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Abstract—We consider the problem of timely exchange of updates between a central station and a set of ground terminals V , via a
mobile agent that traverses across the ground terminals along a mobility graph G = (V,E). We design the trajectory of the mobile
agent to minimize average-peak and average age of information (AoI), two recently proposed metrics for measuring timeliness of
information. We consider randomized trajectories, in which the mobile agent travels from terminal i to terminal j with probability Pi,j .
For the information gathering problem, we show that a randomized trajectory is average-peak age optimal and factor-8H average age
optimal, where H is the mixing time of the randomized trajectory on the mobility graph G. We also show that the average age
minimization problem is NP-hard. For the information dissemination problem, we prove that the same randomized trajectory is
factor-O(H) average-peak and average age optimal. Moreover, we propose an age-based trajectory, which utilizes information about
current age at terminals, and show that it is factor-2 average age optimal in a symmetric setting.

Index Terms—Age of information, wireless networks, trajectory optimization, scheduling.

F

1 INTRODUCTION

M ANY emerging applications depend on the collection and
delivery of status updates between a set of ground ter-

minals and a central terminal using mobile agents. Examples
include: measuring traffic at road intersections [2], temperature,
and pollution in cities [3], ocean monitoring using underwater
autonomous vehicles [4], and surveillance using UAVs [5]. All
of these applications depend upon regular status updates, that
are communicated in a timely manner, so as to keep the central
terminal and the ground terminals updated with fresh information.

Age of Information (AoI) is a recently proposed metric that
captures timeliness of the received information [6]–[8]. Unlike
packet delay, AoI measures the lag in obtaining information at the
destination node, and is therefore suited for applications involving
gathering or dissemination of time sensitive updates [9]–[11]. Age
of information, at a destination, is defined as the time that elapsed
since the last received information update was generated at the
source. AoI, upon reception of a new update packet, drops to the
time elapsed since generation of the packet, and grows linearly
otherwise. For detailed surveys of AoI literature, see [9] and [12].

We consider the problem of AoI minimization in gathering
and dissemination of information updates, between a set of ground
terminals and a central terminal. The information updates can be
as small as a single packet containing temperature information or a
high fidelity image or a video file. The ground terminals represent
locations where information of interest is being generated or needs
to be delivered. Thus, they could be sensors in a wireless sensor
network equipped with low power transmitters, where a mobile
agent is used for real-time monitoring. Another example is a set
of locations that needs timely monitoring via a mobile agent, like
traffic at intersections in a city. A third application consists of
using a mobile agent to disseminate timely updates in remote
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locations in the event of disasters or an emergency. Further, while
we discuss the problem in terms of a physical agent and locations,
the model can also describe timely monitoring of dynamic content
on the Web using a web-crawler.

We consider two versions of the problem - 1) information
gathering in which ground terminals generate new updates when-
ever needed with no queuing; and 2) information dissemination in
which new updates are generated by a central station according
to a stochastic process, get queued into FCFS queues and are
delivered to ground terminals.

The age or freshness of information gathered and disseminated
depends on the trajectory of the mobile agent, whose mobility is
constrained to a mobility graph G = (V,E). The mobile agent
can move from ground terminal i to ground terminal j only if
(i, j) ∈ E. This model can be used to capture the fact that the
agent may not be able to move between any arbitrary locations
due to topological limitations.

The problem of persistent monitoring in dynamic environ-
ments has been considered in [13]–[15] using tools from optimal
control. These works focus on minimizing uncertainty when
source locations are time varying, rather than timely monitoring
over a fixed set of locations. There is also a large body of work
focused on planning trajectories for a mobile agent to optimize
traditional performance metrics in wireless sensor networks; pri-
marily throughput, delay and network lifetime; by leveraging
variants of the Travelling Salesman Problem (TSP) [16]–[20].
However, these works do not focus on freshness as a metric.
We observe connections to this line of work in our paper, where
we establish the optimality of a Hamiltonian cycle trajectory in a
symmetric setting.

Closer to our work are [21] and [22], in which some ap-
proximation trajectories to minimize maximum latency on metric
graphs were proposed. In [23], the authors consider trajectory
planning for a mobile agent to minimize AoI. They obtain the best
permutation of nodes for the mobile agent to visit in sequence,
given Euclidean distances between the nodes. A similar problem
is also considered in [24], where average-peak age minimization
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for UAV-assisted IoT networks is considered. However, average
age minimization is not considered. In this work, we consider a
mobile agent gathering/disseminating information from multiple
nodes. Its mobility is constrained by a general graph G, and
we seek average-peak and average age optimal trajectories over
the space of all trajectories allowed on this graph G, not just
permutations of nodes. To the best our knowledge, this is the first
work to consider both average-peak and average AoI minimization
on general mobility graphs G. A preliminary version of this work
was presented in [1].

For the information gathering problem, we design trajectories
for the mobile agent to minimize average-peak age and average
age, two popular metrics of AoI. We first consider the space
of randomized trajectories, in which the mobile agent traverses
edges according to a random walk on the mobility graph G. We
show that a randomized trajectory is in fact average-peak age
optimal, and that it can be obtained in polynomial time using
the Metropolis-Hastings algorithm. We then prove that solving for
the average age optimal trajectory is NP-hard, in a symmetric
setting, and propose a heuristic randomized trajectory that is
simultaneously average-peak age optimal and factor-8H average
age optimal, where H is the mixing time of the randomized
trajectory on G. The factor H can scale with the graph size,
especially if the graph is not well connected. Thus, we propose an
age-based trajectory, in which the mobile agent uses the current
AoI to determine its motion, and show that it is factor-2 optimal
in a symmetric setting.

In the information dissemination setting, the mobile agent
receives update packets in separate first-come-first-served (FCFS)
queues, one for each terminal. The mobile agent then transmits
the head-of-line packet from the ith queue when it reaches the
location of the ith ground terminal. The FCFS queue assumption
is motivated by uncontrollable MAC layer queues, where the
generated updates get queued for transmission [10], [25]. We, now,
not only have to design the trajectory of the mobile agent, but also
determine the optimal rate at which the central terminal generates
information updates for each ground terminal. We show that the
average-peak age optimal randomized trajectory for information
gathering, along with a simple update generation rate, is at most a
factor-O(H) optimal, in both peak and average age. Also derived
is an explicit formula for average-peak age of the discrete time
Ber/G/1 queue with vacations, which may be of independent
interest.

We describe the system model in Section 2. The gathering and
dissemination versions are studied in Section 3 and Section 4,
respectively. We present simulation results in Section 5, and
conclude in Section 6.

2 SYSTEM MODEL

We consider a central terminal that needs to communicate with a
set of ground terminals V . The ground terminals are equipped with
low power, low range radio communication devices, and cannot
directly communicate with the central terminal, or with each other.
An autonomous mobile agent m, is used as a relay between the
central terminal and the ground terminals, while moving across
the geographical region where the ground terminals are spread.

The mobility of the agent is constrained by a mobility graph
G = (V,E), wherem can travel from ground terminal i to ground
terminal j only if (i, j) ∈ E. The graph G, thus, constraints the
set of allowable moves. We consider a time-slotted system, with

Fig. 1: Information Gathering: time evolution of age Ai(t); Hk,i

is the kth inter-return time to terminal i.

slot duration normalized to unity. In the duration of a time-slot, the
mobile agent stays at a ground terminal to gather or disseminate
information, and moves to any of its neighbours in G for the
next time-slot. The mobility graph can be constructed from the
limitations of a slot duration, distances between ground terminals,
and speed of the mobile agent. We consider this abstract graph
mobility model because of its analytical tractability. This allows
us to gain insight into practical system design and explore the
tradeoffs between computational complexity and optimality.

In the information gathering problem, every time the mobile
agent reaches a ground terminal i ∈ V , the ground terminal sends
a fresh update to the mobile agent, which is immediately relayed
to the central terminal. The age Ai(t), at the central terminal,
for the ground terminal i drops to 1. When the mobile agent is
not at the ground terminal i, the age Ai(t) increases linearly. See
Figure 1. The evolution of Ai(t) in this case can be written as:

Ai(t+ 1) =

{
Ai(t) + 1, if m(t) 6= i

1, if m(t) = i
(1)

where m(t) denotes the location of the mobile agent at time t.
Note that the age evolution depends on the trajectory that the
mobile agent follows on the mobility graph G.

