
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Learning-NUM: Network Utility Maximization With
Unknown Utility Functions and Queueing Delay

Xinzhe Fu and Eytan Modiano, Fellow, IEEE

Abstract— Network Utility Maximization (NUM) studies the
problems of allocating traffic rates to network users in order
to maximize the users’ total utility subject to network resource
constraints. In this paper, we propose a new NUM framework,
Learning-NUM, where the users’ utility functions are unknown
apriori and the utility function values of the traffic rates can be
observed only after the corresponding traffic is delivered to the
destination, which means that the utility feedback experiences
queueing delay. The goal is to design a policy that gradually
learns the utility functions and makes rate allocation and network
scheduling/routing decisions so as to maximize the total utility
obtained over a finite time horizon T . In addition to unknown
utility functions and stochastic constraints, a central challenge
of our problem lies in the queueing delay of the observations,
which may be unbounded and depends on the decisions of the
policy. We first show that the expected total utility obtained by
the best dynamic policy is upper bounded by the solution to a
static optimization problem. Without the presence of feedback
delay, we design an algorithm based on the ideas of gradient
estimation and Max-Weight scheduling. To handle the feedback
delay, we embed the algorithm in a parallel-instance paradigm to
form a policy that achieves Õ(T 3/4)-regret, i.e., the difference
between the expected utility obtained by the best dynamic policy
and our policy is in Õ(T 3/4). Furthermore, we extend our policy
to deal with the case where the utility observations are noisy and
show that it achieves Õ(T 7/8)-regret. Finally, to demonstrate
the practical applicability of the Learning-NUM framework,
we apply it to three application scenarios including database
query, job scheduling and video streaming. We further conduct
simulations on the job scheduling application to evaluate the
empirical performance of our policy.

Index Terms— Optimization methods, queueing analysis.

I. INTRODUCTION

NETWORK Utility Maximization (NUM) has been a cen-
tral problem in networking research for decades and has

become a standard framework for making intelligent network
resource allocation decisions. It has found a wide range of
applications such as congestion control in the Internet [1]–[3],
power allocation in wireless networks [4] and job scheduling
in cloud computing [5], [6].

As a network optimization paradigm, NUM studies the
problems of user traffic admission control to maximize the

Manuscript received December 2, 2021; revised April 11, 2022; accepted
June 5, 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor L. Huang. This work was supported in part by NSF under
Grant CNS-1524317 and in part by the Office of Naval Research (ONR)
under Grant N00014-20-1-2119. The early version of this paper appeared in
the Proceedings of ACM MboiHoc 2021 [DOI: 10.1145/3466772.3467031].
(Corresponding author: Xinzhe Fu.)

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
xinzhe@mit.edu).

Digital Object Identifier 10.1109/TNET.2022.3182890

users’ total utility subject to network resource constraints.
Previous works in NUM can be classified into two categories:
static and stochastic. In the static approach [1]–[3], [7], [8],
the traffic rates are modeled as flow variables, the bandwidth
constraints are modeled as network flow constraints, and the
analysis focuses on the convergence rates of the optimiza-
tion algorithms. In the stochastic approach [4]–[6], [9], [10],
the traffic rates are determined by the time-average admitted
traffic, the resource constraints are captured by the long-term
stability of the stochastic queueing networks and the analysis
focuses on the tradeoff between the long-term average utility
and queue length.

Regardless of the differences in modeling and analysis,
previous NUM results rest on a key assumption that the
utility functions of network users are known. This is justified
when the utility functions are simply optimization proxies for
network performance criteria such as fairness [1], [2], [9].
However, when the utility represents more concrete quantities
such as power and energy consumption of network links
[4], [10], user satisfaction of the quality of video streaming
services [12], [13] and completion quality of computation
jobs on the clouds [5], [6], [14], often we do not have
prior knowledge of the utility functions, i.e., the functional
relationship between the traffic rate and its corresponding
utility value is unknown in advance. As a concrete example,
if we consider a job of training a machine learning model
on a cloud computing platform, with the traffic rate in this
case representing the computation resource we allocate to the
job and the utility value corresponding to the performance
of the trained model, then there is no available function that
describes the relationship between the traffic rate and the
utility value [5], [6].

In this paper, we propose a new NUM framework, Learning-
NUM, where the utility functions are unknown but their values
can be learned over the process of decision making. Specifi-
cally, we consider a time-varying stochastic queueing network
in discrete time, which captures both wireline and wireless
networks. There are K users, where user k has a concave
utility function fk that is initially unknown to the network
operator. Each user has a corresponding source-destination pair
in the network. At every time t, for each user k, the network
operator injects a “job” of size rk(t) from the user’s source
to be delivered to the user’s destination. The job size in our
framework resembles the admitted traffic rate in the traditional
NUM formulation. We will explain the connection between the
two notions in Section II. Next, the operator chooses a network
action that controls the routing and scheduling, which further
determines the queue dynamics of the network. Finally, the
utility value (fk(rk)) of a job (of size rk) can only be observed

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4425-3881

2 IEEE/ACM TRANSACTIONS ON NETWORKING

after the job gets delivered to the destination as feedback
from the destination. We consider both the case of noiseless
feedback and the case of noisy feedback, where the utility
observations are noisy, i.e., we observe fk(rk) + � where � is
a zero-mean noise.

We study the problem of designing a policy that jointly
determines the job sizes and network actions based on the
utility function values learned from observations. We define
the utility achieved by a policy as the total utility of the jobs
delivered by a finite time horizon T . This definition naturally
enforces network resource constraints as the undelivered jobs
in the queues at time T are not counted towards the utility.
We seek to design a policy with regret sublinear to T , where
regret [11] is defined as the gap between the expected utility
of the policy and that of the optimal policy that has full
knowledge of the utility functions in advance. As a first step,
we establish that the expected utility achieved by the opti-
mal (dynamic) policy is upper bounded by T times the optimal
value of a static optimization problem, whose objective is the
sum of the (unknown) utility functions and the constraints are
implicitly given by the capacity region of the network. This
result provides an important insight that a policy achieves
low regret if it can closely track the solution to the static
optimization problem.

While solving an optimization problem with unknown
objective function is a common challenge faced in the online
convex optimization literature [20], [21], our problem is fur-
ther complicated by the facts that the constraints, which essen-
tially enforce network stability, are stochastic and unknown
in advance (See Section III for details). Thus, they cannot
be handled by techniques in online optimization that require
the feasibility region to be known in advance [21]. More-
over, the utility value can be observed only after the delivery
of the job, which, in a First-In-First-Out network, happens
after the delivery of the jobs injected before it. This means
that the feedback in our problem experiences queueing-style
delay that may be unbounded and depends on the decisions
of the policy. Such delay evades existing techniques in the
literature as they typically assume (deterministically or sto-
chastically) bounded or decision-independent delay [25]–[28].
Finally, in our problem, the network operator also needs to
make routing and scheduling decisions in addition to the job
size decisions.

To deal with unknown utility functions and stochastic con-
straints, we combine the ideas of gradient sampling [15]
and max-weight scheduling (back-pressure routing) [16] to
propose an online scheduling algorithm that works for the
Learning-NUM problem without feedback delay. We next
embed the algorithm into a parallel-instance paradigm to
obtain a scheduling policy that can handle the queueing-style
feedback delay and achieve Õ(T 3/4)-regret.1 Furthermore,
we show that when the utility observations are noisy, the
scheduling policy can still achieve a sublinear Õ(T 7/8)-regret.
Finally, we show how to apply our framework to applica-
tions including database query [18], job scheduling [19] and
video streaming [12], [13]. We further empirically evaluate

1Õ(·) hides logarithmic factors of T .

the performance of the proposed policy through simulations
on job scheduling scenarios.

The rest of the paper is organized as follows. The model and
formal definitions of the Learning-NUM framework are pre-
sented in Section II. In Section III, we prove the upper bound
on the optimal expected utility. In Section IV, we propose the
online scheduling algorithm and the parallel-instance paradigm
for the Learning-NUM framework. We further illustrate several
applications of Learning-NUM in Section V. The empirical
performance of the online scheduling policy is evaluated in
Section VI. Finally, we conclude the paper with some future
directions in Section VII.

II. MODEL AND PROBLEM FORMULATION

In this section, we specify the general network model and
set up the framework of network utility maximization with
unknown utility functions. We consider a network G(V , E)
with V being the set of nodes and E being the set of directed
links. For each node i ∈ V , we will denote its set of outgoing
neighbors by Ni. There are K classes of users in the network.
Each user k corresponds to a job class (also denoted by k),
and is mapped to one source-destination pair (sk, dk). Multiple
job classes can be mapped to the same source-destination
pair. Source sk sends class-k jobs that get delivered to dk

through the network. We will refer to the jobs sent from sk

destined to dk as class-k traffic. Each node i ∈ V has a queue
Qk

i that buffers the incoming class-k traffic of node i. The
network operates in discrete time t = 1, . . . , T , where T is the
specified time horizon. At each time t, the network is in state
ω(t) ∈ W , with W denoting the set of possible network states.
In concrete applications, the network states may correspond to
channel states of links, service states of servers, or simply a
placeholder when the network is static with only one state.
We assume ω(t)’s is a sequence of i.i.d. random element with
P(ω(t) = ω) = p(ω). However, the distribution of ω(t) is
unknown to the network operator.

