upper-bound on the Lya-
punov drift instead of the actual Lyapunov drift as in (23).
This is similar to the upper-bound drift minimization used in
policies such as max-weight [35] and allows us to compare
the structure of age-debt to previously proposed policies in
literature.

Remark 1: Suppose that the links between each source i
and the destination N are i.i.d. Bernoulli w.p. γi in every time-
slot. Further, if each age cost function gi(·) is upper bounded
by a large constant D, then the policy π(t) below minimizes
an upper bound on the Lyapunov drift in every time-slot.

π(t) = argmax
i∈1,...,N−1

(
γiQi(t)

(
gi(Ai(t) + 1) − gi(1)

))
. (24)

Proof: See Appendix F.
In other words, an approximate drift minimizing policy
chooses the source with the largest product of link reliability,
current age debt and current age cost. This structure of the
age-debt policy can be contrasted with the max-weight policy
proposed in [15] which chooses the source with the largest
value of γiwiAi(t)(Ai(t)+2) given weights wi. Similarly, the
Whittle index policy proposed in [24], chooses the source with
the largest value of Wi(Ai(t)), where Wi(·) is Whittle-index
corresponding to the age cost fi(·).

Note that to compute πAD(t), the scheduler needs to iterate
over the set of sources only once. So the per slot computa-
tional complexity of this policy grows linearly in N . This is
similar to the complexity of the Whittle index policy proposed
in [15] and [24] and the max-weight policies proposed in [15]
and [16]. By contrast, a dynamic programming approach to
solve (15) directly has per slot computational complexity that
grows exponentially in N . This highlights the key strength of
our approach. If the scheduler has some way to set the targets
for each source optimally, then the age debt policy is a good
low complexity heuristic for age minimization.

2) General Networks: The general multihop setting is more
challenging. Simply using one-slot Lyapunov drift to try and
achieve debt stability does not work directly in the multihop
setting. We highlight this with a simple example.

Consider the three node network described in Figure 2 with
a single unicast flow from node 1 to node 3. The interference
constraint enforces that only one of the two edges a and b can
be activated in any time-slot. Suppose that we are interested in

minimizing the time average of the age process A1
3(t). Given

a target value α1
3, we set up the age debt queue as follows:

Q1
3(t + 1) =

[
Q1

3(t) + A1
3(t + 1) − α1

3

]+

. (25)

We will try to use the one slot Lyapunov drift minimizing
policy to stabilize Q1

3(t) in this network. To do so, we solve
the following optimization in every time-slot:

πAD(t) = argmin
x∈{a,b}

(
E
[
(Q1

3(t + 1))2 − (Q1
3(t))

2
])

. (26)

At t = 1, activating either edge a or edge b has no effect
on the debt Q1

3(2) since node 2 does not have any packet
from node 1. If we break ties in favour of edge b, then it is
activated but no new packet is delivered to node 3. At t = 2,
since node 2 still does not have any new update from node 1,
no action taken can affect the debt Q1

3(3). Using the same
tie-break rule, we would again schedule edge b. This process
keeps on repeating and the age debt queue Q1

3 blows up
irrespective of the value of α1

3, even though the age optimal
policy in this setting is to simply alternate between a and b in
every time-slot.

The example above illustrates why one-slot Lyapunov drift
based techniques fail in stabilizing debt queues in multi-
hop networks. The policy designer using Lyapunov drift is
constrained to optimizing only one time-step into the future,
similar to a greedy policy. So, if every possible scheduling
and routing action has no effect on the age debt queues in
the immediate next time-slot, the one step drift minimizing
procedure does not provide any information on which action
should be chosen to stabilize the debt queues.

This suggests that to be able to use one-slot drift minimizing
techniques for stability, there should be a virtual queue for
every intermediate node that tracks both the current age debt
at the destination and the potential reduction in debt at the
destination upon forwarding a fresh packet. If we can set
up such queues, then large values of debt at intermediate
nodes would lead to fresh packets being sent to the next hops
via one-slot drift minimizing actions, eventually reaching the
destination and stabilizing the age debt queues.

Let Qk→i
j (t) denote such a debt queue corresponding to

flow (k, j) at an intermediate node i. These additional queues
at every intermediate node combined with the original debt
queues form our virtual network. The Lyapunov function that
we use for scheduling and routing is given by:

L(t) �
K∑

k=1

∑
j∈Dk

(
(Qk

j (t))2 +
∑

i/∈Dk,i	=k

(Qk→i
j (t))2

)
(27)

‘The Age Debt scheduling and routing policy is to choose
the activation set and corresponding flows that minimizes the
expected Lyapunov drift.