In the information dissemination setting, the mobile agent
receives updates from a central terminal to be disseminated to
each ground terminal through queues. The mobile agent enqueues
updates generated stochastically in a set of |V | FCFS queues,
one for each ground terminal. It transmits the head-of-line update
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Fig. 2: Information Dissemination: time evolution of age Ai(t);
tk, t

′
k are the generation and reception times of the kth status

update for terminal i.

in queue i to ground terminal i when it reaches i. The system
designer has no direct control over the generation process or the
FCFS queues, however, it can control the update generation rate
λi, for each ground terminal i.

The age Ai(t), at the ground terminal i, increases by 1 every
time the mobile agent is not at i, or when it is at i but the queue is
empty. Otherwise, a successful delivery of the head-of-line update
occurs in time slot t, and the age Ai(t) drops to the age of the
head-of-line update in queue i. See Figure 2. This evolution of age
Ai(t) can be written as:

Ai(t+ 1) =


Ai(t) + 1, if m(t) 6= i

Ai(t) + 1, if m(t) = i and Qi(t) = ∅
t−Gi(t) + 1, if m(t) = i and Qi(t) 6= ∅

,

(2)
where Gi(t) is the time of generation of the head of line packet
in queue i, at time t, and Qi(t) denotes the set of packets in the
mobile agent’s queue i at time t.

2.1 Age Metrics
AoI is an evolving function of time. We consider two time average
metrics of AoI. Average age, for ground terminal i, is defined as
the time averaged area under the age curve:

Aave
i , lim sup

T→∞

1

T

T∑
t=1

Ai(t). (3)

In Figures 1 and 2, we see that the age Ai(t) peaks before a
new update is delivered. When ground terminals generate updates
at will, a fresh update is delivered every time the mobile agent
visits i, i.e. m(t) = i. Whereas, when updates are stochastic and
queued, a new update is delivered whenever m(t) = i and the
queue Qi(t) 6= ∅. The average-peak age Ap

i , for ground terminal
i, is defined as an average of all the peaks in the age evolution
curve Ai(t). Peaks in the age process are defined as all time-slots
when an update is delivered, i.e. the age does not increase linearly.
Thus two consecutive visits to a terminal count as two peaks. The
average-peak age can be written as

Ap
i , lim sup

T→∞

t=T∑
t=1

Ai(t)1{m(t)=i}

t=T∑
t=1

1{m(t)=i}

, (4)

in the gathering setting and

Ap
i , lim sup

T→∞

t=T∑
t=1

Ai(t)1{m(t)=i,Qi(t)6=∅}

t=T∑
t=1

1{m(t)=i,Qi(t) 6=∅}

, (5)

in the dissemination setting.
Finally, we define the network average-peak age and average

age to be

Ap =
∑
i∈V

wiA
p
i and Aave =

∑
i∈V

wiA
ave
i , (6)

where wi > 0 are weights representing the relative importance of
a ground terminal i. Our goal is to minimize network peak and
average age. Minimization of peak and average AoI in wireless
networks has become a very active topic of research in recent
years [10], [26]–[29].

2.2 Trajectory Space

Given a trajectory T , we first define fi(T ) as the fraction of time-
slots, the trajectory T , is at ground terminal i:

fi(T ) = lim
T→∞

1

T

T∑
t=1

1{m(t)=i}. (7)

Using this definition, we define T to denote the space of trajecto-
ries that are of interest for the purpose of age minimization.

T = { Trajectory T | fi(T ) exists and is positive ∀ i ∈ V } ,

For a trajectory T ∈ T, the limit (7) exists and is positive
for all i ∈ V . This requirement is to ensure that we consider
reasonable trajectories: those which visit each ground terminal a
strictly positive fraction of the time.

Peak and average age depend on the trajectory T ∈ T. We
use Ap(T ) and Aave(T ) to denote network peak and average age,
respectively, for T ∈ T. Since our goal is minimization of age
metrics, we will trivially ignore all trajectories in T that do not
have bounded average or peak age.

3 INFORMATION GATHERING

In this section, we consider the problem of information gathering
when fresh updates are generated at will. We define optimal peak
and average age to be

Ap∗
G = min

T ∈T
Ap(T ), and Aave∗

G = min
T ∈T

Aave(T ), (8)

where T denotes the space of trajectories for the mobile agent.
To find optimal trajectories, we first consider randomized ones,

where the mobile agent moves according to a random walk on
the mobility graph. We shall show that for average-peak age
optimality, such randomized trajectories suffice. We then show that
the average age optimization is NP-hard, and propose a heuristic
randomized trajectory. In Section 3.4, we propose an age-based
trajectory for better average age performance.
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3.1 Randomized Trajectories
We start by defining the class of randomized trajectories. Note
that we discuss randomized trajectories because they are easy to
implement and analyze. The performance guarantees we derive,
on the other hand, will hold over the space of all trajectories, not
just randomized ones.

Definition A trajectory m(t), on mobility graph G, is said to
be a randomized trajectory if m(t) is an irreducible Markov
chain defined by a transition probability matrix P:

P [m(t+ 1) = j|m(t) = i] = Pi,j , (9)

for all t and i, j ∈ V , where Pi,j = 0 for (i, j) /∈ E.

For convenience, we shall refer to m(t), defined above, as
the randomized trajectory P, where P to denote the matrix with
entries Pi,j . Note that Pi,j is the probability that the mobile agent,
when at ground terminal i, moves to ground terminal j for the
next time slot. The constraint: Pi,j = 0 for (i, j) /∈ E, ensures
that the randomized trajectory adheres to the mobility constraints
defined by G. We further define two matrices associated with
every randomized trajectory P that will come in handy later.
Π is an n × n matrix in which every row is π, the stationary
distribution of P. Thus, Πi,j , πj , ∀i, j ∈ V . Using this, we
define Z , (I −P + Π)−1, called the fundamental matrix of the
Markov chain P. The elements of Z are represented by zij .

We assume in the definition of a randomized trajectory P, that
m(t) is an irreducible Markov chain over the state space V . This
is desired, since the mobile agent has to traverse through all the
nodes, repeatedly, for a positive fraction of time, or otherwise the
resulting average-peak and average age would be unbounded.

For any randomized trajectory P, we obtain explicit expres-
sions for network peak and average age. We use the notation
Ap(P) and Aave(P) to show explicit dependence of peak and
average age on the randomized trajectory P.

Theorem 1. The network average-peak and average age for
a randomized trajectory P is given by

Ap(P) =
∑
i∈V

wi
πi
, and Aave(P) =

∑
i∈V

wizii
πi

, (10)

where π is the unique stationary distribution obtained by
solving πP = π and zii are diagonal elements of the
matrix Z , (I −P + Π)−1, where Π is an n×n matrix
with entries Πi,j , πj , ∀i, j ∈ V .

Proof: The key step in proving the result above is to
observe that the average-peak age of the ground terminal i, namely
Ap
i , depends only on the mean of return times to terminal i; see

Figure 1. Whereas, the average age Aave
i for i depends on both,

the mean and the variance, of return times to terminal i.
Given a randomized trajectory P, the mean of return times to

terminal i is given by 1
πi

, while the second moment of the return
times is given by −1πi

+ 2zii
π2
i

; see [30, Theorem 4.5.2]. Using this
fact, we are able to obtain the explicit expressions for peak and
average age. Let Api be the peak age for ground terminal i. We
define Hk,i to be the kth inter-return time to ground terminal i.

Then, the kth age peak for Ai(t) has a value of Hk,i. Let K be
the total number of returns to i over a time-horizon T . Then, the
expected peak age of ground terminal i is given by

Api = lim
T→∞

E

[ t=T∑
t=1

Ai(t)1{m(t)=i}

t=T∑
t=1

1{m(t)=i}

]
= lim
K→∞

E
[

1

K

t=K∑
k=1

Hk,i

]
.

(11)
Note that return times to a ground terminal i are i.i.d. random

variables given a randomized trajectory P. So, we can use the law
of large numbers to get

Api = E[H1,i] =
1

πi
, (12)

where πi is the stationary distribution for Markov chain P. The
last equality follows from the fact that the expected return time to
a state i for an irreducible Markov chain is given by the inverse of
its stationary probability. Thus, the network age is given by

Ap =
∑
i∈V

wiA
p
i =

∑
i∈V

wi
πi
. (13)

For average age, we define a renewal-reward process using
Hk,i as our i.i.d. renewal intervals and sum of age Ai(t) during
each interval as our reward. Let Tk,i =

∑k−1
l=1 Hl,i be the starting

time of the kth renewal. The total reward in between two visits to
ground terminal i is the sum of the ith age process Ai(t) across
all time-slots during that interval.