A. Traffic Model and Network Dynamics

At each time t, the network operator first observes the
current network state ω(t). It next chooses job size rk(t) for
each class and sends a job of size rk(t) to the buffer Qk

sk
,

where rk(t) is a real value that satisfies 0 ≤ rk(t) ≤ B. The
job size corresponds to the amount of admitted traffic at a
time slot. For example, as we will demonstrate in Section V,
in video streaming, the job size represents the resolution of
a video chunk sent to the user. We adopt this discrete notion
of job size rather than the continuous notion of traffic rate in
the traditional NUM framework because job size is more suit-
able for our finite-horizon discrete-time framework. Finally,
the network operator chooses a network action x(t) ∈ X
that incorporates the routing and scheduling decisions of the
network. The feasible set of actions X can be discrete or
continuous. For each x ∈ X , under network state ω, we use
Ak

ij(ω, x) to denote the offered transmission rate on link (i, j)
for class k, i.e., the amount of class-k traffic that can be
sent from node i to node j. Each link transmits traffic in a
First-In-First-Out (FIFO) basis. Ak

ij(ω, x)’s are known to the
network operators, and are assumed to be non-negative and
upper-bounded by A, and lower-bounded by a non-negative

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 3

constant for all ω and x. Based on the definitions above, the
dynamics of the queues can be written following the Lindley
recursion:

Qk
sk

(t + 1) = [Qk
sk

(t) + rk(t)

−
∑

j∈Nsk

Ak
skj(ω(t), x(t))]+, (1)

Qk
i (t + 1) = [Qk

i (t) +
∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))]+, (2)

and Qk
dk

(t) = 0 for all k. We define Λ(ω) :=
{(A(ω, x))k

ij , x ∈ X} as the set of feasible transmission rate
vectors under network state ω. Note that the network operator
can observe Λ(ω(t)) at t but does not know the distribution of
ω(t).2 Finally, we define Cap(G) as the set of feasible rate vec-
tors (r1, . . . , rK), i.e., there exists {λ(ω)}k

ij ∈ Conv(Λ(ω))
with

∀k, rk ≤
∑

ω∈W

∑
j∈Nsk

p(ω)λ(ω)k
ij ,

∀i ∈ V ,
∑
ω∈W

∑
j:i∈Nj

p(ω)λ(ω)k
ji

≤
∑

ω∈W

∑
j∈Ni

p(ω)λ(ω)k
ij ,

where conv(Λ(ω)) is the convex hull of Λ(ω). Cap(G)
resembles the network capacity region in the traditional
infinite-horizon network utility maximization problem [9], i.e.,
the set of traffic rate vectors that can be supported by the
network. However, as we consider a finite-horizon setting here,
the capacity region here does not exactly characterize the set of
job-size vectors that the network can support. Nevertheless, the
close connection between the two concepts will be revealed in
Section III. Furthermore, to prevent trivializing the problem,
we enforce the condition on Cap(G) that it has non-empty
interior, i.e., there exists η > 0 such that (η, . . . , η) ∈ Cap(G).

B. Utility Model

Each job class (user) k is associated with some underlying
utility function fk. The utility functions are initially unknown.
When a class-k job of size rk gets delivered to dk, we observe
and obtain utility of value fk(rk). We will also consider the
case where the utility observations are noisy in Section IV-
D. Note that this implies that the utility feedback of each job
experiences queueing-style delay, i.e., the time from injecting
a job into the network to observing its utility value is equal
to the time that the job spends in the network (queues). See
Figure 1 for further illustration of the feedback delay.

For each traffic class k, we assume its underlying utility
function has the following properties:

1) fk is monotonically non-decreasing and concave.
2) fk is bounded on [0, B], i.e., ∀r ∈ [0, B], fk(r) ≤ D for

some constant D.

2We assume that Λ(ω) is downward closing in the sense that if λ ∈ Λ(ω),
then any vector λ′ that equals zero in one coordinate and equals λ in all
other coordinates is also in Λ.

Fig. 1. A single-queue example illustrating the queueing-style feedback delay
in the Learning-NUM framework.

3) fk is L-Lipschitz continuous, i.e., ∀r1, r2 ∈ [0, B],
|fk(r2) − fk(r1)| ≤ L · |r2 − r1|.

C. Problem Formulation

Given the network G and time-horizon T , we seek to find a
scheduling policy that determines the sizes of the jobs sent by
the sources and the network actions that maximizes the total
utility obtained at the end of the horizon T . Formally, let Π
be the collection of admissible policies that make scheduling
decisions at time t based on observations obtained before time
t. Policies in Π do not have access to the underlying utility
functions or the distribution of network state, but can learn
them through observations of utility values and instantiated
network state. We further let Π̄ be the collection of all policies,
including non-admissible policies that know the underlying
utility functions and the network state distribution. For a policy
π, we define U(π, T) to be the total utility obtained from jobs
that are delivered by time T under π. Note that U(π, T) is
a random variables, the randomness of which comes from
the time-varying network state and the (possible) inherent
randomness of the scheduling policy. We adopt the notion of
regret from the online learning literature as the measure of
quality of scheduling policies.

Definition 1 Regret: The regret of scheduling policy π is
defined as

R(π, T) = sup
π∗∈Π̄

E[U(π∗, T)]− E[U(π, T)],

The regret R(π, T) measures the gap between the expected
utility obtained under π and the maximum utility achieved by
any (even non-admissible) policy for the given instance.

Based on the above preliminaries, we formally pose the
problem of network utility maximization with unknown util-
ity functions, which we will refer to as the Learning-NUM
problem, as one that asks for an admissible scheduling policy
with low regret.

Definition 2 The Learning-NUM Problem: The Learning-
NUM problem seeks an admissible policy π with sublinear
regret, i.e., lim

T→∞
R(π,T)

T = 0.

Remark: (i). A policy that has sublinear regret is asymp-
totically optimal, since the gap between time-average utility
achieved by the policy and that of the optimal goes to zero. (ii).
Although the regret does not explicitly depend on the queue
backlogs at the end of the horizon T , the queue backlogs are
implicitly accounted for, since the utility U(π, T) does not
include the jobs that are still in the queue at time T .

III. UPPER BOUND ON THE OPTIMAL UTILITY

If the utility functions are known in advance, Learning-
NUM becomes a finite-horizon stochastic optimization prob-
lem. Typically, the optimal policy for the problem is a dynamic
programming-based policy that is intractable and difficult to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

compare to. Therefore, in this section, we relate the expected
utility obtained by the best policy in Π̄ to the optimal value
of a static optimization problem, which motivates the design
and analysis of the admissible scheduling policy we propose.
The optimization problem P is defined as follows:

P : max{r}k

∑K
k=1 fk(rk) (3)

s.t. (r1, . . . , rK) ∈ Cap(G) (4)

rk ∈ [0, B], ∀k. (5)

Intuitively, the optimization problem characterizes a static ver-
sion of the Learning-NUM problem over the job-size variables.
The decision variables {rk}’s can be interpreted as average
size of jobs of class k. P seeks to maximize the total utility
obtained by {rk} such that the vector lies inside the network
capacity region. Note that Cap(G) is a convex set over {rk}.
Hence, P is a convex optimization problem.

Based on the optimization problem P , we are ready to state
the main result of this section, i.e., the optimal value of P
multiplied by the time horizon upper-bounds the maximum
expected utility over all policies in Π̄.

Theorem 1: supπ∗∈Π̄ E[U(π∗, T)] ≤ T · OPT (P).
Proof: The main idea of the proof is that, for any given

policy, we first take certain averages of the job sizes of
each traffic class and then show that the averages satisfy the
constraints of P . Next, by the concavity of the underlying
utility functions, their corresponding value of the objective
function is no less than the expected utility of the policy.

For ease of notations, we prove the theorem for determinis-
tic policies in Π̄. The case of randomized policies follows sim-
ilarly. Consider an arbitrary policy π∗ ∈ Π̄ and a sample path θ
of its execution on the problem instance. For each traffic class
k, let rk(1, θ), . . . , rk(T, θ) be the size of the jobs specified by
π∗ over the time horizon T . Define r̃k(t, θ) = rk(t, θ) if the
t-th job is delivered by time T and r̃k(t, θ) = 0 otherwise. Let
x(t, θ) be the network action chosen by π∗ at t and let ω(t, θ)
be the network state at t under θ. Based on the utility model we
have that the utility achieved by π∗ on sample path θ is equal to∑K

k=1

∑T
t=1 fk(r̃k(t, θ)). Let r̄k(θ) = 1

T

∑T
t=1 r̃k(t, θ). Since

the underlying utility functions are concave, we have

K∑
k=1

T∑
t=1

fk(r̃k(t, θ)) ≤ T

K∑
k=1

fk(r̄(θ)). (6)

Furthermore, let Ãk
ij(ω(t, θ), x(t, θ)) be the realized trans-

mission rate on link (i, j) for class-k at t. The realized
transmission Ãk

ij is equal to the offered transmission Ak
ij when

the queue length is greater than the offered transmission, and
the realized transmission is smaller otherwise. From the queue
dynamics (Equations 1 and 2), we obtain that

∀k, T r̄k(θ) ≤
T∑

t=1

∑
j∈Nsk

Ãk
skj(ω(t, θ), x(t, θ)), (7)

∀i,

T∑
t=1

∑
j:i∈Nj

Ãk
ji(ω(t, θ), x(t, θ))

≤
T∑

t=1

∑
j∈Ni

Ãk
ij(ω(t, θ), x(t, θ)). (8)

Define p̂θ(ω), ω ∈ W as the empirical distribution of ω,

p̂θ(ω) :=
∑T

t=1 �{ω(t, θ) = ω}
T

.

It follows from (7), (8) that for each ω ∈ W , there exists
(λ̃(ω, θ))k

ij ∈ Conv(Λ(ω)) such that

∀k, r̄k(θ) ≤
∑

ω∈W

∑
j∈Nsn

p̂θ(ω)λ̃k
skj(ω, θ),

∀i,
∑
ω∈W

∑
j:i∈Nj

p̂θ(ω)λ̃k
ji(ω, θ)

≤
∑

ω∈W

∑
j∈Ni

p̂θ(ω)λ̃k
ij(ω, θ).

Moreover, as Λ(ω) is downward-closing, we further have that
there exists (λ(ω, θ))k

ij ∈ Conv(Λ(ω)) such that

∀k, r̄k(θ) =
∑
ω∈W

∑
j∈Nsk

p̂θ(ω)λk
skj(ω, θ),

∀i,
∑

ω∈W

∑
j:i∈Nj

p̂θ(ω)λk
ji(ω, θ)

=
∑
ω∈W

∑
j∈Ni

p̂θ(ω)λk
ij(ω, θ).