πAD(t) = argmin
a∈A

(
E
[
L(t + 1) − L(t)

])
, (28)

where the expectation is taken over the randomness in channel
reliabilities S(t).
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3) Intermediate Debt Queues: We now discuss how to set
up the age debt queues Qk→i

j (t) for intermediate nodes to
augment the original network of queues. Note that there are
no intermediate nodes for broadcast flows since every node
other than the source is a destination.

Consider a source-destination pair (k, j) for a uni-
cast/multicast flow k and an intermediate node i that is not a
destination for the flow originating at k. We want to set up the
age debt queue Qk→i

j (t) at i for the pair (k, j). We maintain
an age process for flow k at node i, even though there is no
associated cost or target value for this age process.

Ak
i (t + 1)=

⎧⎪⎨
⎪⎩

min(Ak
i (t), t − tg) + 1, if update generated

at time tg is delivered at time t.

Ak
i (t) + 1, if no new delivery at time t.

(29)

Here Ak
i (t) measures how old the information at node i is

regarding node k. We split the debt queue’s evolution into
two cases.

Case 1: When node i forwards a flow k packet on a set of
adjacent links L. Let hL

ij be the minimum number of hops it
takes to reach node j from node i, where the first hop can only
include edges in the set L. Here, hL

ij measures the minimum
delay with which the packet that was forwarded by i gets
delivered at j. The age debt queue Qk→i

j (t), when node i is
forwarding a flow k packet along the link set L, evolves as:

Qk→i
j (t + 1) =

[
Qk→i

j (t) + gk
j

(
min{Ak

i (t), Ak
j (t)}

+hL
ij

) − αk
j

]+

. (30)

This measures the most optimistic change in age debt possible
at the destination using the current packet transmission from
node i.

Case 2: When node i does not forward a packet from node
k along any of its adjacent edges, then the age debt queue
evolves as below.

Qk→i
j (t + 1) =

[
Qk→i

j (t) + Bk
j (t + 1) − αk

j

]+

. (31)

This means that the intermediate queue simply tracks the
change in debt at the destination when it is not forwarding a
relevant packet. If the destination is not receiving fresh packets
from anywhere in the network then this would increase the
intermediate debt queue.

Thus, the debt at an intermediate node i for a
source-destination pair (k, j) blows up if (a) either the des-
tination has not received fresh packets for a long time and
node i did not forward any packets from k (i.e. (31)) or if
(b) node i keeps forwarding stale packets from k (i.e. (30)).
A drift minimizing policy will then try to ensure that either
the destination debt queue is small, or node i forwards fresh
packets of flow k towards the destination.

C. An Example

Consider the five node network depicted in Fig. 3. We con-
sider two flows in this network - a multicast flow from

Fig. 3. Example of a five node multihop network with two competing flows.

Fig. 4. Evolution of three debt queue quantities with time, along with
scheduling decisions involving link a.

source 1 to destination nodes 3 and 5 and a unicast flow
from source 4 to destination node 1. We further consider
interference constraints such that every node interferes with
every other node, so in any given time-slot only one node can
transmit successfully. Further, the transmitting node can only
transmit a single flow’s packet on all of it links, i.e. it cannot
choose to send different flow packets on different links. Thus,
the available choice of actions in each time-slot is to decide
which node gets to transmit and regarding which flow.

Given average AoI targets α1
3, α

1
5 and α4

1, we will use our
proposed age debt scheme to achieve them. Observe that edge
a between nodes 1 and 2 must be used by both flows and hence
acts like a bottleneck link. One possible schedule that we
might want to replicate is to send packets for the first flow, and
then send packets for the second flow, and keep alternating.
If we represent actions as a tuple (i, j) denoting that node
i forwards an update regarding node j, then this scheduling
policy looks like (1, 1) → (2, 1) → (4, 4) → (5, 4) → (2, 4).
It is easy to see that the average AoIs achieved by this policy
are α1

3 = 4.0, α1
5 = 4.0 and α4

1 = 5.0.
Providing these targets to the age debt queues, we confirm

via simulation that our one slot Lyapunov drift minimiza-
tion method does indeed achieve the required average AoIs.
To understand how age debt makes scheduling decisions,
we will focus on the bottleneck link a. Recall that Qk→i

j

is the intermediate debt queue at a forwarding node i for
the source k and destination j. The debt queues that pri-
marily influence which flow gets transmitted on link a are
Q1→1

3 (t), Q1→1
5 (t), Q1→2

3 (t), Q1→2
5 (t), and Q4→2

1 (t).
Given α1

3 = 4.0, α1
5 = 4.0 and α4

1 = 5.0, we will
plot three debt queue quantities once the age debt policy
has reached steady state. Specifically, we plot Q1→1

3 (t) +
Q1→1

5 (t), Q1→2
3 (t) + Q1→2

5 (t), and Q4→2
1 (t).