Note that, for the kth renewal interval, Ai(t) grows from 1 to
Hk,i over the Hk,i time-slots. Thus, the total reward for the kth

renewal interval is given by -

t=Tk,i+Hk,i∑
t=Tk,i

Ai(t) =

Hk,i∑
a=1

a =
H2
k,i +Hk,i

2
. (14)

Note that this reward is also i.i.d. across renewals as it depends
only on Hk,i. Thus, by application of the elementary renewal
theorem for renewal-reward processes we get

Aave
i = lim

T→∞
E
[

1

T

t=T∑
t=1

Ai(t)

]
=

E[H2
1,i +H1,i]

2E[H1,i]
. (15)

For irreducible Markov chains, we know the following results
hold [30, Ch.4]:

E[H1,i] =
1

πi
,∀i ∈ V and (16)

E[H2
1,i] =

−1

πi
+

2zii
π2
i

, (17)

for all i ∈ V , where zii is the ith diagonal element of the matrix
Z = (I−P + Π)−1, with Π being a matrix in which all rows are
the stationary distribution vector π: Πi,j = πj for all i, j ∈ V .

Substituting (16) and (17) in (15), we get

Aave
i =

zii
πi
, (18)

for all i ∈ V , and therefore,

Aave =
∑
i∈V

wiA
ave
i =

∑
i∈V

wizii
πi

. (19)
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3.2 Average-Peak Age Minimization

We first formulate the average-peak age minimization problem
over the space of randomized trajectories. We shall see that a peak
age optimal randomized trajectory suffices for optimality over the
space of all trajectories.

We note that when updates can be generated at will, the
average-peak age of terminal i is simply the reciprocal of its
throughput. This is because the throughput for terminal i is simply
πi while its peak age is 1/πi.

Now, using the results in Theorem 1, we can write the average-
peak age minimization problem over the space of randomized
trajectories as:

Minimize
P,π

∑
i∈V

wi
πi
,

subject to Pi,j ≥ 0, ∀(i, j), and P1 = 1,

πP = π, 1Tπ = 1, and πi ≥ 0 ∀i
Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible.

(20)

Note that P characterizes a randomized trajectory, while π is the
unique stationary distribution associated with it.

This problem is difficult to solve because the irreducibility
constraint cannot be expressed in a simple, solvable manner.
Further, relaxing the irreducibility constraint can yield a trivial
solution like P = I , which are neither irreducible nor anywhere
close to optimal. It is also important to note that this problem
is distinct from throughput optimization under the same setup.
Throughput optimization over the space of randomized trajectories
can be formulated with similar constraints as in (20) but with
a different objective function, namely: Maximize

P,π

∑
i∈V wiπi.

While both problems depend only on the average rate of visiting
each ground terminal, the different objective functions lead to
different optimal trajectories. The peak age problem can in fact be
interpreted as proportional fair throughput optimization but with
different weights. We discuss this in detail in the Appendix A.

The problem (20) can be transformed to finding an irreducible
P, with a given stationary distribution. This is a simpler problem
and can be solved using the Metropolis-Hastings algorithm.

Lemma 1. Let π∗i ,
√
wi∑

j∈V

√
wj

, for all i ∈ V , to be a

distribution on V , and a randomized trajectory P satisfy
π∗P = π∗. Then, (π∗,P) solves (20).

Proof: Suppose we could choose any stationary distribu-
tion π on V . Then to minimize the network peak age, we would
need to solve the following optimization problem

Minimize
π

∑
i∈V

wi
πi
,

subject to
∑
i

πi = 1, πi ≥ 0,∀i ∈ V.
(21)

Using KKT conditions for the optimization problem (21), it is
straightforward to see that

π∗i =

√
wi∑

i

√
wi
,∀i ∈ V. (22)

Clearly, if we could find a randomized trajectory P that
achieves this stationary distribution π∗, then it would be average-
peak age optimal. Thus, any randomized trajectory P that satisfies
π∗ = π∗P is peak age optimal.

Observe that the expression above implies that the fraction
of time spent at a node is proportional to the square root of
its weight. This is similar to the “square root principle” first
derived in peer-to-peer settings in [31]. Similar square root based
scheduling results have been derived for minimizing age in single
hop networks [28], [32]

Lemma 1 implies that a randomized trajectory P, that satisfies
π∗P = π∗, is peak age optimal, over the space of all randomized
trajectories. We now construct one such randomized trajectory: for
π∗ given in Lemma 1, define a Metropolis-Hastings randomized
trajectory Pmh:

Pmh
i,j =


P rw
i,j min(1,

π∗jP
rw
j,i

π∗i P
rw
i,j

), if i 6= j and (i, j) ∈ E
1−

∑
j:j 6=i

Pmh
i,j , if i = j

0, otherwise

, (23)

where

P rw
i,j =

{
1
di
, if i 6= j and (i, j) ∈ E

0, otherwise
, ∀i, j ∈ V, (24)

and di equals the out degree of terminal i in the mobility graph G.
It is known that such a randomized trajectory Pmh satisfies π∗P =
π∗ [33, Ch.11]. We use this to show that this trajectory is average-
peak age optimal. Further, Pmh is in fact a reversible Markov
chain because of the way it is constructed. It satisfies detailed
balance equations: πiPmh

ij = πjP
mh
ji , ∀i, j. Using the definition of

Pmh and Lemma 1, it is easy to see that the Metropolis-Hastings
randomized trajectory Pmh solves (20), i.e. it is average-peak age
optimal over the space of all randomized trajectories.

Till now, we considered randomized trajectories, where the
mobile agent moves from terminal i to j with probability Pi,j .
We now show that for peak age optimality, such a randomization
suffices, i.e. the trajectory we found is optimal over all trajectories
(include possibly complicated history dependent ones).

Theorem 2. The Metropolis-Hastings randomized trajectory
Pmh is average-peak age optimal over the space of all
trajectories T, namely Ap∗(Pmh) = Ap∗

G .

Proof: We establish a more general result. Namely, any
randomized trajectory which satisfies π∗P = π∗, where π∗i =√

wi∑
j∈V

√
wj

, is peak age optimal over the space of all trajectories in

T:

Ap∗(P) = Ap∗
G .

To prove this, it suffices to argue that the average-peak age for
any trajectory in T is lower bounded by

∑
i∈V

wi

π∗i
, where π∗ is as

given in Lemma 1.
Let Hk,i to be the kth inter-return time to node i. If K is the

total number of returns to ground terminal i over a time horizon
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T , then the average-peak age Ap
i is given by

Ap
i = lim sup

T→∞

T∑
t=1

Ai(t)1{m(t)=i}

T∑
t=1

1{m(t)=i}

= lim sup
K→∞

1

K

k=K∑
k=1

Hk,i.

(25)
Now, the fraction of time-slots in which the mobile agent is at
ground terminal i, is given by

fi = lim
T→∞

T∑
t=1

1{m(t)=i}

T
= lim
K→∞

K
k=K∑
k=1

Hk,i

=
1

Ap
i

, (26)

and therefore, Ap =
∑
i∈V wiA

p
i =

∑
i∈V

wi

fi
. The limits in

the above equation exist with fi being strictly positive for all
trajectories T ∈ T because of the way the trajectory space T is
defined (See Section 2.2). Note that fi, being the fraction of time-
slots the mobile agent is at terminal i, define a distribution over
V . Thus, Ap can be lower bounded by

Ap =
∑
i∈V

wiA
p
i ≥ min

{fi≥0,
∑

i fi=1}

∑
i∈V

wi
fi

=
∑
i∈V

wi
π∗i
, (27)

where the last equality is obtained by solving the optimization
problem, just as in the proof of Lemma 1. Thus, the minimum
peak age over all trajectories in which every ground terminal is
visited a strictly positive fraction of time is lower bounded by
the peak age achieved by any Markov chain with a stationary
distribution of π∗.

We are able to obtain a peak age optimal trajectory, namely
Pmh. Further, the matrix Pmh can be computed in polynomial
time; in O(|V |2) time. Therefore, the average-peak age minimiza-
tion problem is solved in polynomial time. For details on how to
derive the Metropolis-Hastings Markov chain and a nice geometric
interpretation, see [34] and [35].

3.3 Average Age Minimization

We now consider the average age minimization problem. We will
show later that solving the average age minimization problem is
hard. So, we start by deriving a lower bound on average age.
Intuitively, if the mobility graph is better connected then it should
yield a lower age. This is because a better connected mobility
graph imposes fewer restrictions on mobility. The following result
obtains a lower bound on network average age by comparing it
with the network average age of a complete graph.

Theorem 3. For any trajectory T ∈ T, the network average
age is lower bounded by

Aave(T ) ≥ 1

2

∑
i∈V

(
wi
π∗i

+ wi

)
, (28)

where π∗i =
√
wi∑

j∈V
√
wj

for all i ∈ V .