Taking expectation over θ, we have
(Eθ[r̄1(θ)], . . . , Eθ[r̄1(θ)]) ∈ Cap(G). Moreover, it is
easy to see that 0 ≤ Eθ[r̄k(θ)] ≤ B for all k. Therefore, the
vector (Eθ[r̄1(θ)], . . . , Eθ[r̄1(θ)]) is feasible to P . Hence,
OPT (P) ≥ ∑K

k=1 fk(Eθ[r̄k(θ)]). Invoking the concavity
of fk’s again, by Jensen’s inequality, we have for all k,
fk(Eθ[r̄k(θ)]) ≥ Eθ[fk(r̄k(θ))]. Combining this with (6),
we obtain

OPT (P) ≥
K∑

k=1

fk(Eθ[r̄k(θ)])

≥ E

[
K∑

k=1

fk(r̄k(θ))

]

≥ 1
T

E

[
K∑

k=1

T∑
t=1

fk(r̃k(t, θ))

]
, (9)

which concludes the proof.
It is worth pointing out that Theorem 1 does not imply that

the optimal policy is a static one that assigns the job sizes
according to the solution to the optimization problem P . Such
a policy would not achieve an expected utility of T ·OPT since
the expected number of jobs delivered is typically less than T .
Indeed, due to the stochastic network dynamics, a portion of
the jobs will still remain in the queues by the end of the time
horizon. Despite that, the theorem does provide the insight that
a policy achieves low regret if it can closely approximate the
solution to P at each time slot. As the objective function of P
is unknown, the problem has similar flavor to online/zeroth-
order optimization [20], [23], [24]. However, in the Learning-
NUM problem we are facing two additional challenges. First,
the feasibility region in the Learning-NUM is stochastic and
not explicitly given as the distribution of network states is
unknown. Thus, we cannot rely on method that requires the
feasibility region to be known in advance [21]. Second, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 5

queueing-style delay of the feedback compromises the policy’s
ability to adjust based on utility observations. As the delay
is action-dependent and may be unbounded, it also poses
more stringent requirement on controlling the network queue
lengths.

IV. ONLINE SCHEDULING POLICY

In this section, we introduce the scheduling policy we
propose for the Learning-NUM framework – the Parallel Gra-
dient Sampling Max-Weight (P-GSMW) policy. The P-GSMW
policy is composed of embedding an algorithm (called Gradi-
ent Sampling Max-Weight, GSMW) that makes job-size and
scheduling decisions based on immediate feedback (no delay)
into a parallel-instance paradigm that handles the feedback
delay. The GSMW algorithm essentially combines the ideas
of drift-plus-penalty optimization [17], gradient sampling [15],
and Max-Weight scheduling. The parallel-instance paradigm
invokes multiple parallel instances of the GSMW algorithm
such that each instance essentially runs in a no-delay setting.
In the following, we first introduce the GSMW algorithm, and
then combine it with the parallel-instance paradigm. Finally,
we provide discussion on the challenges posed by the feedback
delay.

A. The GSMW Algorithm

In the presentation of the GSMW algorithm, we assume
a no-delay setting, i.e., the utility values of the jobs can be
observed immediately after job-size decision. We will handle
the feedback delay with the parallel-instance paradigm in
subsequent sections.

The GSMW algorithm (Algoritm 1) maintains a virtual job
size variable r̂k for each class k and utilizes queue lengths
to update the virtual job size variables and network actions.
The r̂k’s are updated once every two slots, which essentially
divides the time horizon into epochs of size two (without
loss of generality, we assume the horizon T to be even). For
simplicity of notations, we will assume that the network state
remains unchanged for each epoch and refer to an epoch as a
time slot indexed by t ∈ {1, . . . , T} for the rest of the paper,
i.e., at each slot, we need to make scheduling decision and
job-size decision for two incoming jobs of each class.3

At each slot t ∈ {1, . . . , T}, the network action is chosen
according to a Max-Weight-like rule (Line 3). The decisions on
job size are made based on the virtual job size variables at the
corresponding epoch. The updates of virtual job size variables
are determined by gradient estimates of the utility functions
and queue lengths. Since the utility functions are unknown,
GSMW constructs the gradient estimates using observations of
function values. Specifically, at slot t, each source sk injects a
first job of size r̂k(τ)+δ and a second job of size r̂k(τ)−δ for
each k ∈ n and obtains the feedback of value fk(r̂k(τ)+δ) and
fk(r̂k(τ)− δ) (Lines 5, 6). The two feedback values obtained
are combined to form the gradient estimate of fk at r̂k(τ)
(Line 7). The gradient estimate is then fed into the update of
the virtual variable r̂k (Line 10). The projection step P[δ,B−δ]

of Line 10, defined as the projection on to interval [δ, B−δ] by

3This assumption is purely made for notational convenience. Our results can
be straightforwardly adapted to the original setting without the assumption.

the Euclidean norm, is to ensure that r̂k(τ) + δ and r̂k(τ)− δ
always lie in the domain [0, B]. Here, V controls the relative
weights of gradient and queue length while α determines the
step size.

Algorithm 1 The Gradient Sampling Max-Weight Algorithm.

Input: Network G(V , E), parameters V, δ, α
1: Initialize: x(0) ∈ X , r̂k(0) = δ.
2: for t = 1, 2, . . . , T do
3: x(t) := argmaxx∈X

∑
i,j∈V

∑K
k=1 Ak

ij(ω(t), x)[Qk
i (t)−

Qk
j (t)]

4: for k = 1, . . . , K do
5: sk injects job of size r̂k(t) + δ and observes

fk(r̂k(t) + δ).
6: sk injects job of size r̂k(t) − δ and observes

fk(r̂k(t) − δ).
7: ∇̂fk(r̂k(t)) := fk(r̂k(t)+δ)−fk(r̂k(t)−δ)

2δ
8: Update queue lengths according to rk(t), x(t).
9: for k = 1, . . . , K do

10: r̂k(t + 1)
:= P[δ,B−δ]

[
r̂k(t) + 1

α (V · ∇̂fk(r̂k(t)) − Qk
sk

(t))
]

In the no-delay setting, the GSMW algorithm with suitable
choices of parameter values can achieve Õ(

√
T)-regret, which

will be formally presented in Theorem 2. As the analysis in
the no-delay setting can be considered as a special case of the
original setting (with feedback delay) as we will show in the
next section, we omit the proof of Theorem 2.

Theorem 2: In the no-delay setting, the Gradient Sampling
Max-Weight policy πGSMW achieves Õ(

√
T)-regret by setting

α = 2KT/η, V =
√

T , δ = T−1/2.
Remark: in the traditional framework of stochastic network

optimization where the utility functions are known, the drift-
plus-penalty/max-weight approach [9], [10] can achieve an
O(V)-O(1/V) trade-off in the gap of time-average utility and
queue length as t → ∞. Setting the parameter V therein to√

T , the asymptotic O(V)-O(1/V) trade-off can be translated
to O(

√
T)-regret in the finite horizon framework. Theorem 2

shows that one can achieve the same regret by replacing the
penalty term with gradient-sampling when the utility functions
are unknown.

1) Challenges Posed by Feedback Delay: In the original
setting of the Learning-NUM problem where the observations
experience queueing-style feedback delay, the GSMW algo-
rithm no longer works. The main reason is that the update
of the job-size variables (Line 10 of Algorithm 1) cannot be
executed every time slot, as the gradient estimate ∇̂fk(r̂k(t))
cannot be formed without the corresponding utility observa-
tions. We now give two straightforward adaptations of the
GSMW algorithms that are implementable under the presence
of feedback delay, and argue at an intuitive level that they both
lead to regrets that grow linearly with the time horizon T . This
highlights the challenges posed by the feedback delay, and
justifies the necessity of having a more sophisticated scheme
that achieves sublinear regret which will be introduced in the
next section.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

One possible adaptation is to use an “episodic approach,”
i.e., keep the job-size variables unchanged (for an episode of
multiple slots) until the utility observations needed become
available, and update job-size variables once every episode.
This approach would cause the sizes of the jobs (traffic
injected to the network) not be able to adjust timely with
respect to the queue lengths,as Line 10 only gets executed
once every episode, which will further lead to larger queue
lengths. As the feedback delay is essentially proportional to
the queue lengths, larger queue lengths would further increase
the length of the episodes, which further reduce the frequency
and timeliness of the updates. This will result in a “positive
feedback loop” that makes the algorithm suffer from linear
regret.

Another possible method is to use old gradients, e.g.,
we execute Line 10 every time slot, but use the most recently
available gradient estimates. This makes the algorithm adjusts
according to queue length every time slot, and thus can main-
tain the queue length bound of GSMW. However, the feedback
delay (queue lengths) is still non-trivial and cannot be bounded
by a constant independent of T , which will result in a large
bias in the gradient estimates used in the updates. Such bias
in the gradient estimates will compromise the utility regret,
which leads to the algorithm having linear regret.

Finally, a third candidate is to stay idle (i.e. setting the job
sizes as 0) when the feedback is delayed. This will also lead
to linear regret due to the waste of network resources and
incoming jobs caused by staying idle. Indeed, even when the
network is lightly loaded, due to the stochasticity in arrivals
and services, there will be a constant probability that the
incoming jobs experience queueing delay. This implies that
staying idle will lead to a constant fraction of the total network
resources (over the whole time horizon) being wasted, leading
to a linear regret.

2) Relation to Feedback Delay in Online Learning: There
have been several works in the literature that consider vari-
ous online learning problems with feedback delay [25]–[28].
Previous works have considered multi-armed bandit problems
and online convex optimization problems where the feed-
back delay is independent of the decisions [25], [26], and
multi-armed bandit problems where the feedback delay is arm-
dependent [27], [28]. The key distinction of the feedback delay
in the L-NUM problem is that it is controlled by our decisions
in a continuous fashion, while previous works assume the
feedback delay is deterministically or stochastically bounded
apriori (and essentially cannot be controlled). Furthermore,
as the unfinished jobs in the queues do not contribute to the
total utility, in the L-NUM problem, the feedback delay (i.e.
queue lengths) directly affects the total utility and the regret.
Hence, unlike in previous online-learning problems where the
feedback delay only affects the learning process, in the L-
NUM problem the feedback delay affects both the learning
and the utility aspects of the network. Therefore, on one
hand, we cannot over-aggressively reduce the feedback delay
to facilitate learning the utility functions. For example, setting
the feedback delay to be bounded in O(1) would unnecessarily
restrict the decision region of job sizes and lead to linear regret.
On the other hand, it is still necessary to control the feedback
delay. For example, having a feedback delay of order T would

Fig. 2. A single-queue example of the parallel-instance paradigm.

also lead to linear regret as both the learning process and the
job completion are hindered by the queueing delay.