Authorized licensed use limited to: MIT Libraries. Downloaded on February 06,2024 at 14:46:32 UTC from IEEE Xplore.  Restrictions apply. 



792 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

There are three competing actions that the scheduling policy
can take for the link a. These are (1, 1) - node 1 broadcasts
an update about itself along link a; (2, 1) - node 2 broadcasts
an update about node 1 along links a, b and e; and (2, 4) -
node 2 broadcasts an update about node 4 along links a, b
and e. In Fig. 4, we plot the three debt queue quantities of
interest along with timeslots in which scheduling decisions
involving link a were made.

We observe that the relative ordering of the three debt
quantities explains why each scheduling decision is made.
When Q1→1

3 (t) + Q1→1
5 (t) is the largest, it suggests that

sending an update from node 1 to node 2 along link a is the
most valuable action. Similarly, when Q1→2

3 (t) + Q1→2
5 (t) is

the largest, it suggest that sending an update regarding node 1
from node 2 to nodes 3 and 5 is the most valuable action
(and due to the interference constraint, it blocks any other
node from using the link a). When Q4→2

1 (t) is the largest,
it suggests that sending an update regarding node 4 from
node 2 to node 1 along link a is the most valuable action.

Note that scheduling decisions are not explicitly made based
on relative ordering of the debt queues, but by finding the
action that has the largest negative Lyapunov drift. We use
the relative ordering to provide an intuitive explanation of age
debt. Importantly, the evolution of the debt queues and the
Lyapunov drift approach together lead to a scheduling policy
that achieves the desired AoI targets. Adjusting the targets
and/or AoI cost functions, the system designer can tradeoff
the freshness of one flow against another.

D. Choosing Target Vectors

In the preceding sections, we have developed a general
framework of age achievability where given a target average
age cost for every source-destination pair, we formulate a
corresponding network stability problem and attempt to solve
it via one slot Lyapunov drift minimization. In this section,
we discuss how to choose the right target vectors, such that
they lead to minimum sum age cost.

In the absence of an optimization oracle that provides access
to α∗ or a system administrator who specifies average age
cost targets based on the underlying application requirements,
we develop a simple heuristic to dynamically update α in
order to optimize utility based on the state of the underlying
debt queues.

The following optimization problem needs to be solved to
find the best target vector α∗.

argmin
α

( K∑
k=1

∑
j∈Dk

αk
j

)
,

s.t. α is age-achievable. (32)

Note that this problem has the same optimal value as (15).
1) Gradient Descent: We want to use a gradient descent

like approach to solve (32) and find α∗. The problem with
doing so is that we do not have a simple characterization of
the age-achievability region or a low complexity method to
test whether a vector is achievable or not.

To resolve this, we use Lemma 3. If the network of
source-destination age debt queues is unstable for a given

value of α, then α lies outside the age-achievability region.
This immediately suggests the gradient descent like approach
described in Algorithm 1.

Algorithm 1 Age Debt - Gradient Descent
Input : epoch size W , number of epochs E, step-size

η > 0, threshold � > 0, initialization α(1)

1 while e ∈ 1, . . . , E do
2 Set up age debt queues using α(e) and initialize each

queue to 0
3 while t ∈ 1, . . . , W do
4 Schedule and route using age debt

πAD(t) = argmin
a∈A

(
E
[
L(t + 1) − L(t)

])
,

5 end
6 if ∃ flow k and j ∈ Dk s.t. Qk

j (W ) > �W then
7 Increase target values for unstable queues:
8 αk

j (e + 1) = αk
j (e) + η, ∀(k, j) s.t. Qk

j (W ) > �W
9 Other targets remain unchanged:

10 αk
j (e + 1) = αk

j (e), ∀(k, j) s.t. Qkj(W ) ≤ �W
11 end
12 else
13 Update all target values using gradients:

αk
j (e + 1) = αk

j (e) − η, ∀(k, j).
14 end
15 end

The algorithm above runs the age debt policy for epochs
of length W time-slots. Within an epoch, the target vector α
remains fixed. At the end of the epoch, we use the value of
the source-destination age debt queues Qk

j (·) to update the
corresponding targets. If the network has at least one queue
with debt larger than a threshold, it suggests that the current
vector is not achievable. So, we increase the values of α for
the source-destination pairs with large values of debt. If the
network has all queues with debt below a threshold, the current
vector is likely achievable. So, we update the entire target
vector using gradient descent. Note that this approach takes
a large number of time-slots to converge to a good candidate
target vector α.