Proof: Let Hk,i be the kth inter-return time to ground
terminal i, and K be the total number of returns to i over a time-

horizon T . Then the average age Aave
i is given by (see proof of

Theorem 1):

Aave
i = lim

T→∞

1

T

T∑
t=1

Ai(t) = lim
K→∞

K∑
k=1

(H2
k,i +Hk,i)

2
K∑
k=1

Hk,i

. (29)

Define the empirical first and second moment of return times be

Ĥi ,
1
K

K∑
k=1

Hk,i and Ĥ(2)
i , 1

K

K∑
k=1

H2
k,i, respectively. Further,

define V̂ari , Ĥ
(2)
i − Ĥ2

i to be the empirical variance of return
times. From (29), we have

Aave
i =

1

2
+ lim
K→∞

Ĥ
(2)
i

2Ĥi

=
1

2
+ lim
K→∞

(
Ĥi

)2
+ V̂ari

2Ĥi

. (30)

Using Cauchy-Schwarz inequality, we can obtain V̂ari ≥ 0.
Applying this to (30), we get

Aave
i ≥

1

2
+ lim
K→∞

Ĥi

2
, (31)

Let fi be the fraction of time-slots in which the mobile agent is at
ground terminal i. Then,

fi = lim
T→∞

T∑
t=1

1{m(t)=i}

T
= lim
K→∞

K
K∑
k=1

Hk,i

=
1

limK→∞ Ĥi

,

(32)
since fi is well defined and positive for all trajectories in T.
Substituting (32) in (31) we get Aave

i ≥ 1
2 + 1

2fi
, for all i, and

Aave =
∑
i∈V

wiA
ave
i ≥

1

2

∑
i∈V

wi +
1

2

∑
i∈V

wi
fi
. (33)

Note that fi, being the fraction of time-slots the mobile agent is at
terminal i, is a distribution over V . Thus, the average age in (33)
can be lower bounded by

Aave ≥ 1

2

∑
i∈V

wi +
1

2
min

{fi≥0,
∑

i fi=1}

∑
i∈V

wi
fi
,

=
1

2

∑
i∈V

wi +
1

2

∑
i∈V

wi
π∗i
,

which proves the result.
Note that the term

∑
i∈V

wi

π∗i
is nothing but the optimal

peak age Ap∗
G ; see Theorem 2. Furthermore, the lower bound in

Theorem 3 is independent of the trajectory T . Therefore, we get

Aave∗
G = min

T ∈T
Aave(T ) ≥ Aave

LB =
1

2
Ap∗
G +

1

2

∑
i∈V

wi, (34)

where T is the space of all trajectories. It must be noted that a
similar result was derived in the case of link scheduling for age
minimization in [10]. The similarity of the result is rooted in the
fact that the information gathering problem in the complete graph
case is equivalent to the link scheduling problem in [10], in which
at most one link can be activated simultaneously.

We now argue that in the symmetric setting, namely wi =
1/|V | ∀ i ∈ V ,1 the average age minimization problem is NP-
hard

1. The weights wi only measure relative significance of ground terminals.
Thus, setting wi = 1/|V | ∀ i ∈ V is equivalent to setting wi = wj ∀ i, j ∈
V .
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Theorem 4. The problem of finding an average age optimal
trajectory is NP-hard in the symmetric setting of wi =
1/|V | ∀ i ∈ V .

Proof: To prove NP-hardness, we establish equivalence
between the average age minimization problem and the Hamil-
tonian cycle problem, in the symmetric setting. We know that
more connected the graph, lower is its network average age.
Therefore, the average age for G = (V,E) is lower bounded by
the average age for the complete graph K(V ), given by (|V |+1)

2 .
This lower bound can be obtained by using Theorem 3 and setting
wi = 1/|V |, ∀i.

If the graph is Hamiltonian, we can achieve this average age
lower bound by setting the trajectory equal to a Hamiltonian cycle.
This is because in a cyclical trajectory, the agent visits every
terminal exactly once in every |V | time-slots. Further, if the graph
is not Hamiltonian, the optimal average age is strictly greater than
(|V |+1)

2 . This is because in the absence of a cycle on graph G, the
agent cannot visit every terminal exactly once every |V | time-slots.
Therefore, if an algorithm were to solve the average age problem
then the same algorithm could be used to determine whether the
graph G is Hamiltonian or not; which is the Hamiltonian cycle
problem. Since the Hamiltonian cycle problem is NP-complete,
the average age minimization problem must be NP-hard.

3.3.1 A Heuristic Randomized Trajectory

Motivated by the peak age optimality results of the previous
section, we restrict ourselves to the space of randomized trajec-
tories, and propose a heuristic, called the fastest-mixing reversible
randomized trajectory, and prove an average age performance
bound for it.

Using the results in Theorem 1, the average age minimization
problem over the space of randomized trajectories can be written
as

Minimize
P,π,Z

∑
i∈V

wizii
πi

,

subject to Pi,j ≥ 0, ∀ (i, j), and P1 = 1,

πP = π, 1Tπ = 1, and πi ≥ 0 ∀i
Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible,

Πi,j = πj ∀ (i, j),

Z = (I −P + Π)−1.

(35)

Here, P is the randomized trajectory and π the unique stationary
distribution corresponding to P. Solving (35) can be computation-
ally complex. Not only do we have the irreducibility constraint, but
also a non-linear constraint in Z = (I −P + Π)−1.

We next upper bound the network average age, for any ran-
domized trajectory P of the mobile agent. We first define mixing
time for a randomized trajectory.

To do this, we first discuss the notion of stopping rules and
stopping times in a Markov chain. A stopping rule is a rule that
observes the walk on a Markov chain and, at each step, decides
whether or not to stop the walk based on the walk so far. The
time at which the walk stops, called the stopping time, is a
random variable. Note that in our discussion, Markov chains define

trajectories over ground terminals and state distributions refer to
probability distributions over the set V of ground terminals.

Mixing Time [36] The hitting time from a state distribution σ1
to σ2 on a Markov chain is the minimum expected stopping time
over all stopping rules that, beginning at σ1, stop in the exact
distribution of σ2. In other words, it is the expected number of
steps that the optimal stopping rule takes to move from σ1 to σ2.
This is denoted by H(σ1, σ2). The mixing time H of a Markov
chain P is then defined as

H , sup
σ∈∆(V )

H(σ, π), (36)

where ∆(V ) is the collection of all distributions on V and π is
the stationary distribution of P. In other words, it is the expected
time taken to reach stationarity using the optimal stopping rule
and starting at the worst initial distribution. We provide further
discussion on hitting times, stopping rules and mixing times in
Appendix B. For more details, see [36].

Lemma 2. The network average age for a randomized trajec-
tory P is upper bounded by

Aave(P) =
∑
i∈V

wizii
πi
≤ 4HAp(P) +

∑
i∈V

wi, (37)

where H denotes the mixing time of the randomized
trajectory P.

Proof: First, we define the quantity
Z , max

i

∑
j
|zij −πj |, called the discrepancy of the randomized

trajectory P. This definition implies that zii ≤ Z + πi, ∀i ∈ V.
Thus, we get the following upper bound:

∑
i∈V

wizii
πi
≤
∑
i∈V

(
wiZ
πi

+ wi

)
. (38)

However, from [36, Theorem 5.1] we know that Z ≤ 4H, where
H is the mixing time of the randomized trajectory P. Thus, we
have the required result

∑
i∈V

wizii
πi
≤
∑
i∈V

(
4wiH
πi

+ wi

)
= 4HAp(P) +

∑
i∈V

wi,

where the last equality follows from Theorem 1.
We use this relation and suggest the following heuristic for
minimizing age: Find the fastest mixing randomized trajectory P
on the mobility graph G that minimizes peak age.

From the proof of Theorem 2, we know that for a randomized
trajectory P to be peak age optimal all we need is its stationary
distribution to satisfy π = π∗, where π∗ is as defined in Lemma 1.
It, therefore, suffices to find P that satisfies πi = π∗i ,∀i, and
simultaneously minimizes the mixing time H. Note that while it
is computationally feasible to find the fastest mixing reversible
Markov chain on a graph, this is not the case if we also consider
non reversible chains. So we limit ourselves to reversible Markov
chains and call this the fastest-mixing reversible randomized
trajectory. We use P∗ to denote it. The following result provides
a way to obtain P∗ by solving a convex program.
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Theorem 5. The fastest mixing reversible randomized tra-
jectory can be found by solving the following convex
optimization problem:

Minimize
P

µ(P) = ||P−Π∗||2,

subject to Pi,j ≥ 0, ∀(i, j),
P1 = 1,

π∗i Pi,j = π∗jPj,i, Π∗i,j = π∗i ∀ i, j ∈ V,
Pi,j = 0,∀(i, j) /∈ E.