B. The Parallel-Instance Paradigm

In order to handle the feedback delay, we design a
parallel-instance paradigm that encapsulates the GSMW algo-
rithm, and forms the Parallel-instance GSMW (P-GSMW)
policy. The details of the P-GSMW policy are shown in
Algorithm 2. Similar to the GSMW algorithm, the network
action x(t) at each time slot is still determined by the Max-
Weight rule. The key difference is that the paradigm main-
tains a set of parallel instances of the GSMW algorithm,
which we will refer to as the instance reservoir I. Each
instance can be in one of the two possible status: FRESH and
STALE. FRESH status means that the instance has obtained
the corresponding utility feedback and can perform updates
on the virtual job-size variables (Line 5 of Algorithm 2);
STALE status means that the instance is still waiting for
utility feedback. We use {rI

k(t)} to denote the virtual job size
variables maintained by instance I . When we need to make job
size decisions, if there is a FRESH instance available in the
reservoir, we “invoke” the instance by performing updates and
deciding on the job sizes based on the updated virtual job-size
variables of the instance (Line 5 of Algorithm 2). If there are
multiple FRESH instances, we select one arbitrarily. We then
change the instance’s status to STALE (Line 7). If there is
no FRESH instance available, we initialize a new instance,
add it to I (Lines 9 and 10). The virtual job-size variables of
instances that are not invoked remains unchanged (Line 12).
Upon delivery of jobs, we observe utility values and feed them
to the corresponding instances. If an instance has all the utility
observations available for the jobs injected when it was last
invoked, we change its status from “STALE” to ”FRESH”
(Line 15). We further illustrate the parallel-instance paradigm
with a single-queue example in Figure 2.

Remark: (i). Our parallel-instance paradigm has a sim-
ilar flavor to the technique in [25] for online learning
with delayed feedback. However, the observation delay in
the Learning-NUM framework may be unbounded and is
action-dependent, which is more general than the bounded,
decision-independent delay considered in [25]. (ii). Line 9 of
Algorithm 2, i.e., creating a new instance when there is no
fresh instance available may seem counter-intuitive, as the
absence of new instances is an indication of the network
being congested while creating a new instance may add to
the congestion. However, this argument overlooks the benefits
of creating a new instance: First, it reduces the probability of
the event that there is no fresh instance available when job

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 7

size decisions need to be made. Second, the job size decisions
made based on this new instance will be adjusted based on
both utility and queue lengths feedback, which enables them
to achieve a small regret.

Algorithm 2 The Parallel-Instance GSMW Policy.

Input: Network G(V , E), parameters V, δ, α, instance reser-
voir I

1: for t = 1, 2, . . . , T do
2: x(t) := arg maxx∈X

∑
i,j∈V

∑K
k=1 Ak

ij(ω(t), x)[Qk
i (t)−

Qk
j (t)]

3: if There exists a FRESH instance It ∈ I then
4: for k = 1, . . . , K do
5: r̂It

k (t) := P[δ,B−δ][
r̂It

k (t − 1) + 1
α (V · ∇̂fk(r̂It

k (t − 1)) − Qk
sk

(t))
]

6: sk injects job of size r̂It

k (t) + δ and another job of
size r̂It

k (t) − δ.
7: Change the status of It to STALE.
8: else
9: Create a new instance It

10: For each k, initialize r̂It

k (t) := δ, and sk injects job
of size r̂It

k (t) + δ and another job of size r̂It

k (t) − δ
11: Update queue lengths according to rk(t), x(t).
12: {r̂J

k (t)} := {r̂J
k (t)} for J ∈ I, J
= It.

13: Collect utility observations from delivered jobs
and form gradient estimates ∇̂fk(r̂I

k(t)) :=
fk(r̂I

k(t)+δ)−fk(r̂I
k(t)−δ)

2δ
14: for STALE instance I ∈ I do
15: Change the status of I to FRESH if it has obtained

all outstanding gradient estimates.

C. Policy Analysis

In this section, we analyze the regret achieved by the
P-GSMW policy πP−GSMW . The main result is presented
Theorem 3.

Theorem 3: The Parallel-Instance Gradient Sampling
Max-Weight policy πP−GSMW achieves Õ(T 3/4) regret
by setting α = 2K

√
T/η, V = T 1/4, δ = T−1/2., i.e.,

R(πGSMW , T) = Õ(T 3/4).
Remark: In the no-delay setting, the GSMW algorithm

achieves a regret of order Õ(
√

T), which matches the
established regret lower bound Ω(

√
T) [21]. Under the

queueing-style feedback delay, the P-GSMW policy achieves
Õ(T 3/4) which is higher than Õ(

√
T). This raises the question

whether the delay of Learning-NUM fundamental increases
the difficulty of the problem, i.e., a lower bound better than
Ω(

√
T) can be shown, or that there exists algorithm for

Learning-NUM that has regret better than Õ(T 3/4). We leave
this as a future direction.

The rest of the section is devoted to proving Theorem 3.
1) Preliminary Results: As we focus on bounding the regret

with respect to T , we will use C to represent a generic constant
that does not depend on T . Note that C may depend on
parameters such as A, B, D, L, and the C’s that appear in
different equations might not be equal. For simplicity of nota-
tion, we will use r̂I

k(t) or r̂k(t) to denote the virtual job-size

variable used at time t (which suppresses the dependence of
the invoked instance at t on the time t). We first lay out
some preliminary results that will be useful in the subsequent
analysis. The proofs of most lemmas will be deferred to
Appendix A.

To begin with, we show a key upper bound on the regret of
πP−GSMW .

Lemma 1: Let {r∗}k be the optimal solution to P ,

R(πP−GSMW , T)

≤ 2E

[
T∑

t=1

K∑
k=1

fk(r∗k) − fk(r̂k(t))

]

+ C
∑
i∈V

K∑
k=1

E[Qk
i (T)] + CTδ.

Lemma 1 shows that an upper bound on the regret essen-
tially consists of two terms (as the third term Tδ is in O(

√
T)

and can be ignored without affecting the regret analysis). The
first term, E

[∑T
t=1

∑K
k=1 fk(r∗k) − fk(r̂k(t))

]
, which will be

referred to as Utility Regret, captures the cumulative difference
in terms of utility between the policy’s decisions and the opti-
mal solution to P . The second term,

∑
i∈V

∑K
k=1 E[Qk

i (T)].
which will be referred to as Queueing Regret, captures the
unfinished jobs in the queues at the end of the time horizon.
We will show that under the P-GSMW policy, both the utility
regret and the queueing regret are in Õ(T 3/4), from which,
the theorem follows.

Next, we establish some auxiliary results on the gradient
estimates.

Lemma 2: For all k, t, ∇̂fk(r̂I
k(t)) ≤ L with probability 1.

Proof: The lemma follows straightforwardly from the
Lipschitz continuity of the underlying utility functions.

We next show that the gradient estimate is unbiased with
respect to a smoothed version of fk, which is defined as
f̃k(r) = 1

2δ

∫ δ

−δ fk(r + z)dz. Note that by definition f̃k

is also concave and Lipschitz-continuous. Moreover, by the
concavity and Lipschitz continuity of fk, for all r ∈ [δ, B−δ],
fk(r) − Cδ ≤ f̃k(r) ≤ fk(r) [15].

Lemma 3: For all k, t, ∇̂fk(r̂k(t)) = ∇f̃k(r̂k(t)).
Proof: The lemma follows from the Fundamental Theo-

rem of Calculus.
Finally, we establish three basic properties of the updates of

the P-GSMW policy. The first involves the update of virtual
job size variables, the second considers the Max-Weight rule of
choosing actions and the third deals with the queue dynamics.

Lemma 4: For each t, let I be the instance invoked at
time t, we have for any {r}k with rk ∈ [δ, B − δ]

K∑
k=1

[
V ∇̂fk(r̂I

k(t − 1))(rk − r̂I
k(t − 1))

]

+
K∑

k=1

[
Qk

sk
(t)r̂I

k(t)
]

≤
K∑

k=1

[
Qk

sk
(t)rk+α[(r̂I

k(t − 1)−rk)2−(r̂I
k(t)−rk)2]+C.

]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Lemma 5: At every time slot t, for any x ∈ X , and for
all {r}k,

K∑
k=1

∑
i∈V,i�=sk

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t)) −

∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

+
K∑

k=1

Qk
sk

(t)

⎡
⎣rk −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

≤
K∑

k=1

∑
i∈V,i�=sk

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x) −

∑
j∈Ni

Ak
ij(ω(t), x)

⎤
⎦

+
K∑

k=1

Qk
sk

(t)

⎡
⎣rk −

∑
j∈Nsk

Ak
skj(ω(t), x)

⎤
⎦ .

Proof: By rearranging the terms, we recover exactly the
right-hand-side of Line 2 of Algorithm 2. The lemma then
follows from the construction of the Max-Weight update rule.
Note that the inequality holds for all {r}k since the terms
involving {r}k do not affect the maximization.

Lemma 6: For each k, t, recall that r̂k(t) = r̂I
k(t) for the

invoked instance I .

Qk
sk

(t + 1)2 − Qk
sk

(t)2

≤ 4Qk
sk

(t)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦ + C, (10)

and for each i ∈ V, k, i
= sk, dk,

Qk
i (t + 1)2 − Qk

i (t)2

≤ 4Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ + C. (11)

2) Queueing Regret: In this section, we bound the queueing
regret by providing a bound on the expected queue size
at T . To do so, we will first use

∑
i∈V

∑K
k=1 Qk

i (t)2 as a
Lyapunov function and prove that the Lyapunov function has
expected conditional negative drift, which combined with a
result on discrete stochastic process from [17], leads to a
bound on

∑
i∈V

∑K
k=1 Qk

i (t) both in expectation and with
high probability.

Define Q(t) to be the vector that includes all the queues
{Q(t)}k

i as coordinates and || · || as the Euclidean norm.

By Lemma 6, we have

||Q(t + 1)||2 − ||Q(t)||2

=
K∑

k=1

Qk
sk

(t + 1)2 − Qk
sk

(t)2 +
∑
i,k

Qk
i (t + 1)2 − Qk

i (t)2

(12)

≤ 4
K∑

k=1

Qk
sk

(t)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦ + C

(13)

+ 4
∑
i,k

Qn
k (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ . (14)

Next, we prove a conditional drift argument on ||Q(t)||2 under
the P-GSMW policy.

Lemma 7: There exists � > 0 such that under the P-GSMW
policy,

E[||Q(t + 1)||2 − ||Q(t)||2 | Q(t)]

≤ −�
∑
i∈V

K∑
k=1

Qk
i (t) + C

√
T .

Lemma 7 establishes that ||Q(t)||2 tends to decrease when
the queue length is significantly larger than O(

√
T). To bound

the queueing regret based on this, we use the following drift
lemma for stochastic processes from [17]. We will not need
the full generality of the lemma as it provides expectation
and with-high-probability bound on stochastic processes that
satisfy multi-slot drift condition, but we only need to deal with
single-slot drift.