2) Flow Control: Another way to dynamically set the
target vectors is to take a flow control approach for solving
the optimization problem (32), similar to [35]. Algorithm 2
describes the details.

The flow control based age debt policy tries to tradeoff
between the stability of the queueing network and the opti-
mization of targets using a parameter V > 0. In every time-
slot, the flow control optimization sets the target α for the
next time-slot and then the scheduling and routing decisions
are computed by minimizing Lyapunov drift.

The update optimization in step 4 of Algorithm 2 can be
simplified to the rule below:

αk
j (t + 1) =

{
αmax, if Qk

j (t) > V

1, if Qk
j (t) ≤ V,

∀(k, j). (33)
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Algorithm 2 Age Debt - Flow Control
Input : parameter V > 0, upper bound αmax,

initialization α(1)

1 while t ∈ 1, . . . , T do
2 Use α(t) to update debt queue values at time t
3 Update α by solving the optimization below:
4

α(t + 1) = argmin
α

( K∑
k=1

∑
j∈Dk

V αk
j − αk

j Qk
j (t)

)
,

s.t. α ≥ 1, α ≤ αmax.

5 Use α(t + 1) to compute the scheduling and routing
decision that minimizes drift:

π(t) = argmin
a∈A

(
E
[
L(t + 1) − L(t)

])
6 end

Fig. 5. Weighted-sum AoI minimization in broadcast networks with unreli-
able channels.

Thus, instead of converging to a target vector as in the case
with gradient descent, the flow control approach dynamically
switches the value of targets in every time-slot. This means
we do not need to wait a long period of time for convergence.
When current debts are high, future targets are set to be high
pushing the debts lower. Similarly, when the current debts are
low, future targets are also set low, pushing the debts higher.
The parameter V decides the threshold between high and low
values of the debt queues.

VI. NUMERICAL RESULTS

First, we consider the weighted-sum AoI problem in
single-hop broadcast networks with unreliable channels. There
are N nodes in the network and the weight of the ith node wi is
set to i/N . Link connection probabilities are chosen uniformly
from the set [0.6, 1]. Figure 5 plots the performance of the
age debt policy, the age difference policy, and the optimal
stationary randomized policy along with the max-weight and
Whittle index policies proposed in [15] which are known to
be close to optimal.

Fig. 6. Functions of Age minimization in broadcast networks with reliable
channels.

First, we observe that the optimal stationary randomized
policy performs much worse than the other classes of policies.
Age difference performs better than the randomized policy
but not as well as the Whittle-index or max-weight policies.
We further observe that when the age debt policy is provided
the max-weight average cost as the target vector, it replicates
near optimal performance. Also, the flow control and gradient
descent versions of age debt have a small gap to the max-
weight/Whittle policies despite not having access to α before-
hand and perform as well as the age-difference policy.

Next, we consider general functions of age minimiza-
tion in the single-hop wireless broadcast setting. There
are N nodes in the network and the cost of AoI
for each node is chosen from the set of functions
{15A(t), eA(t), (A(t))2 and (A(t))3}. Figure 6 plots the per-
formance of the age-debt policy and its variants along with the
age difference policy and the Whittle index policy proposed
in [24]. As for the linear AoI case, we observe that age debt
is able to replicate the Whittle policy’s performance when
provided its average cost as the target vector. The flow control
and gradient descent variants are also only a small gap away
in performance without knowing α beforehand. On the other
hand, the age difference policy performs much worse and the
AoI cost rapidly grows very large even for moderate N . This
is because the age difference policy is not designed to handle
general AoI cost functions, so even though it tries to keep
the AoIs small for all nodes, their actual impact to cost can
become very large. It was also shown in [24] that even the
optimal stationary randomized policy can have unbounded AoI
cost for systems as small as N = 2, given nonlinear AoI cost
functions. So, we do not plot its performance in this scenario.