(39)

Here ||A||2 denotes the spectral norm of matrix A and
π∗i =

√
wi∑

j∈V
√
wj
, ∀i ∈ V .

Proof: From [34, Section 6] , we know that the fastest
mixing reversible Markov chain on a graph G(V,E) having an
arbitrary stationary distribution π can be found by formulating
the following convex program:

Minimize
P

||D1/2PD−1/2 − qqT ||2,

subject to Pi,j ≥ 0, ∀(i, j)
P1 = 1,

π∗i Pi,j = π∗jPj,i,∀i, j ∈ V
Pi,j = 0,∀(i, j) /∈ E.

(40)

Here D = diag(π∗) and q = (
√
π∗1 ,

√
π∗2 , ...,

√
π∗n). Left and

right multiplying (D1/2PD−1/2 − qqT ) by matrices D−1/2 and
D1/2, respectively, does not change the spectral norm; since P
has the same eigen-values as D1/2PD−1/2 and qqT has the
same eigen-values as D−1/2qqTD1/2 [34]. Further, observe that
D−1/2qqTD1/2 = qqT = Π∗, where Π∗i,j = π∗i ∀ i, j ∈ V.
Thus, the optimization problem reduces to (39). This proves the
required result. See Appendix C for a more detailed discussion.

This convex program (39) finds a reversible randomized tra-
jectory P∗ on G that is closest to the stationary randomized
walk Π∗, in the spectral norm sense. Detailed balance equations
π∗i Pi,j = π∗jPj,i,∀i, j are constraints that we impose for finding
P∗ that has provably minimum mixing time over a sufficiently
large class of trajectories, namely reversible Markov chains. In
practice, however, we can relax this constraint to global balance
π∗P = π∗ and get non reversible trajectories whose performance
is better. We discuss this in Appendix C.

We note that P∗ is peak age optimal on graph G, since
its stationary distribution is π∗. Further, the problem (39) and
its relaxation for non reversible chains can both be solved in
polynomial time by converting it to a semi-definite program [34].

We now bound the average age performance of the fastest-
mixing randomized trajectory.

Theorem 6. The network average age of the fastest-mixing
randomized trajectory is at most 8H-factor away from the
optimal average age:

Aave(P∗)

Aave∗
G

≤ 8H, (41)

where H is the mixing time of P∗.

Proof: Note that the peak age for the fastest-mixing ran-
domized trajectory P∗ is given by Ap(P∗) =

∑
i∈V

wi

π∗i
, since

π∗P∗ = π∗. From Theorem 3, a lower bound on average age is
given by

Aave
LB =

∑
i∈V

1

2

(
wi
π∗i

+ wi

)
=

1

2
Ap(P∗) +

1

2

∑
i∈V

wi. (42)

To prove the result, it suffices to argue that Aave(P∗)/ALB ≤
8H. From (42) and Lemma 2, we get

Aave(P∗)

Aave
LB

≤
4HAp(P∗) +

∑
i∈V wi

1
2A

p(P∗) + 1
2

∑
i∈V wi

, (43)

≤ 8H, (44)

since H is always greater than or equal to 1.
We note that we could have derived a similar mixing time

bound for the Metropolis-Hastings chain Pmh introduced earlier.
However, that bound would be worse than the bound for P∗

since the mixing time of Pmh is necessarily larger than that of
the fastest-mixing reversible chain. This is because Pmh is also a
reversible Markov chain.

To further see the usefulness of the fastest-mixing randomized
trajectory, and Theorem 6, consider a random geometric graph
G(n, r). The graph consists of n nodes spread over a unit square
with a link between every two nodes that are within a distance r.
If v is the physical speed of the mobile agent, then r must equal
vτ , where τ is the slot duration.We know that mixing time of
reversible chains on G(n, r) is upper bounded by O

(
logn
r2

)
[37],

and therefore, the fastest-mixing randomized trajectory would be
at most O

(
logn
v2maxτ

2

)
factor optimal. For highly connected graphs,

such as Dirac graphs in which the degree of each node is at
least |V |/2, we have constant factor of optimality; since the
mixing times are O(1). [38] establishes a connection between
the existence of long paths in graphs and their mixing times and
that it is hard to find even constant factor approximations to the
problem of finding the longest path on a general graph.

3.4 Age-based Trajectories
In the last two sub-sections, we proposed two randomized trajec-
tories, namely Pmh and P∗. Both were peak age optimal, while
the latter was also factor-H average age optimal. We also noted
that solving the average age problem is generally hard. We now
propose an age-based trajectory which can be constant factor age
optimal.

Age-based trajectory In every time slot, agent m moves to
the location that has the highest weighted function of Ai(t).
Specifically, if m(t) = i then

m(t+ 1) = arg max
j:(i,j)∈E

wjg (Aj(t)) , (45)

for all i, j ∈ V and time t, where g(·) is an increasing
function. We assume that ties are broken in order of vertex
indices.

Examples of functions include g(a) = a and g(a) = a+ a2.
The idea for an age-based trajectory comes from results on age
optimal scheduling [27], [28] that develop index based methods
which are constant factor optimal. In the symmetric setting, where
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Fig. 3: Mobility graph restricted to a binary tree.

wi = 1 ∀ i ∈ V , the function g(·) does not matter and the agent
moves greedily to the neighbouring node with the highest age.

In fact, we observe that the age-based trajectory is a repeated
depth-first traversal of the mobility graph G. This can be verified
easily when the mobility graph is a tree. Consider the tree in
Figure 3, and assume that we start at the root node 1 with age for
all nodes being zero. The trajectory of the agent following the rule
described above would be 1 → 2 → 4 → 2 → 5 → 2 → 1 →
3 → 6 → 3 → 7 → 3 → 1... This is precisely the depth-first
traversal of the tree graph.

In the symmetric setting, where wi = 1 ∀ i ∈ V , we now
prove that the age-based trajectory is factor-2 optimal.

Theorem 7. In the symmetric setting wi = 1 ∀ i ∈ V , the
network average age Aave for the age-based trajectory is
bounded by

Aave

Aave∗
G
≤ 2|V |+ 1

|V |+ 1
≤ 2, (46)

for any increasing function g(·).

Proof: The number of steps taken to cover every vertex of
a graph by performing a depth first search (DFS) traversal is upper
bounded by 2|V |, since every vertex is visited at least once and
the sum total of visits after the first visit to all nodes is at most |V |.
This is because every repeated visit to a vertex means that at least
one new vertex was visited. Thus, every location gets visited at
least once in every 2|V | time-slots. This implies that the average
age of every terminal can be upper bounded by (2|V |+1)

2 .
However, from our earlier discussion, we know that the aver-

age age of any terminal is lower bounded by (|V |+1)
2 if all the

weights are 1. Combining the upper and lower bounds, we have
the required result.

This age-based policy can be implemented in an online fashion
if the mobile agent has access to age Ai(t) of the neighboring
terminals. The complexity of implementing this trajectory is then
at most linear in the time-horizon and |V |. However, it also
suggests a polynomial time “offline” algorithm that does not need
knowledge of ages or computation in every time-slot to achieve
the same result -

1) Let the starting node be any v ∈ V . Compute a depth-first
traversal on the graph G(V,E) starting at node v.

2) Compute the shortest path from the last visited node in
the dfs traversal to v.

3) Append the path from step 2 to the dfs traversal in step
1. Follow this trajectory plan iteratively.

Note that both the dfs traversal and the shortest path can be
computed beforehand in polynomial time. Using exactly the same

arguments as for the greedy algorithm, this trajectory plan also
achieves factor 2 optimality in the equal weight setting.

The utility of index-based policies is in situations where we
include unreliable packet deliveries or time-varying weights and
mobility graphs in our model. While Markov chain based analysis
works only for fixed graphs known beforehand, the age-based
trajectory can be easily modified for use in dynamic settings.
Showing performance guarantees in such settings is also an
interesting line of future work.

4 INFORMATION DISSEMINATION

We now consider information dissemination. The central terminal
generates updates independently at rates λi, according to Bernoulli
processes. The generated updates get queued in the ith FCFS
queue for the ith ground terminal. The mobile agent follows a
trajectory T , and transmits the head-of-line update in queue i,
when it reaches the ith location. The FCFS queue assumption is
motivated by uncontrollable MAC layer queues implemented in
practice, where the generated updates get queued for transmis-
sion [10], [25].