Lemma 8: [17] Let {Z(t), t ≥ 0} be a discrete time
stochastic process adapted to a filtration {F(t), t ≥ 0} with
Z(0) = 0 and F(0) = {∅, Ω}. Suppose there exists an integer
t0 > 0, real constants θ > 0, δmax > 0 and 0 < ξ ≤ δmax

such that

|Z(t + 1) − Z(t)| ≤ δmax (15)

E[Z(t + t0) − Z(t) | F(t)] ≤ t0δmax, ifZ(t) < θ (16)

E[Z(t + t0) − Z(t) | F(t)] ≤ −t0ζ, ifZ(t) ≥ θ. (17)

hold for all t ∈ {1, 2, . . . , }, then

E[Z(t)] ≤ θ + t0δmax

+t0
4δ2

max

ξ
log

8δ2
max

ξ2
, ∀t ∈ {1, 2, . . . , } (18)

and

∀ 0 < μ < 1, P(Z(t) ≥ z) ≤ μ, ∀t ∈ {1, 2, . . . , }, (19)

where z = θ + t0δmax + t0
4δ2

max

ξ log 8δ2
max

ξ2 + t0
4δ2

max

ξ log 1
μ .

Continuing from Lemma 7, since
∑

n∈V,k Qk
n(t) ≥ ||Q(t)||

(as l1 norm is no smaller than the Euclidean norm), we have

E[||Q(t + 1)||2 − ||Q(t)||2 | Q(t)] ≤ −�||Q(t)|| + C
√

T .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 9

It follows that

E[||Q(t + 1)||2 | Q(t)] ≤ ||Q(t)||2 − �||Q(t)|| + C
√

T

≤ (||Q(t)|| − �)2 when ||Q(t)|| > C
√

T .

It follows that when ||Q(t)|| > C
√

T ,

E[||Q(t + 1)|| | Q(t)]

≤
√

E[||Q(t + 1)||2 | Q(t)] ≤ ||Q(t)|| − �.

Further, since ||Q(t+1)||−||Q(t)|| ≤ ||Q(t+1)−Q(t)|| ≤ C.
Hence, invoking Lemma 8 with t0 = 1, θ = C

√
T , δmax =

C, ζ = C, we obtain that E[||Q(t)||] ≤ Õ(T 1/2) for all
t. By Cauchy-Schwarz inequality, E[

∑
i∈V

∑K
k=1 Qk

i (t)] ≤
N |V | ·E[||Q(τ)||] ≤ Õ(T 1/2) for all t. Furthermore, by union
bound, we also have that there exists a constant C such
that with probability at least 1 − 1/T ,

∑
i∈V

∑K
k=1 Qk

i (t) ≤
C
√

T log T .
With the analysis above, we summarize the result on queue-

ing regret in the following theorem.
Theorem 4: Under P-GSMW, ∀t = 1, . . . , T ,∑
i∈V

∑K
k=1 Qk

i (t) ≤ Õ(
√

T) in expectation and with high
probability. In particular, E[

∑
i∈V

∑K
k=1 Qk

i (T)] ≤ Õ(
√

T).
3) Utility Regret: In this section, we bound the utility regret

term. We will use
∑

t,k as a short-hand for
∑T

t=1

∑T
k=1. and∑

i,k as a shorthand for
∑

i∈V

∑K
k=1. We first decompose the

utility regret into four components as follow

E

⎡
⎣∑

t,k

fk(r∗k) − fk(r̂k(t))

⎤
⎦

= E

⎡
⎣∑

t,k

fk(r∗k) − fk(r̂∗k)

⎤
⎦

+ E

⎡
⎣∑

t,k

fk(r̂∗k) − f̃k(r̂∗k)

⎤
⎦

+ E

⎡
⎣∑

t,k

f̃k(r̂∗k) − f̃k(r̂k(t))

⎤
⎦

+ E

⎡
⎣∑

t,k

f̃k(r̂k(t)) − fk(r̂k(t))

⎤
⎦ , (20)

where (r̂∗1 , . . . , r̂∗K) is the vector that maximizes
∑K

k=1 fk(rk)
subject to (r1, . . . , rK) ∈ Cap(G) and ∀k, rk ∈ [δ, B − δ],
i.e., the optimal solution to P restricting to each rk ∈
[δ, B − δ]. As fk is Lipschitz continuous, by Lemma 10
(in Appendix A), we have

∑K
k=1 fk(r∗k) − fk(r̂∗k) ≤ Cδ.

Further,
∑K

k=1 fk(r̂∗k)− f̃k(r∗k) ≤ KLδ. Since fk is concave,∑K
k=1 f̃k(r̂k(t)) − fk(r̂k(t)) ≤ 0. It follows that

E

⎡
⎣∑

t,k

fk(r∗k) − fk(r̂k(t))

⎤
⎦

≤ E

⎡
⎣∑

t,k

f̃k(r̂∗k) − f̃k(r̂k(t))

⎤
⎦ + C

√
T

Hence, we can focus on bounding
E

[∑
t,k f̃k(r̂∗k) − f̃k(r̂k(t))

]
.

Again, starting from Lemma 4 and plugging in {r̂∗}k,
we have

K∑
k=1

[
V ∇̂fk(r̂I

k(t − 1))(r̂∗k − r̂I
k(t − 1))

]

+
K∑

k=1

[
Qk

sk
(t)r̂I

k(t)
]

≤
K∑

k=1

[
Qk

sk
(t)rk + α[(r̂I

k(t − 1) − r̂∗k)2

−(r̂I
k(t) − r̂∗k)2] + C.

]
Again, multiplying both sides by two and adding the same
terms on both sides lead to

K∑
k=1

[
V ∇̂fk(r̂I

k(t − 1))(r̂∗k − r̂I
k(t − 1))

]

+
K∑

k=1

Qk
sk

(t)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

+
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ (21)

≤
K∑

k=1

Qk
sk

(τ)

⎡
⎣r̂∗k −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

+
K∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

+
K∑

k=1

α[(r̂I
k(t) − r̂∗k)2 − (r̂I

k(t + 1) − r̂∗k)2] + C (22)

By (14), for the left-hand-side of (22),

K∑
k=1

Qk
sk

(t)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

+
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

≥ ||Q(t + 1)||2 − ||Q(t)||2
4

+ C. (23)

As (r̂∗1 , . . . , r̂∗K) ∈ Cap(G) by definition, for each ω,
there exists a set of real numbers {a(ω, x), x ∈ X},

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

0 ≤ a(ω, x) ≤ 1 and
∑

x∈X a(x, ω) = 1 such that4

∀k, r̂∗k ≤
∑

ω∈W
p(ω)

∑
j∈Nsk

∑
x∈X

a(x)Ak
skj(ω, x),

∀i, k, i
= sk,
∑

ω∈W
p(ω)

∑
j:i∈Nj

∑
x∈X

a(ω, x)Ak
ji(ω, x)

≤
∑

ω∈W
p(ω)

∑
j∈Ni

∑
x∈X

a(ω, x)Ak
ij(ω, x).

Hence, by Lemma 5 and the argument that the conditional drift
under the max-weight policy is smaller than any stationary
randomized policy, for the right-hand-side of (22) we have,

E

K∑
k=1

Qk
sk

(t)

⎡
⎣r̂∗k −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦≤0 (24)

Therefore, taking expectation of both sides of (22) and com-
bining (23) and (24) yields

E

[
K∑

k=1

V ∇̂fk(r̂I
k(t − 1))(r̂∗k − r̂k(t − 1))

]

+
E[||Q(t + 1)||2 − ||Q(t)||2]

4
≤ E

[
α[(r̂I

k(t − 1) − r̂∗k)2 − (r̂I
k(t) − r̂∗k)2]

]
+ C (25)

By Lemma 3 and the concavity of f̃k,

E

[
K∑

k=1

V ∇̂fk(r̂I
k(t − 1))(r̂∗k − r̂I

k(t − 1))

]

≥ E[V
K∑

k=1

f̃(r̂∗k) − f̃(r̂I
k(t − 1))].

Plugging this in (25) and rearranging terms, we get

E[V
K∑

k=1

f̃(r̂∗k) − f̃(r̂I
k(t − 1))]

≤ E
[
α[(r̂I

k(t − 1) − r̂∗k)2 − (r̂I
k(t) − r̂∗k)2]

]
+

E[||Q(t)||2 − ||Q(t + 1)||2]
4

+ C. (26)

Ideally, we would want to sum (26) over t and obtain a bound
on E

[∑T
t=1

∑K
k=1 f̃k(r̂∗k) − f̃k(r̂k(t))

]
. However, the parallel

instance paradigm brings intricacy to the argument. It stems
from the fact that the job-size variables at different time slot
may belong to different instances. To make the reasoning
clearer, we will write the invoked instance at t at It (i.e.,
r̂k(t) = r̂It

k (t)), which makes the dependence explicit but may
compromise readability. First, note that at time t, our job-size
decisions are {rIt

k (t)}, while the left-hand-side of (26) is
E[V

∑K
k=1 f̃(r̂∗k)− f̃(r̂It

k (t−1))]. Since the job-size variables
of an instance remain unchanged during the intervals when the
instance is not invoked, summing the left-hand-side over time
t, the resulting term differs from

∑T
t=1 E[V

∑K
k=1 f̃(r̂∗k) −

f̃(r̂It

k (t))] =
∑T

t=1 E[V
∑K

k=1 f̃(r̂∗k) − f̃(r̂k(t))] by at most
CV |I|, where |I| is the total number of instances in the reser-
voir at the end of the time horizon. Second, summing the right-
hand-side of (26) over time, the term E[||Q(t)||2−||Q(t+1)||2]

4

4Here we assume X to be discrete. The continuous case follows similarly.

telescopes, but the term α[(r̂It

k (t− 1)− r̂∗k)2 − (r̂It

k (t)− r̂∗k)2]
only partially telescopes as the invoked instance It may be
different for different t. More specifically, again due to that
the job-size variables of an instance do not change when
un-invoked summing the right-hand-side of (26) from t = 1 to
T − 1, we obtain∑

I∈I
α[(r̂I

k(tI) − r̂∗k)2 − (r̂I
k(T) − r̂∗k)2]

+
E[||Q(1)||2 − ||Q(T)||2]

4
+ CT ≤ Cα|I| + CT , (27)

where tI is the time that instance I is created, and (27) follows
from that ||Q(1)|| is bounded by a constant while ||Q(T)||2 is
non-negative.