We also look at the functions of age problem with N = 4 in
more detail. The age cost functions for each node are as fol-
lows f1(A1(t)) = 15A1(t), f2(A2(t)) = eA2(t), f3(A3(t)) =
(A3(t))2 and f4(A4(t)) = (A4(t))3. First, we use dynamic
programming to compute the optimal policy π∗ which mini-
mizes average age cost. The time average age costs under this
policy are given by α∗

1 = 45.0, α∗
2 = 14.52, α∗

3 = 17.20, and
α∗

4 = 11.0, while the total sum cost is 87.72. Using these
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Fig. 7. Sum of virtual debt queues vs time.

Fig. 8. A single unicast flow on a line network (neighboring nodes interfere).

as target values, we set up debt queues and implement the
age-debt policy.

Figure 7 plots the sum of the 4 age debt queues
∑4

i=1 Qi(t)
under the age-debt policy implemented using the optimal α∗

from above. We observe that the age debt policy indeed
stabilizes the debt queues since queue lengths don’t grow
with time. As a corollary, it also achieves age cost optimality
in this setting. On the other hand, the Whittle index policy
from [24] achieves a total sum cost of 88.34, a fixed but small
distance away from the optimal cost of 87.72. This suggests
that age-debt might be a way to achieve exact optimality
instead of near optimality when access to α∗ is available.

Next, we consider scheduling for a single unicast flow
on the line network. Consider N nodes arranged in a line
network from 1 to N . Node 1 wants to sent packets to
node N , however not all nodes can transmit simultaneously.
We consider a simple interference constraint - in any given
time-slot either all even numbered nodes or all odd numbered
nodes can forward packets. This ensures that no two adjacent
nodes send interfering transmissions. Figure 8 plots the perfor-
mance of age-debt and its flow-control and gradient-descent
variations along with the optimal stationary randomized policy
proposed in Section III and the age difference policy proposed
in Section IV. We observe that age-debt outperforms the

Fig. 9. A single unicast flow on a line network (all nodes interfere).

stationary randomized policy despite using its average cost
αSR as the target vector. The dynamic variants of age-debt
significantly outperform the stationary randomized policy and
match the performance of the age-difference policy. We also
note that the gap in performance would increase in settings
with multiple flows and paths available which age-debt can
utilize for routing, unlike the stationary randomized and age
difference approaches.

We also consider a different kind of interference constraint
in the same line network example. Now, all nodes interfere
with one another, and only one node can transmit successfully
in any given time-slot. We plot the performance of the optimal
stationary randomized policy, the age-debt policy (provided
αSR), our age-debt variants without any knowledge of α
and the age difference policy against the number of nodes
in the system in Figure 9. We again observe a large gap
in performance between the optimal randomized policy and
our proposed methods. This is consistent with the line net-
work AoI analysis from Section IV, where we showed that
the best stationary randomized policy has performance that
is O(N2) while the age difference policy has performance
O(N). We also observe that the age-debt variants match the
performance of the age difference policy, which can be shown
to be exactly optimal in this single source line network setting.

Finally, we consider average age minimization for all-to-
all broadcast flows in multihop networks similar to [28]. Note
that this is a broadcast setting that requires both scheduling and
routing decisions to be made, so we cannot use the stationary
randomized or age difference policies developed in Sections III
and IV. We consider all possible connected network topologies
with 5 or 6 nodes (a total of 133 graphs). Figure 10 plots the
performance of the age-debt policy and its variants along with
the near optimal minimum connected dominating set (MCDS)
based scheme proposed in [28] for each of these networks. The
x-axis represents the graph labels numbered from 1 to 133,
sorted according to the average age achieved by the MCDS
scheme.

We observe that age-debt achieves the same performance as
the MCDS scheme when provided its average cost as the target
vector. Further, age-debt with flow control achieves perfor-
mance that is very close to that of the MCDS scheme without
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Fig. 10. Broadcast flows in multihop networks with 5 and 6 nodes.

Fig. 11. Weighted Age minimization of broadcast flows in multihop networks
with 5 nodes.

requiring knowledge of α. Importantly, the MCDS scheme can
only be applied to this setting of all-to-all broadcast with one
node transmitting at a time. Further, computing the optimal
schedule using the MCDS scheme requires finding minimum
size connected dominating sets, the complexity of which grows
exponentially in the number of nodes.