We assume that the UAV can deliver only one packet from the
queue whenever it visits a node. However, the key ideas that we
present in this section would still apply if the UAV is able to send
at most a fixed number of packets to a node in every visit. This
is because even if the UAV can empty a large number of packets
from the queue in every visit, there might be packets remaining in
the queue if the arrival rate is high. This queuing phenomenon and
optimal choice of arrival rate is what we study in the information
dissemination problem.

Our objective is to minimize the network peak age and average
age over the space of update generation rates λ and all trajectories
T:

Ap∗
D = min

T ∈T,λ

∑
i∈V

wiA
p
i , and Aave∗

D = min
T ∈T,λ

∑
i∈V

wiA
ave
i ,

(47)
where Ap

i denotes average-peak age and Aave
i denotes the average

age of terminal i. Their evolution is given by (2). For notational
convenience, we have omitted their explicit dependence on T ∈ T
and λ.

Motivated by results for the gathering setting, we begin by
considering randomized trajectories. We assume that the time
spent by an update waiting at the head-of-line of the queue is
its effective service time. Note that an update arriving in queue
i when the queue is non empty sees updates ahead of it leaving
the system once every visit to i. Thus, it sees the effective service
times for updates ahead of it to be equal to the inter-visit times
to the terminal i. The same holds for the arriving update as well.
However, when an update arrives to an empty queue i, its effective
service time is dependent on where the mobile agent was when the
upate arrived and how long it takes to reach i again.

Since the analysis of age for such a queueing system with
non i.i.d. service may be difficult, we provide an upper bound, by
comparing the ith queue with a discrete time Ber/G/1 queue with
vacations. Whenever the ith queue is empty we pretend that it goes
on a vacation, with vacation times having the same distribution as
inter-visit times; otherwise the service times for the queue are
just inter-visit times. In this upper bound system, when an update
arrives into the ith queue when it is empty, we do not allow it to
be sent in the next visit by the mobile agent, but the visit after that.



10

This ensures i.i.d. service times and vacation times and allows us
to analyze the system.

The age process of such an FCFS queue is clearly an upper
bound for the age process Ai(t). This is because the total time
in the system for packets arriving into a non-empty queue are
identically distributed to the original FCFS queue while packets
arriving into an empty queue in the upper bound system spent
extra time waiting. Thus, we upper bound the peak age Ap

i and
average age Aave

i , by the peak and average age of this Ber/G/1
queue with vacations. We first analyze peak and average age of a
Ber/G/1 queue with i.i.d. vacations and service times.

4.1 Age for Ber/G/1 Queue with Vacations
Consider a FCFS Ber/G/1 queue with vacations, where an arrival
occurs with probability λ, the service times S are generally
distributed with mean E [S] = 1/µ, and the vacation times V
are also distributed the same as S.

We obtain an expression for the average-peak age of a discrete
time Ber/G/1 queue with vacations. Further, we derive an upper
bound on average age under a negative correlation assumption.

Lemma 3. The average-peak age for a discrete time FCFS
Ber/G/1 queue with i.i.d. vacations and service is given
by

Ap =
1

λ
+

1

µ
+
λE[S2]− ρ

2(1− ρ)
+

E
[
V 2
]

2E [V ]
− 1

2
, (48)

where ρ = λ
µ , while the average age is upper-bounded by

peak age, namely Aave ≤ Ap.

Proof: The peak age for a FCFS queue is given by

Ap = E [T +X] , (49)

where T denotes the time an update spends in the queue and X
is the inter-arrival time between two updates. Given that vacation
times are distributed i.i.d according to random variable V , we have

E[T ] =
λE[S2]− ρ

2(1− ρ)
+

1

µ
+

E
[
V 2
]

2E [V ]
− 1

2
, (50)

where S denotes the service time distribution. Substituting this
and E [X] = 1

λ in (49), we obtain the expression for peak age. We
now derive the expression for average system time E [T ] seen in
(50).

4.1.1 Derivation of System Time
The proof is a discretized version of the proof for M/G/1 queues
with vacations using residual service times as discussed in [39].

Let us define the residual service time for an update at time t,
given by R(t), as the amount of time remaining until the update
currently at the head of the queue is complete, excluding the
current time-slot. If the queue is empty, R(t) equals zero.

From [39] we know that the expected waiting time in the queue
can be found using the residual service times as follows

E [TQ] =
E [R]

1− ρ
, (51)

where ρ = λ
µ , E [S] = 1

µ and E [R] = lim
T→∞

E
[

1
T

t=T∑
t=0

R(t)

]
.

As in [39], E [R] can be computed using a graphical argument.

Let service times for the mth packet be Xm, and let the kth
vacation time be Vk. Let the total number of packets served be
M(T ) and the total number of vacations be L(T ), over the entire
time-horizon T . Then, we have

1

T

t=T∑
t=0

R(t) =
1

2

M(T )

T

M(T )∑
m=1

(X2
m −Xm)

M(T )

+
1

2

L(T )

T

L(T )∑
k=1

(V 2
k − Vk)

L(T )
. (52)

Using the strong law of large numbers and the fact that M(T )
T → λ

and L(T )
T → (1−ρ)

E[V ] , we get

E [R] =
λ(E

[
S2
]
− E [S])

2
+

(1− ρ)(E
[
V 2
]
− E [V ])

2E [V ]
. (53)

Combining (51), (53), and the fact that total time spent in the
system by a packet is given by the sum of its waiting time in the
queue and its processing time, we get

E [T ] = E [S + TQ] =
1

µ
+
λE[S2]− ρ

2(1− ρ)
+

E
[
V 2
]

2E [V ]
− 1

2
, (54)

since E [S] = 1
µ . We now show the second part of the Lemma,

that the average age is upper bounded by the peak age.

4.1.2 Average Age
Consider a FCFS Ber/G/1 queue with i.i.d. vacations and service
times. Let the packet inter-arrival times be X1, X2, ... Let Tn be
the total time spent in the system by the nth packet. Then, the
average age is given by [6]:

Aave =
1

λ
+ λE[XnTn], (55)

where 1
λ = E[Xn]. To evaluate the term E[XnTn], we observe

that larger inter-arrival times Xn between packets mean lesser
wait times in the system Tn for individual packets. This suggests
Xn and Tn are negatively correlated and that E [XnTn] ≤
E [Xn]E [Tn] . This is a commonly stated observation in AoI
literature [6], [40] but a general proof hasn’t appeared before.
In Appendix D we provide a proof of this result for FCFS queues
with no vacations. Proving this for our vacation system becomes
challienging, but we provide simulation results which strongly
indicate that the result holds in both the original system and
Ber/G/1 queues with i.i.d. vacations and service times. Therefore,
we present this result as the assumption below:

Assumption 1. Consider a Ber/G/1 queue with i.i.d. vacations
and service times, where the distribution of a vacation is
the same as that of a service time. Then, packet inter-
arrival times Xn are negatively correlated with packet
system times Tn, i.e.

E [XnTn] ≤ E [Xn]E [Tn] . (56)

If Assumption 1 is true, then we have the required result:

Aave ≤ 1

λ
+ λE[Xn]E [Tn] = E [Xn] + E [Tn] = Ap.
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For the remainder of this work, we assume that Assumption 1
holds and the average age Aave is upper bounded by peak age Ap.

4.2 Age Minimization Problem

Using Lemma 3, we now obtain an upper-bound on both network
peak and average age for a given randomized trajectory P and
update generation rates λ.

Lemma 4. For a randomized trajectory P and packet gen-
eration rates λ, the peak and average age for a ground
terminal i is upper-bounded by

AUB
i =

1

πi

[
1 + zii +

1

ρi
+

ziiρi
1− ρi

]
− ρi

1− ρi
− 1,

(57)
for all i ∈ V , where π is the unique stationary distribution
of P, Z = (I −P + Π)−1, Π is a matrix with all rows
equal to the stationary distribution vector π, and ρi , λi

πi
.

Proof: See Appendix E.
We propose a policy, i.e. a randomized trajectory P and update

generation rate λ, that minimizes the age upper-bound AUB =∑
i∈V wiA

UB
i :

Definition Separation Principle Policy

1) Mobile agent follows the randomized trajectory P∗

obtained by solving (39).
2) Generate updates for the ground terminal i at rate

λ∗i =
π∗i

1 +
√
z∗ii − π∗i

, (58)

where π∗i =
√
wi∑

j∈V wj
and zii are diagonal elements

of the matrix Z = (I −P∗ + Π∗)−1.

We call it the separation principle policy for two reasons.
Firstly, P∗ is the fastest-mixing randomized trajectory, which we
proposed for minimizing average age earlier. Secondly, the update
generation rate for the ground terminal i, depends only on zii and
πi, which are functions of the first and second moments of the
return times to terminal i under trajectory P∗ (see (16) and (17)).
We now bound the performance of this separation principle policy.