By the reasoning above, we can see that the key to bound
the utility regret is to bound the total number of instance
created |I|. By the construction of the parallel-instance par-
adigm, |I| is bounded by the maximum delay experienced
by the jobs. As the links are FIFO and have offered service
rates lower-bounded by a constant, using standard queueing-
theoretic arguments, we have |I| ≤ C maxt

∑
n∈V,k Qk

n(t).
Using Theorem 4, it follows that |I| ≤ Õ(

√
T) with prob-

ability at least 1-1/T, which implies that E[|I|] ≤ Õ(
√

T)
Therefore, summing (26) over time, using (27) and plugging
in the value of α, V , we have
T∑

t=1

E[V
K∑

k=1

f̃(r̂∗k)−f̃(r̂k(t))]≤CαE[|I|]+CT +CV E[|I|].

Hence, we have
T∑

t=1

E[
K∑

k=1

f̃(r̂∗k) − f̃(r̂k(t))] ≤ Õ(T 3/4),

which demonstrates that the utility regret is of order Õ(T 3/4)
and finishes the proof of Theorem 3.

D. Extension to Noisy Observations

We now extend our results to the case where the utility
observations are noisy. Specifically, we consider the case
where after a class-k job of size rk gets delivered to dk,
we obtain and observe f̂k(rk) := fk(rk) + �, where � is a
bounded zero-mean random variable with |�| ≤ C. The noisy
values (�’s) of different jobs are independent and the noise
values are independent of the job size decisions. In this case,
it is easy to see that Theorem 1 still holds. We now show that
the Parallel-Instance GSMW policy can still achieve sublinear
regret even when the utility observations are noisy.

The key distinction in the case of noisy observations is
that the approximate gradients ∇̂fk(r̂I

k(t)) no longer have
magnitude upper bounded by a constant, i.e. Lemma 2 does
not hold. Instead, we have the following bound.

Lemma 9: In the case of noisy observations, for all k, t,
∇̂fk(r̂I

k(t)) ≤ C/δ with probability 1 for some constant C.
Proof: Recall that the gradient estimate in this case is

equal to ∇̂fk(r̂I
k(t)) = f̂k(rk(t)+δ)−f̂k(rk(t)−δ)

2δ . It follows that

∇̂fk(r̂I
k(t))≤ (fk(rk(t)+δ)+�1)−(fk(rk(t)−δ)+�2)

2δ
,

(28)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 11

where �1, �2 are the noises associated with the two util-
ity observations. Since �1 and �2 are bounded, the lemma
follows.

Furthermore, Lemma 3 holds in expectation, i.e., for all
k, t, E[∇̂fk(r̂k(t))] = ∇f̃k(r̂k(t)), which can be easily seen
from (28) as the noises are zero-mean. With Lemma 9, we can
carry out the same analysis for the P-GSMW policy as in
the previous case without observation noise, where instead
of bounding the magnitude of ∇̂fk(r̂I

k(t)) by a constant,
we bound it with C/δ, which may scale with the time hori-
zon T . This result in the following regret guarantee.

Theorem 5: In the case of noisy observations, the
Parallel-Instance Gradient Sampling Max-Weight policy
πP−GSMW achieves Õ(T 7/8) regret by setting α =
2K

√
T/η, V = T 1/8, δ = T−1/8.

The theorem shows that although the performance of the
P-GSMW policy degrades with observation noise, it can still
achieve sublinear regret.

V. APPLICATIONS

In this section, we apply our Learning-NUM framework to
example applications including database query, job scheduling
and video streaming.

A. Database Query

In this example, we consider a setting where there are K
users {u1, . . . , uK} querying a central database.5 At each time
t, user uk issues a query of size rk to the central database, with
rk representing the processing requirement of the query. The
issued queries get buffered in the queue of the database and
the database can process c unit of requests in a first-come-first-
serve order at each time slot. Each use uk is associated with
an underlying utility function fk that captures the relationship
between the processing requirement and utility gained from the
query. fk is Lipschitz continuous and concave, which reflects
the diminishing return property of query processing. Over a
time horizon of T , the goal is to maximize the total utility of
the processed queries.

Applying our framework to the database query example, the
network is a simple one with a single state, one source node,
one destination node and a link between them (See Figure 3).
All the users are mapped to the source node and the database
corresponds to the link with the transmission rate of the link
at each time slot being equal to the processing capacity c of
the database. The network action component of the framework
is not needed. The queue at the source node, corresponding
to the buffer of the database, buffers the jobs (query requests)
of all users. P-GSMW policy adjusts the size of the query
according to the gradient estimates and the queue size at the
source node, and achieves Õ(T 3/4)-regret.

B. Job Scheduling

Consider a discrete-time system with with a set of job
schedulers (dispatchers) {u1, . . . , uK} and a set of parallel
servers {s1, . . . , sM} that form a bipartite graph. We use Suk

5Note that in this example, we only consider the access to the database and
not the problem of routing the queries trough the network.

Fig. 3. Correspondence between database query and the Learning-NUM
framework.

Fig. 4. Correspondence between job scheduling and the Learning-NUM
framework.

to denote the set of servers that dispatcher uk is connected
to. At each time, a class-k job arrives at the dispatcher uk

and the dispatcher sends the job to one of the servers in
Suk

for execution. The job dispatcher also determines the
resource (e.g. computation, memory) requirement of each job.
Each server sm can provide cm(t) amount of resources at
time t with cm(t) being a sequence of i.i.d. discrete random
variables. Class-k jobs have underlying utility function fk.
A utility of fk(rk) is obtained when a class-k job of resource
requirement rk is completed at a server. We seek a scheduling
policy that determines the resource requirement and target
server of each job. The goal is to maximize the total utility
gained from jobs completed over the time horizon T . This
example particularly mirrors applications where the jobs are
flexible in terms of resource requirement (e.g., model training
for machine learning tasks in cloud computing [5], [19]).

We apply the Learning-NUM framework to the job schedul-
ing application by creating a source node for each job classes,
an intermediate node corresponding to each server and a vir-
tual destination node (See Figure 4). The offered transmission
rates of the links between server node and the virtual destina-
tion is equal to the time-varying capacity cm(t) of the servers,
and the offered transmission rate between source nodes and
intermediate nodes are infinity. The job size rk(t) corresponds
to the resource requirement of class k jobs sent at t. Based on
this correspondence, the P-GSMW policy achieves Õ(T 3/4)-
regret. Note that the max-weight scheduling component of the
P-GSMW is equivalent to the Join-the-Shortest-Queue policy.

C. Video Streaming

In this example, we consider a network shared by K users
streaming video from K corresponding servers. At each time
slot, each server sends a chunk of the video file through
the network to its corresponding user. The network operator
determine the size of the chunks, which correspond to the
rates of the video streams. It also controls the routing and
scheduling in the network. User k has a utility function fk that
is unknown to the network operator, and obtains utility of value
fk(rk) after receiving a video chunk of size rk . Here, we seek
a policy that jointly adapts the video rates, i.e., determines the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. The queue length under the P-GSMW policy with different parameter values.

size of the video chunks and the routing and scheduling of the
network such that the total utility obtained from the delivered
video chunks is maximized.

It is natural to map the Learning-NUM framework to
the video streaming application. The network shared by the
users plays the role of the network G in the Learning-
NUM framework. Each user represents a traffic class. Each
traffic class has the user’s corresponding video server as
the source node with the user node being the destination.
The network states capture the possible time-variability in
the network links (e.g. in wireless networks). The network
action encapsulates the routing and scheduling actions of the
network. The feasible action set X can captures constraints
on network operations such as interference constraints and
capacity constraints. Applying the P-GSMW policy, we obtain
a joint rate-adaptation and network scheduling/routing policy
with Õ(T 3/4)-regret. The network action component here
resembles the back-pressure algorithm.

VI. SIMULATIONS

In this section, we evaluate the empirical performance of
the P-GSMW policy under the Learning-NUM framework.
We will also compare P-GSMW policy with GSMW algo-
rithm (in an imaginary no-delay setting) to see the impact of
feedback delay on the problem.

We instantiate the Learning-NUM framework on the job
scheduling application. The example we construct for the
simulation has 50 job schedulers (corresponding to 50 job
classes) and 100 parallel servers. The links between job sched-
ulers and servers are randomly generated with each scheduler
having expected degree 6 (i.e., connected to 6 servers). The
service rate of each server is generated by a uniform random
variable with range [0.5, 1.5]. We assign an underlying utility
function to each class chosen from the four types: fk(r) = akr
(linear function), fk(r) = ak

√
r + bk − ak

√
bk (square root

function), fk(r) = −akr2 + bkr (quadratic function), fk(r) =
ak log(bkr + 1) (logarithmic function).

Applying the Learning-NUM framework to the example,
we first form the corresponding optimization problem P and
obtain that the optimal value OPT (P) is equal to 84.4.
We next run the P-GSMW policy and also the GSMW algo-
rithm (Algorithm 1). Note that for the GSMW algorithm,
we assume an imaginary no-delay setting where the utility
values are immediately observable after decisions.

We first investigate the effects of the parameter values
(α, V, δ) on the performance of the policy, then compare

P-GSMW and GMSW, and finally study the impact of obser-
vation noise.

A. Choice of Parameter Values

We vary the values of the parameters (α, V, δ) in the GSMW
policy and demonstrate their effects of the policy. The time
horizon T is set to 60000. When changing one parameter,
the others are held fixed (α = 5000, V = 200, δ = 0.005).
We plot the queue length, defined as the sum of queue length
at each server as the time evolves. We will also study the
instantaneous utility, defined as

∑
k fk(rk(t)). The results

on queue length are shown in Figures 5. The trajectory of
instantaneous utility are much less readible nor informative,
and is thus omitted.

1) Parameter α: The parameter α essentially controls the
step size of the P-GSMW policy with a larger α indicating
a smaller step size. We vary α in {500, 1000, 5000, 10000}.
From the results, the average queue length decreases with
the increase of α. The queue length of a larger α tends to
have larger oscillation. Recalling the update of job sizes of
the P-GSMW policy (Line 5), such behavior can be attributed
to that a larger α leads to a smaller “negative feedback” that
the queue length has on job sizes.