We also consider the same broadcast setting but now with
weighted-sum AoI as the minimization objective instead of just
AoI. We consider all possible connected graphs with 5 nodes
(21 in total). We set the importance weight of one node to 15
(giving it a higher priority) and the rest of the 4 nodes to 1.
Figure 11 plots the performance of the MCDS scheme along
with age-debt and its variants. As expected, age-debt policy
replicates the performance of the MCDS scheme since it is
provided the average age-cost realized by MCDS as the target.
Interestingly, flow-control outperforms MCDS since it is able
to adapt to a better target α in the presence of weights and
asymmetry. This is consistent with the fact that the MCDS
scheme is not designed for minimizing weighted-sum AoI.
It also highlights the relative ease with which age-debt can be
adapted to weights and general AoI cost functions.

Note that the complexity of implementing the flow-control
scheme is polynomial in the network size per time-slot. This
suggests that age-debt and its variants are a good candidate
for low complexity near optimal age scheduling in general
networks.

We also observe that the flow control variant of age-debt is
the method of choice in the absence of known α. During our
experiments, we found that the gradient descent variant has
parameters that are hard to configure for networks of different
sizes and takes a long time to converge. The flow-control
method has just two parameters V and αmax that are relatively
easy to configure and do not require any time for convergence.

VII. CONCLUSION

We considered the problem of minimizing age-of-
information freshness metrics for general multi-hop networks
and proposed three classes of policies - stationary randomized,
age-difference and age-debt. Through analysis and simula-
tions, we compared the performance of these three policies
with the best known policies previously known in literature
for a wide variety of settings. Directions of future exploration
involve 1) proving performance bounds for age-debt and
its variants, and 2) considering distributed implementation,
stochastic arrivals and time-varying network topologies.

APPENDIX

A. Stationary Randomized Policies in Single-Hop Networks

Consider the special case when we are interested in mini-
mizing Aave in a single hop network, with general interference
constraints and multiple nodes sending updates to a base
station (BS). Since each edge simply connects one node to
the BS, it can only forward packets from that node. Thus, the
notation for the link activation frequencies can be simplified
from fk

ij to fe where e is the only edge connecting node e
to the BS and also the only edge transmitting flow e packets.
It is easy to see that for such a network, the weighted average
age minimization problem can be written as:

Minimize
x∈X

∑
e∈E

we

γefe

,

subject to f = Mx. (34)

We, therefore, call it the single-hop age problem. As we
discussed in Sec. III-B, all average age minimization problems
- even though we are dealing with multi-hop flows - can be
reformulated to look like (34).

B. Proof of Theorem 1

Consider the line network G = (V, E), where V =
{1, . . .N} and E = {(1, 2), (2, 3), . . . (N − 1, N)} denote the
N nodes and N−1 links, respectively. For convenience, we use
ej to denote the link (j − 1, j) and Uej

and Sej to denote the
transmission and channel state on (j − 1, j).

For this simple line network, we show that the age evolution
in (1) can be simplified.

Lemma 4: The age evolution of (1) can be written as

Aj(t + 1) =

{
Aj−1(t) + 1 if Uej

(t)Sej (t) = 1
Aj(t) + 1 otherwise,

for all j ∈ C1 ∪ D1 = {2, 3, . . .N}.
Proof: If Uej

(t)Sej (t) = 0, then no successful transmis-
sion occurs over link ej , and therefore, it follows from (1)
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that Aj(t + 1) = Aj(t) + 1. If Uej
(t)Sej (t) = 1, then a

successful transmission does occurs over link ej at time t,
and two possibilities arise: either node j − 1 has a fresh
update, received since the last transmission over the link ej ,
or it hasn’t. If the node j − 1 has a fresh update, then this
fresh update packet is transmitted to node j at time t, and
we get Aj(t + 1) = Aj−1(t) + 1. If, on the other hand,
node j − 1 hasn’t received a fresh update since the last
transmission over link ej , then we have Aj(t) = Aj−1(t). This
is because both nodes have the same update packet that was
exchanged during the last transmission over link ej . The age
evolution, in the absence of a fresh update, therefore becomes
Aj(t + 1) = Aj(t) + 1 = Aj−1(t) + 1.

The age evolution equation in Lemma 4 is true irrespective
of the scheduling policy.

Given any stationary randomized policy, we want to show
that

E [AN (t)] =
∑
e∈E

1
γefe

=
N∑

j=2

1
γej fej

, (35)

where fej
is the link activation frequency for link ej and γej

is the probability that the state of the link ej is 1. The result
(in (6)) follows from (35).