Theorem 8. The peak and average age of the separation
principle policy is bounded by

Ap

Ap∗
D
≤ 4H+ 4

√
H+ 2 and

Aave

Aave∗
D
≤ 8H+ 8

√
H+ 4,

where H is the mixing time of the randomized trajectory
P∗.

Proof: We formulate the upper bound age minimization
problem and use an approach similar to Lemma 2 and Theorem

7. We want to solve the upper bound age minimization problem,
which can be stated as:

Minimize
P,ρ

∑
i∈V

wiA
UB
i ,

subject to Pi,j ≥ 0, ∀(i, j),
P1 = 1,

Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible.

(59)

We first find the optimal packet generation rates given a random
walk P. Observe that the optimal queue utilization factors ρi can
be solved for given any fixed irreducible random walk P, i.e.

ρ∗i (P) = arg min
ρi∈[0,1]

AUB
i (P, ρi) =

1

1 +
√
zii − πi

(60)

Note that zii ≥ πi so the equation above is well defined. This is
because var(Hi) ≥ 0 and the first and second moments of Hi are
given by (16) and (17). Now, the age under ρ∗i (P) is given by:

min
ρi∈[0,1]

AUB
i (P, ρi) = AUB

i (P, ρ∗i ) =
zii − πi + 2

√
zii − πi + 2

πi
.

(61)
Thus, the upper bound age minimization problem reduces to

Minimize
P

∑
i∈V

wi

(
zii − πi + 2

√
zii − πi + 2

πi

)
,

subject to Pi,j ≥ 0, ∀(i, j),P1 = 1,

Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible.

(62)

Now, we can relate the network age upper bound, given a
random walk P, to its mixing time H. We assume optimal packet
generation rates ρ∗i (P).∑
i∈V

wiA
UB
i (P, ρ∗i (P )) =

∑
i∈V

wi

(
zii − πi + 2

√
zii − πi + 2

πi

)
,

≤
∑
i∈V

wi

(Z + 2
√
Z + 2

πi

)
,

≤
∑
i∈V

wi

(
4H+ 4

√
H+ 2

πi

)
,

where inequalities follow from the same argument as in the proof
of Lemma 2. Setting P = P∗, we obtain∑
i∈V

wiA
UB
i (P∗, ρ∗i (P

∗)) ≤
∑
i∈V

wi

(
4H+ 4

√
H+ 2

π∗i

)
, (63)

where H is the mixing time of P ∗. Note that
∑
i∈V

wi

π∗i
is the

optimal peak age for information gathering, i.e. Ap∗
G =

∑
i∈V

wi

π∗i
.

This gives,

AUB(P∗,ρ∗)

Ap∗
G

≤ 4H+ 4
√
H+ 2. (64)

Due to the presence of queues we have Ap∗
G ≤ Ap∗

D . This, (64),
and the fact that Ap(P∗,ρ∗) ≤ AUB(P∗,ρ∗), yields the peak age
bound on the separation principle policy:

Ap(P∗, λ∗)

Ap∗
D

≤ 4H+ 4
√
H+ 2,

since ρ∗ = λ∗.
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(a) (b) (c)

Fig. 4: (a) A random geometric graph with 100 nodes, (b) A grid graph with 81 nodes and diagonal edges, and (c) A 3-connected ring
or cycle graph with 21 nodes.

From the discussion following Theorem 3, we know that
2Aave∗
G ≥ Ap∗

D . Also, Aave∗
G ≤ Aave∗

D and Aave(P∗,ρ∗) ≤
AUB(P∗,ρ∗). Combining these with (64) gives us

Aave(P∗, λ∗)

Aave∗
D

≤ 8H+ 8
√
H+ 4, (65)

since ρ∗ = λ∗.

The separation principle policy is factor O(H) peak age
and average age optimal. It is worthwhile to note that a similar
separation principle policy was established in a completely dif-
ferent setting of scheduling links for age minimization in [10].
Theorem 8 generalizes that result to a graph.

5 SIMULATION RESULTS

We test the performance of our proposed trajectories on three
different kinds of mobility graphs: random geometric graphs
G(n, 2√

n
),2 grid graphs with diagonal edges, and 3-connected ring

or cycle graphs; see Figure 4. We use n to denote the number of
ground terminals, namely n = |V |. For the age-based policy,
we set the function g(a) = a2 + a, inspired by the index based
policies in [10]. Link weights are picked uniformly at random
from the interval (1, 2] in an independent manner. We run our
simulations for a total of 50000 time-slots, to get a good estimate
of the peak and average age.

We first consider information gathering, and plot average-
peak and average age for all the proposed trajectories of the
mobile agent: the Metropolis-Hastings randomized trajectory Pmh,
fastest mixing randomized trajectory P∗, and age-based trajectory.
Figure 5 plots peak age as a function of network size n for the
random geometric graph G (n, 2/

√
n). We observe that the peak

age for all the three proposed trajectories achieves the optimal
value. This is in line with Theorems 2 and 5 where we showed
that the two randomized trajectories - the Metropolis-Hastings
chain Pmh and the fastest mixing chain P∗, achieve the optimal
stationary distribution π∗ and hence the optimal average-peak age.
Figure 5 suggests, in addition, that even the age-based trajectory
for the mobile agent is peak age optimal.

In Figure 6 we plot the average age performance of the
proposed trajectories, as a function of network size n. Also plotted

2. Setting r = 2√
n

for random geometric graphs ensures connectivity w.h.p.
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Fig. 5: Information Gathering on G(n, 2/
√
n): network peak age

as a function of network size n for several proposed trajectories
of the mobile agent.

Fig. 6: Information Gathering on G(n, 2/
√
n): network average

age as a function of network size n for several proposed trajecto-
ries of the mobile agent (averaged over 20 runs).

is the lower bound for average age derived in Theorem 3. We see
that the age-based policy is nearly average age optimal, while
the fastest mixing randomized trajectory P∗ has a lower average
age, and hence better performance, than the Metropolis-Hastings
randomized trajectory Pmh. This is to be expected given the
mixing time upper-bound on average age derived in Lemma 2
and the fact that P∗ has a smaller mixing time than Pmh by
construction.

Theorem 6 proved that the fastest mixing randomized trajec-
tory P∗ is at least factor-8H optimal. Figure 6 validates this
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Fig. 7: Information Gathering on the Grid graph: network average
age as a function of network size n for several proposed trajecto-
ries of the mobile agent.

Fig. 8: Information Gathering and the Ring graph: network av-
erage age as a function of network size n for several proposed
trajectories of the mobile agent (averaged over 20 runs).

conclusion: for example, for n = 90 ground terminals, the
average age for the fastest mixing randomized trajectory P∗ is
approximately a factor 3 away from the lower bound.

In Figures 7 and 8 we plot the average age performance for
several proposed trajectories, as a function of the network size.
The age-based policy, again outperforms the two randomized
trajectories, and is nearly optimal. We observe that the average
age for the fastest mixing randomized trajectory P∗, namely
Aave(P∗), is much worse in the ring graph than in the grid graph.
This is because the mixing time for the ring graph is much larger
than for the grid graph. Similar observation holds in comparing
G(n, 2/

√
n) and the grid graph. Note that the mixing times for

both the 2D grid graph and G(n, 2/
√
n) grow as O(n log n) [41]

while for a ring graph, it grows as O(n2 log n) [42].
In Figure 9, we simulate the performance of the separa-

tion principle policy in the dissemination setting, for graph
G(n, 2/

√
n), and compare its age performance with the gathering

setting. We observe a significant deterioration of age, as a function
of network size n, under stochastic updates and FCFS queues
in comparison to fresh updates. This, we note, is the cost of
uncontrollable queues in the system on age performance.

6 CONCLUSION

We considered the trajectory planning problem for a mobile agent,
that traverses through a mobility graph G, to help timely exchange
of information updates between a central terminal and a set of
ground terminals V . For information gathering, we showed that

Fig. 9: Network average age as a function of network size
(averaged over 20 runs).

a randomized trajectory, namely the fastest-mixing randomized
trajectory, is peak age optimal and factor-H average age optimal.
We showed that obtaining an average age optimal trajectory can be
NP-hard, while we constricted the peak age optimal trajectory in
polynomial time. To improve the average age, we proposed an age-
based policy, and showed it to be factor-2 average age optimal, in a
symmetric setting. For information dissemination, we proposed a
separation principle policy, in which the mobile agent follows the
fastest mixing randomized trajectory with a simple rate control.
We proved that the separation principle policy is factor-O(H)
optimal, in both peak and average age.
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APPENDIX A
PEAK AGE AND THROUGHPUT OPTIMALITY

First, we note that when fresh updates are generated at will
both peak age and throughput of a ground terminal depend only
on the fraction of time the mobile agent spends on it. Further,
we can construct a randomized trajectory P that achieves any
possible stationary distribution on the set of terminals V using
the Metropolis-Hastings algorithm and the fact that G(V,E) is
connected. Since peak age and throughput depend only on the
stationary distribution, it is sufficient to look at randomized trajec-
tories for both peak age and throughput optimality. In addition, it is
sufficient to find the stationary distributions that achieve optimality
for the respective metrics, since it is easy to find the trajectory once
we have a target distribution.