2) Parameter V : The parameter V adjusts the relative
weights of the P-GSMW policy on utility maximization and
queue stability, with a larger V indicating that the policy tries
to increase the job sizes (and thus the instantaneous utility)
more aggressively. We vary V in {50, 100, 200, 400}. Such
behavior is clearly reflected in Figure 5(b) as a larger V leads
to a larger steady-state queue size, but the difference is more
obscure in the plot of instantaneous utility (figure omitted due
to space constraint). We further calculate the time-average
instantaneous utility of the P-GSMW policy under different
values of V . Corresponding to V = 50, 100, 200, 400, the
time-average instantaneous utility are 84.8, 85.3, 86.1, 87.1,
respectively. Note that the instantaneous utility can be larger
than OPT (P) since the virtual job size variables may not
satisfy the capacity constraint of P . The result further supports
that a larger V leads to more aggressive increase in the job
sizes.

3) Parameter δ: The parameter δ controls the approxima-
tion error of our estimate gradients with respect to the true
gradients. We vary δ in {0.005, 0.01, 0.05, 0.1}. Due to that
the underlying utility functions in our example do not have
large curvature, the value of δ does not have significant effect
on the policy.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 13

Fig. 6. Queue length and instantaneous utility behavior under P-GSMW and
GSMW.

Remark: From the simulations, we can see that the para-
meters α and V have major influence on the behavior of
instantaneous utility and queue length. Although Theorems 3
and 5 provide the correct regimes of α and V that leads
to the best regret bound with respect to the scaling of T ,
it does not give the values of α and V with the best empirical
performance. In practice, one can choose the values of α and
V by starting from the correct regimes and tuning the values
through empirical testing.

B. P-GSMW vs. GSMW

We compare the behaviors of total queue length and instan-
taneous utility under P-GSMW and GSMW with the same
parameter values of (α = 5000, V = 200, δ = 0.005). Note
that P-GSMW is run in our original setting (with queueing-
style feedback delay) while GSMW is run in an imaginary no-
delay setting. The results on queue length and instantaneous
utility (averaging over a sliding window of 1000 time slots)
are plotted in Figure 6. It can be seen that, as in terms of job-
size variables, P-GSMW switches between different instances
of GSMW algorithms, both the queue length trajectory and the
instantaneous utility trajectory under P-GSMW exhibits larger
oscillation compared to those of GSMW.

Furthermore, varying the time horizon T in
{10000, 20000, . . . , 100000} and setting α = 50

√
T , V =

T 1/4, δ = 1/
√

T , we compare how the regret of P-GSMW
and GSMW scales with the time horizon. Since it is
computationally infeasible to compute the optimal strategy,
we use T times OPT (P) as an upper bound of the expected
utility achieved by the optimal strategy (see Theorem 1) and
bound the regret by T · OPT (P) minus the utility achieved
by the policies. We can see from Figure 7 that the regret of
GSMW is lower by that of P-GSMW, which suggests that
the feedback delay hurt the performance of the policy.

C. Observation Noise

We explore the situation where the utility observations are
corrupted with noise and study the robustness of P-GSMW
against such noise. We change the noise level from 0 (no
noise) to 0.2 (each observation is corrupted with noise that
is uniformly distributed in [−0.2, 0.2]). Varying the time hori-
zon in {10000, 20000, . . . , 100000} and setting α = 50

√
T ,

Fig. 7. Regrets of P-GSMW and GSMW.

Fig. 8. Regret of P-GSMW under different noise levels.

V = T 1/8, δ = T−1/8, we evaluate the scaling of regret under
different noise levels. The results are plotted in Figures 8.

From Figures 8, we see that the regrets of P-GSMW sub-
linear growth with time horizon even under a noise level of
0.2. Generally, the regret increases with noise level, but the
difference is not significant for noise under 0.05.6

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a new NUM framework,
Learning-NUM, where the utility functions are only accessible
through zeroth-order feedback and the feedback experiences
queueing-style delay. We upper bounded the expected utility
achieved by any dynamic policy by the solution to a static
optimization problem and designed an online scheduling pol-
icy (P-GSMW) that achieves sub-linear regret.

Our scheduling policy achieves a regret of order Õ(T 3/4)
in the case of noiseless feedback and a regret of order
Õ(T 7/8) in the case of noisy feedback. As the existing
regret lower bound in the case of noiseless feedback in the
no-delay case is Ω(

√
T), our policy does not achieve the lower

bound. Hence, an important future direction is to determine
whether the queueing-style delay of Learning-NUM funda-
mental increases the difficulty of the problem, i.e., a lower
bound better than Ω(

√
T) can be established, or that algorithm

for Learning-NUM that has regret better than Õ(T 3/4) exists.
Finally, since the regret of P-GSMW degrades from Õ(T 3/4)
to Õ(T 7/8) in the presence of observation noise, how to
minimize the adverse impact of the noise on the policy, and

6To put this into perspective, there are 50 job classes and OPT (P) is
84.4. The magnitude of the noise is about 0.05 × 50/84.4 � 3% of the
time-average utility.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

are there other methods that are more robust to noise are both
questions of future interests.

APPENDIX A
PROOFS OF LEMMAS

A. Proof of Lemma 1

Proof: First, observe that the utility obtained by
πP−GSMW over the time horizon T is equal to the total
utility of the jobs sent from the sources minus the utility of
the jobs that are not delivered at T . Recall that at time t,
the two jobs sent from source sk have size r̂k(t) + δ and
r̂k(t) − δ, respectively. Since the utility of a single job is
bounded, we have

E[U(πP−GSMW , T)]

≥ E

⎡
⎣∑

t,k

fk(r̂k(t) + δ) + fk(r̂k(t) − δ)

⎤
⎦

−C
∑
i,k

E[Qk
i (T)].

By property (2) (Lipschitz continuity) of the underlying utility
functions, we have

E

⎡
⎣∑

t,k

fk(r̂k(t) + δ) + fk(r̂k(t) − δ)

⎤
⎦

≥ 2E

⎡
⎣∑

t,k

fk(r̂k(t))

⎤
⎦ − C · Tδ,

where the last inequality follows from property (2) (Lipschitz
continuity) of the underlying utility functions.

By Theorem 1 and that we are now assuming
there are two injected jobs of each class at each
time slot, supπ∗∈Π̄ E[U(π∗, T)] ≤ 2T · OPT (P) =
2

∑T
t=1

∑K
k=1 fk(r∗k). Putting the above analysis together,

we obtain that

R(πP−GSMW , T)

≤ 2E

⎡
⎣∑

t,k

fk(r∗k)−fk(r̂k(t))

⎤
⎦+C

∑
i,k

E[Qk
i (T)]+CTδ.

B. Proof of Lemma 4

Proof: From Line 5 of Algorithm 2, since the projection
operator is a contraction, we have for each k

(r̂I
k(t) − rk)2

≤
[
r̂I
k(t − 1) +

1
α

(V · ∇̂fk(r̂k(t − 1)) − Qk
sk

(t)) − rk

]2

= (r̂I
k(t − 1) − rk)2 +

V 2(∇̂fk(r̂I
k(t − 1))2

α2

− 2V · ∇̂fk(r̂I
k(t − 1))Qk

sk
(t)

α2

+
1
α

[∇̂fk(r̂I
k(t − 1))(r̂k(t − 1) − rk)

−Qk
sk

(t)(r̂I
k(t − 1) − rk)] +

Qk
sk

(t)2

α2
.

Since α = 2K
√

T/η, V = T 1/4 for all k, τ , we have
V 2(∇̂fk(r̂I

k(t−1))2

α2 ≤ C√
T

. Plugging these in and rearranging
the term, we obtain

V ∇̂fk(r̂I
k(t − 1))(rk − r̂I

k(t − 1)) + Qk
sk

(t)r̂I
k(t − 1)

≤ Qk
sk

(t)rk + α[(r̂I
k(t − 1) − rk)2

−(r̂I
k(t) − rk)2] +

Qk
sk

(t)2

α

− 2V · ∇̂fk(r̂I
k(t − 1))Qk

sk
(t)

α2
+ C.

As δ = T−1/2, the lemma trivially hold for r̂I
k(t) = δ for all

k. Hence, we only need to consider the case where r̂I
k(t) > δ,

which implies that r̂I
k(t)− r̂I

k(t−1) ≤ 1
α (V · ∇̂fk(r̂k(t−1))−

Qk
sk

(t)). It follows that

V ∇̂fk(r̂I
k(t − 1))(rk − r̂I

k(t − 1)) + Qk
sk

(t)r̂I
k(t)

≤ Qk
sk

(t)rk + α[(r̂I
k(t − 1) − rk)2 − (r̂I

k(t) − rk)2]

− V · ∇̂fk(r̂I
k(t − 1))Qk

sk
(t)

α2
+ C.

By Lemma 3, since f̃ is non-decreasing, ∇̂fk(r̂I
k(t − 1)) =

∇f̃k(r̂I
k(t − 1)) ≥ 0, we have

2V ·∇̂fk(r̂I
k(t−1))Qk

sk
(t)

α2 ≥ 0.
Therefore,

V ∇̂fk(r̂I
k(t − 1))(rk − r̂I

k(t − 1)) + Qk
sk

(t)r̂I
k(t)

≤ Qk
sk

(t)rk + α[(r̂I
k(t − 1) − rk)2 − (r̂I

k(t) − rk)2] + C.

The lemma follows by summing over k.

C. Proof of Lemma 6

Proof: Note that each time slot now correspond to two
time slots in our original model of Section II. The lemma
follows directly from the dynamics of the queue evolution.
For (10), we have

Qk
sk

(t + 1)2 − Qk
sk

(t)2

≤
⎡
⎣Qk

sk
(t) + 2r̂k(t) − 2

∑
j∈Nsk

Ak
skj(ω(t), x(t))

]2 − Qk
sk

(t)2

= Qk
sk

(t)2 + 4Qk
sk

(t)

[∑
k∈n

r̂k(t)

−
∑

j∈Nsk

Ak
skj(ω(t), x̂(t))

⎤
⎦

+ 4

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

2

− Qn
sk

(t)2

≤ 4Qk
sk

(t)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x̂(t))

⎤
⎦ + C.

Inequality (11) follows similarly.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

FU AND MODIANO: LEARNING-NUM: NUM WITH UNKNOWN UTILITY FUNCTIONS AND QUEUEING DELAY 15

D. Proof of Lemma 7

Proof: Continuing from Lemma 4, rearranging terms,
we have for any {r}k with rk ∈ [δ, B − δ],

K∑
k=1

Qk
sk

(t)r̂k(t)

≤
K∑

k=1

[
Qk

sk
(t)rk + α[(r̂I

k(t − 1) − rk)2

−(r̂I
k(t) − rk)2] + C

]
+

K∑
k=1

V ∇̂fk(r̂k(t − 1))(rk − r̂k(t − 1))

≤ CV + Cα +
K∑

k=1

Qk
sk

(t)rk ≤ C
√

T +
K∑

k=1

Qk
sk

(t)rk,

(29)

where inequality (29) follows from that α = O(
√

T), V =
O(T 1/4). Adding same terms to both sides of (29),

∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t)) −

∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

+
K∑

k=1

Qk
sk

(τ)

⎡
⎣r̂k(t) −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

≤
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))−

∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

+
K∑

k=1

Qk
sk

(t)

⎡
⎣rk −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦ + C

√
T .