Let π be a stationary randomized policy, and fej
be the

link activation frequency for link ej under policy π, for all
j ∈ {2, . . . L}. Let αj � γej fej

. Further, let τj(t) denote the
last instance, when a successful transmission occurred over
link ej . For example, if link activations occurred at time slots
2, 10, 14, and 21 then τj(t) = 10 for all t = 11, 12, 13,
and 14.

Since π is a stationary randomized policy, the (successful)
inter-transmission times must be geometrically distributed with
mean 1

αj
, for link ej . The memoryless property, therefore,

implies that

P [τj(t) = t − s] = αj (1 − αj)
s−1

, (36)

for all s = 1, 2, . . .. Thus, τj(t) has the same distribution
as t − Xej , where Xej is a geometrically distributed random
variable given by

P
[
Xej = s

]
= αj (1 − αj)

s−1
, (37)

for all s ∈ {1, 2, . . .}, with mean

E
[
Xej

]
=

1
αj

, (38)

for all the links ej in the network.
Node 1 being the active source, its age is always 0. Consider

age at node 2. Since the source node always transmits fresh
information, the age of node 2 is the just the time elapsed
since the last successful transmission over the link e2. This is
given by

A2(t) = t − τ2(t), (39)

as τ2(t) was the last time a fresh update packet was sent to
node 1.

Next, consider age at node 3. By Lemma 4, whenever a
successful transmission occurs over link e3, node 3 resets its
age to node 2’s age A2(·). Thus, A3(t) is given by

A3(t) = t − τ3(t) + A2 (τ3(t)) , (40)

where A2 (τ3(t)) is the age of node 2 at the time of the
last successful transmission over link e3, namely τ3(t), and
t − τ3(t) is the time elapsed since then. Substituting (39)
in (40), we obtain

A3(t) = t − τ3(t) + [τ3(t) − τ2 (τ3(t))] , (41)

= t − τ2 (τ3(t)) . (42)

Iterating this over j links, we get

Aj(t) = t − τ2 (τ3 (· · · τj (t) · · · )) , (43)

for all t and nodes j ∈ {2, 3, . . .N}. Taking expectation,
we get

E
[
Aj(t)

]
= t − E [τ2 (τ3 (· · · τj (t) · · · ))] , (44)

=
j∑

i=2

1
αi

, (45)

where the last equality follows from the following Lemma 5,
and substituting j = N we obtain (35), and also, the result.

Lemma 5: τj(t) for j ∈ {2, 3, . . .N} satisfy

E [τ2 (τ3 (· · · τj (t) · · · ))] = t −
j∑

i=2

1
αi

. (46)

Proof: From (36), we know that

τi(t)
d= t − Xei , (47)

where Xei is a geometrically distributed random variable given
by (37), and therefore,

E [τi(t)] = E [t − Xei ] = t − 1
αi

, (48)

for all i ∈ {2, 3, . . .N}. Now from (47), we can obtain

τi (τi+1(t))
d= τi+1(t) − Xei , (49)

and therefore,

E [τi (τi+1(t))] = E [τi+1(t)] − E [Xei ] , (50)

= t − 1
αi+1

− 1
αi

, (51)

where the last equality follows from (48) and (38). Iterating
this u times we obtain:

E [τi (τi+1(· · · τi+u(t) · · · ))] = t −
i+u∑
l=i

1
αl

. (52)

Substituting i = 2 and i + u = j we get the result.
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C. Proof of Lemma 1

The optimization problem (10) is given by

Minimize
x∈X

∑
k∈[K]

∑
e∈pk

wk

γefk
e

,

subject to f = Mx. (53)

Consider the set of tuples H = {(k, e), ∀k ∈ [K], ∀e ∈ pk}.
The objective in (10) involves one term for each element
in H . To create a new single-hop network with the same
age minimization problem, we create a source-destination pair
corresponding to each element h = (k, e) ∈ H . The link
reliability of the edge for the source-destination pair h is
given by γe, while the weight for AoI at the destination is
given by wk. The set of feasible activations for the original
multihop network A contains interference free choices of flow
and edge activations of the form {(k1, e1), (k2, e2), . . .}. For
our new multihop network, we simply translate this to general
interference constraints. For example, if {(k1, e1), (k2, e2)} ∈
A, then the sources corresponding to (k1, e1) and (k2, e2)
can attempt to transmit simultaneously in the new single-hop
network without interference. Now, we can construct the
single-hop age minimization problem over this new network
using (34) as below:

Minimize
x∈X

∑
(k,e)∈H

wk

γefk
e

,

subject to f = Mx. (54)

Note that this is identical to (10), which completes the proof.