(30)

We take {r}k to be rk = δ. By Lemma 5, we have for any
x ∈ X ,

K∑
k=1

Qk
sk

(t)

⎡
⎣rk −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

+
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦

≤
K∑

k=1

Qk
sk

(t)

⎡
⎣δ −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦

+
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ . (31)

Combining (14), (30) and (31), we obtain that for any x ∈ X
||Q(t + 1)||2 − ||Q(t)||2

≤ 4
K∑

k=1

Qk
sk

(t)

⎡
⎣δ −

∑
j∈Nsk

Ak
skj(ω(t), x(t))

⎤
⎦ + C

√
T

+ 4
∑
i,k

Qk
i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ .

Since ω(t)’s are i.i.d. ω(t) is independent of Q(t) which only
depends on system information before t, we have for each
fixed x,

E

⎡
⎣Qk

sk
(t)

⎡
⎣δ −

∑
j∈Nsk

Ak
skj(ω(t), x) − η

⎤
⎦ | Q(t)

⎤
⎦

= Qk
sk

(t) · E
⎡
⎣δ −

∑
j∈Nsk

Ak
skj(ω(t), x)

⎤
⎦

= Qk
sk

(t) ·
∑

ω∈W
p(ω)

⎡
⎣δ −

∑
j∈Nsk

Ak
skj(ω, x)

⎤
⎦ . (32)

Similarly,

E

⎡
⎣Qk

i (t)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω(t), x(t))

−
∑
j∈Ni

Ak
ij(ω(t), x(t))

⎤
⎦ | Q(t)

⎤
⎦

≤ Qk
i (t) ·

∑
ω∈W

p(ω)

⎡
⎣ ∑

j:i∈Nj

Ak
ji(ω, x)

−
∑
j∈Ni

Ak
ij(ω, x)

⎤
⎦ (33)

Let � = η−δ
2 > 0. By the Slater’s condition and that Λ(ω) is

downward closing, combining (32) and (33), we have

E[||Q(t + 1)||2 − ||Q(t)||2 | Q(t)]

≤ −�
∑
i∈V

K∑
k=1

Qk
i (t) + C

√
T . (34)

E. Statement and Proof of Lemma 10

Lemma 10: Let r∗ = (r∗1 , . . . , r∗k) be the optimal solution
to P . Let r̂∗ = (r̂∗1 , . . . , r̂∗k) be the optimal solution to
P restricting to each rk ∈ [δ, B − δ].

∑K
k=1 fk(r∗k) −

fk(r̂∗k) ≤ Cδ.
Proof: Since η = (η, . . . , η) is feasible to P and P has

convex feasibility region, we have r̃∗ = δ
η η + (1 − δ

η)r∗ is
feasible to P . Furthermore, observe that for each k, r̃∗k ≥ δ,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

and by Lipschitz-continuity of fk, fk(r∗k) − fk(r̃∗k) ≤ Cδ.
Next, define r̄∗ as r̄∗k = r̃∗k if r̃∗k ≤ B − δ and r̄∗k = B − δ
otherwise. Note that for each k, |r̄∗k − r̃∗k| ≤ δ and δ ≤ r̄∗k ≤
B−δ. Also, r̄∗ is feasible to P . Hence, by Lipschitz-continuity
of fk, fk(r̃∗k) − fk(r̄∗k) ≤ Cδ. Finally, from the definition of
r̂∗, we have

∑K
k=1 fk(r̂∗k)−fk(r̄∗k) ≥ 0. Combine the analysis

above and the lemma follows.

REFERENCES

[1] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness and stability,”
J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Apr. 1998.

[2] S. H. Low and D. E. Lapsely, “Optimization flow control. I. Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[3] D. P. Palomar and M. Chiang, “Alternative distributed algorithms for
network utility maximization: Framework and applications,” IEEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2254–2269, Dec. 2007.

[4] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” in Proc. IEEE INFO-
COM, Mar. 2003, pp. 745–755.

[5] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 702–710.

[6] J. Ghaderi, S. Shakkottai, and R. Srikant, “Scheduling storms and
streams in the cloud,” ACM Trans. Model. Perform. Eval. Comput. Syst.,
vol. 1, no. 4, pp. 1–28, 2016.

[7] X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multipath routing,” IEEE Trans. Autom. Control, vol. 51,
no. 5, pp. 766–781, May 2006.

[8] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utility maximization,” in Proc. 49th IEEE Conf. Decis.
Control (CDC), Dec. 2010, pp. 1816–1821.

[9] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[10] L. Huang and M. J. Neely, “Utility optimal scheduling in energy-
harvesting networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4,
pp. 1117–1130, Aug. 2013.

[11] Q. Liang and E. Modiano, “Network utility maximization in adversarial
environments,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2018, pp. 594–602.

[12] M. H. Hajiesmaili, A. Khonsari, A. Sehati, and M. S. Talebi, “Content-
aware rate allocation for efficient video streaming via dynamic net-
work utility maximization,” J. Netw. Comput. Appl., vol. 35, no. 6,
pp. 2016–2027, Nov. 2012.

[13] D. Bethanabhotla, G. Caire, and M. Neely, “Adaptive video streaming
for wireless networks with multiple users and helpers,” IEEE Trans.
Commun., vol. 63, no. 1, pp. 268–285, Jan. 2014.

[14] Y. Zheng, B. Ji, N. Shroff, and P. Sinha, “Forget the deadline: Scheduling
interactive applications in data centers,” in Proc. IEEE 8th Int. Conf.
Cloud Comput., Jun. 2015, pp. 293–300.

[15] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex
optimization in the bandit setting: Gradient descent without a gradient,”
in Proc. ACM-SIAM Symp. Discrete Algorithms, 2005, pp. 385–394.

[16] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in Proc. 29th IEEE Conf. Decis. Control,
Dec. 1990, pp. 2130–2132.

[17] H. Yu, M. Neely, and X. Wei, “Online convex optimization with sto-
chastic constraints,” in Proc. Adv. Neural Inf. Process. Syst., 2017.

[18] H. Pang, M. J. Carey, and M. Livny, “Multiclass query scheduling in
real-time database systems,” IEEE Trans. Knowl. Data Eng., vol. 7,
no. 4, pp. 533–551, Aug. 1995.

[19] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: Quality-
driven scheduling for distributed machine learning,” in Proc. Symp.
Cloud Comput., Sep. 2017, pp. 390–404.

[20] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2012.

[21] A. Agarwal, D. P. Foster, D. J. Hsu, S. M. Kakade, and A. Rakhlin,
“Stochastic convex optimization with bandit feedback,” in Proc. Adv.
Neural Inf. Process. Syst., 2011, pp. 1035–1043.

[22] S. Yang and M. Mohri, “Optimistic bandit convex optimization,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2297–2305.

[23] O. Shamir, “On the complexity of bandit and derivative-free stochastic
convex optimization,” in Proc. Conf. Learn. Theory, 2013, pp. 3–24.

[24] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic IoT management,” IEEE Internet Things J., vol. 6, no. 1,
pp. 1276–1286, Feb. 2019.

[25] P. Joulani, A. György, and C. Szepesvári, “Online learning under delayed
feedback,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 1453–1461.

[26] P. Joulani, A. György, and C. Szepesvári, “Delay-tolerant online convex
optimization: Unified analysis and adaptive-gradient algorithms,” in
Proc. AAAI, vol. 16, 2016.

[27] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder, “Bandits
with delayed, aggregated anonymous feedback,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 4105–4113.

[28] M. Gael, C. Vernade, A. Carpentier, and M. Valko, “Stochastic bandits
with arm-dependent delays,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 3348–3356.

[29] X. Fu and E. Modiano, “Learning-NUM: Network utility maximization
with unknown utility functions and queueing delay,” in Proc. ACM
Mobihoc, 2021, pp. 21–30.

Xinzhe Fu received the B.S. degree (Hons.) in com-
puter science from Shanghai Jiao Tong University in
2017. He is currently pursuing the degree with the
Laboratory for Information and Decision Systems
(LIDS), Massachusetts Institute of Technology. His
current research focuses on stochastic optimization
in queueing networks.

Eytan Modiano (Fellow, IEEE) received the B.S.
degree in electrical engineering and computer
science from the University of Connecticut, Storrs,
in 1986, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Maryland,
College Park, MD, USA, in 1989 and 1992, respec-
tively. Prior to joining a faculty at MIT in 1999,
he was a fellow at the Naval Research Laboratory
from 1987 to 1992, a Post-Doctoral Fellow at the
National Research Council from 1992 to1993, and a
member of the Technical Staff at the MIT Lincoln

Laboratory from 1993 to 1999. He is a Richard C. Maclaurin Professor with
the Department of Aeronautics and Astronautics and the Laboratory for Infor-
mation and Decision Systems (LIDS), Massachusetts Institute of Technology.
His research is on modeling, analysis, and design of communication networks
and protocols.

Dr. Modiano had served for the IEEE Fellows Committee in 2014 and
2015 and an Associate Fellow for AIAA. He received the Infocom Achieve-
ment Award in 2020, for contributions to the analysis and design of cross-layer
resource allocation algorithms for wireless, optical, and satellite networks.
He was a co-recipient of the Infocom 2018 Best Paper Award, the Mobi-
Hoc 2018 Best Paper Award, the MobiHoc 2016 Best Paper Award, the
Wiopt 2013 Best Paper Award, and the Sigmetrics 2006 Best paper Award.
He was the Technical Program Co-Chair for IEEE Wiopt 2006, IEEE Infocom
2007, ACM MobiHoc 2007, and DRCN 2015, and the General Co-Chair
of Wiopt 2021. He was the Editor-in-Chief for IEEE/ACM TRANSACTIONS
ON NETWORKING from 2017 to 2020, and served as an Associate Edi-
tor for IEEE TRANSACTIONS ON INFORMATION THEORY and IEEE/ACM
TRANSACTIONS ON NETWORKING.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 24,2022 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