D. Proof of Lemma 2

The per time-slot cost in Aave(in (14)) is

C(t) =
K∑

k=1

∑
j∈Ck∪Dk

wk
j Ak

j (t). (55)

Note that the age evolution in (1) can be re-written as

Ak
j (t + 1) = 1 + Ak

j (t)

−
∑

i

Uk
ij(t)Sij(t)

[
Ak

j (t) − Ak
i (t)

]+
, (56)

for all j ∈ Ck ∪ Dk, i ∈ {k} ∪ Ck that are neighbors of j;
in (56) [x]+ is used to denotes max{x, 0}.

From (55)-(56), we deduce that the per time-slot cost
difference will be

C(t + 1) − C(t)

=
K∑

k=1

∑
j∈Ck∪Dk

wk
j

−
∑

(i,j)∈Ē

K∑
k=1

Uk
ij(t)Sij(t)

[
Ak

j (t) − Ak
i (t)

]+
, (57)

where Ē that are present in the subgraph induced by all the
source, commissioned, and destination nodes. Ē accounts for

all the links on which updates will be forwarded for at least
one flow. Writing (57) in terms of weights Δk

ij(t), we have:

C(t + 1) − C(t) =
K∑

k=1

∑
j∈Ck∪Dk

wk
j −

∑
(i,j)∈Ē

K∑
k=1

Δk
ij(t).

(58)

The age-difference policy maximizes the sum

∑
(i,j)∈Ē

K∑
k=1

Δk
ij(t). (59)

As a result, it minimizes C(t + 1), given all occurrences till
time t. This shows that the age-difference policy is a myopic
policy for the average age defined in (14).

E. Proof of Lemma 3

We will prove this under the assumption that the AoI cost
functions gk

j (·) are upper-bounded by a fixed constant D for
every source-destination pair (k, j). This is a mild assumption
because D can be set to a very high value (in the order of
years) which will never be attained in practical systems under
any reasonable policy.

We note that the arrival process to the debt queue Qk
j (t) is

given by the effective age process Bk
j (t), while the departures

in every time-slot are just αk
j . Using the boundedness assump-

tion, both arrivals and departures are strictly upper-bounded
by D. The result immediately follows from Theorem 2(c)
in [34] which relates mean-rate stability of a queue to
time-averages of the arrival and departure processes.

F. Proof of Lemma 1

The debt queues in this setting evolve as follows:

Qi(t + 1) =
[
Qi(t) + gi(Ai(t + 1)) − αi

]+

, ∀i. (60)

The AoI evolves as:

Ai(t + 1)

{
Ai(t) + 1, if Uei(t)Sei(t) = 0
1, if Uei(t)Sei(t) = 1.

(61)

Here Sei(t) = 1 i.i.d. with probability γi in every time-slot.
Let Δ(t) � L(t + 1) − L(t). Then,

E[Δ(t)] =
∑

i

E

[
(Qi(t + 1))2 − (Qi(t))2

]

≤
∑

i

E

[
α2

i − 2αiQi(t) + (gi(Ai(t + 1)))2

+2Qi(t)gi(Ai(t + 1)) − 2αigi(Ai(t + 1))
]

≤
∑

i

[
D2 + 2Qi(t)(E[gi(Ai(t + 1))] − αi)

]
(62)

The first inequality follows from the evolution of debt
queues. The second inequality follows from the boundedness
assumption on gi(·), i.e. gi(h) ≤ D, ∀h. Now, we will
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minimize the RHS of the expression above. We can drop the
term D2 since it is a constant.

argmin
π(t)∈1,...,N−1

∑
i

Qi(t)
(
E[gi(Ai(t + 1))] − αi

)
= argmin

π(t)∈1,...,N−1

∑
i

Qi(t)E[gi(Ai(t + 1))]

= argmin
j∈1,...,N−1

[∑
i

(
Qi(t)gi(Ai(t) + 1)

)

+γjQj(t)(gj(1) − gj(Aj(t) + 1))
]

= argmax
j∈1,...,N−1

[
γjQj(t)

(
gj(Aj(t) + 1) − gj(1)

)]
(63)

The first equality follows since Qi(t)αi does not depend on
the scheduling decision π(t). The second equality follows from
the evolution of AoI given π(t) = j. The third equality follows
since the summation term does not depend on the scheduling
choice j. This completes the proof.
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