So, we now discuss the relationship between throughput opti-
mal and peak age optimal trajectories. From Lemma 1, we know
that to minimize the network peak age, we need to solve the
following optimization problem

Minimize
π

∑
i∈V

wi
πi
,

subject to
∑
i

πi = 1,

πi ≥ 0,∀i ∈ V.

(1)

Using KKT conditions we get that

π∗i =

√
wi∑

i

√
wi
,∀i ∈ V. (2)

. Similarly, if we considered weighted sum throughput as the
metric of interest, then our optimization problem would become

Maximize
π

∑
i∈V

wiπi,

subject to
∑
i

πi = 1,

πi ≥ 0,∀i ∈ V.

(3)

It is easy to see that the distribution that solves this problem is
simply to put all the probability mass on the terminal with the
highest weight. In other words, the throughput optimal trajectory,
under weighted-sum throughput, is to just stay at the terminal with
the highest weight. Note that this is clearly not peak age optimal.
In fact, the peak age for all other ground terminals goes to infinity.
Thus, throughput optimization does not directly correspond with
peak age optimization.

However, let’s now we consider proportional fair throughput
optimization with square-root weights. The optimization problem
is given by:

Maximize
π

∑
i∈V

√
wi log(πi),

subject to
∑
i

πi = 1,

πi ≥ 0,∀i ∈ V.

(4)

Using KKT conditions we can show that

π̂i =

√
wi∑

i

√
wi
,∀i ∈ V (5)

maximizes this weighted-sum proportional fair throughput metric.
Note that π̂ = π∗, thus peak age optimality is in fact equivalent
to proportional fair throughput with square root weights.

APPENDIX B
STOPPING RULES, HITTING TIMES AND MIXING
TIMES

A detailed discussion on stopping rules, hitting times and mixing
times is outside the scope of this work, but we provide a brief
discussion to make the definitions clear. We refer the reader to
[36] for details.

A stopping rule is a rule that observes the walk on a Markov
chain and, at each step, decides whether or not to stop the walk
based on the walk so far. This decision can be probabilistic. Thus,
a stopping rule maps walks to the probability of continuing the
walk.

Hitting times H(i, j) are usually defined as the expected time
taken for a random walk to hit a state j starting from a given
state i. Note that for any irreducible Markov chain, the quantities
H(i, j) are bounded ∀i, j.

Hitting times also have a more generalized definition in
Markov chain literature [36] based on distributions and stopping
rules. The hitting time H(σ, τ) from a state distribution σ to τ on
a Markov chain is the minimum expected stopping time over all
stopping rules that, beginning at σ, stop in the exact distribution
of τ .

We first show that there exists a naive stopping rule T that
takes any irreducible Markov chain from an arbitrary distribution
σ to another arbitrary distribution τ in a finite number of steps
in expectation. The naive rule is as follows: start the chain with
distribution σ, sample a state j according to the distribution τ and
run the chain until it reaches j. The distribution of the Markov
chain at the end of this stopping rule is simply τ since it stops at
state j with probability τj . Further, the expected time to stop if it
started at state i and stopped at state j is simply H(i, j), since it
is the expected time taken to go from state i to state j. Observe
that we start at state i with probability σi and end at state j with
probabiltiy τj . Thus, the expected length of this stopping rule is
given by:

E[T] =
∑
i,j

σiτjH(i, j).

where H(i, j) are the statewise hitting times defined earlier.
Clearly, we can reach any distribution τ starting from any dis-
tribution σ in a finite number of steps, on average.

Since H(σ, τ) is defined as the minimum expected stopping
time over all stopping rules, it is also finite for any pair of
distributions. Finally, we define the mixing time of a chain P
as follows:

H , sup
σ∈∆(V )

H(σ, π), (6)

where ∆(V ) is the collection of all distributions on V and π
is the stationary distribution of P. Clearly, the supremum over a
bounded set is bounded. Thus the mixing timeH of an irreducible,
aperiodic Markov chain is also bounded.
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APPENDIX C
MIXING TIME AND SPECTRAL GAP

In Theorem 5, we find the fastest mixing reversible Markov chain
on a graph by solving the following convex program:

Minimize
P

µ(P) = ||P−Π∗||2,

subject to Pi,j ≥ 0, ∀(i, j),
P1 = 1,

π∗P = PTπ∗, Π∗i,j = π∗i ∀ i, j ∈ V,
Pi,j = 0,∀(i, j) /∈ E.

(7)

This formulation of finding the fastest mixing chain is based on a
slightly different notion of mixing time (using spectral gap) rather
than the stopping time definition introduced in Section 3.3. In
[34], the authors define mixing time using the asymptotic rate of
convergence to the stationary distribution. As shown in that work,
for reversible chains, this is simply a function of the second largest
eigenvalue. Hence, we can use spectral norm in the objective
function of the program above.

However, in earlier discussions on bounding the performance
of randomized trajectories, we used a different definition of mixing
times, based on stopping rules. While it is not obvious, these two
definitions are in fact closely related and only differ by at most a
constant factor [36].

What is more tricky is the relationship between eigenvalues
and mixing times. As shown in [34] for reversible chains on
a graph with a fixed stationary distribution, the mixing time is
indeed minimized by optimizing the spectral norm as done above.
However, if chains can be irreversible, the relationship between
mixing times and spectral gaps is not straightforward [43]. In fact,
we do not know of a way to formulate a simple program to find
the fastest mixing (possibly irreversible) Markov chain on a graph.

A simple way to get around this is to find the fastest mixing
reversible Markov chain using (39) and also a relaxation of (39)
over irreversible chains by replacing local balance constraints with
global balance. Then, we can use whichever trajectory that has the
lower mixing time. This ensures that we do not restrict ourselves
to reversible chains in practice. However, we cannot guarantee that
the chain found is the fastest mixing over all trajectories, including
irreversible ones, but just the reversible ones.

APPENDIX D
NEGATIVE CORRELATION OF Xn AND Tn

We first prove the result for Ber/G/1 FCFS queues with no
vacations. Let the service time of the nth packet be Sn and let the
inter-arrival time between the n − 1th packet and the nth packet
be Xn. Let Tn be the time packet n spends in the system. Then,

Tn = max{Tn−1 −Xn, 0}+ Sn. (8)

Since the arrival of the nth packet cannot affect how long packet
n − 1 stays in the system, we know that Tn−1 is independent
of Xn. Similarly, since packet service times are independent of
arrivals, we know that Sn is independent of Xn. We will compute
E[Tn|Xn] using the fact that Tn−1 and Sn are independent of
Xn.

E[Tn|Xn] =
∞∑
t=1

P(Tn−1 = t) max{t−Xn, 0}+ E[S]. (9)

Note that P(Tn−1 = t) max{t−Xn, 0} is a monotone decreasing
function of Xn for any value of t. Since the sum of monotone
functions is monotone and E[S] is a constant independent of Xn,
we get that E[Tn|Xn] is a monotone decreasing function of Xn.
We will denote this function as f(Xn). We analyze the covariance
between Xn and Tn.

cov(Xn, Tn) = E[XnTn]− E[Xn]E[Tn]

= E[E[XnTn|Xn]]− E[Xn]E[Tn]

= E[XnE[Tn|Xn]]− E[Xn]E[E[Tn|Xn]]

= E[Xnf(Xn)]− E[Xn]E[f(Xn)]

= E[(Xn − E[Xn])(f(Xn)− E[f(Xn)])]

= E[(Xn − E[Xn])(f(Xn)− E[f(Xn)] + f(E[Xn])− f(E[Xn]))]

(75A)
= E[(Xn − E[Xn])(f(Xn)− f(E[Xn]))]

+ E[(Xn − E[Xn])(f(E[Xn])− E[f(Xn)])]

(75B)
= E[(Xn − E[Xn])(f(Xn)− f(E[Xn]))]

(75C)

≤ 0,
(10)

To get (75B), we show that the second term in (75A) is zero.

E
[
(Xn − E[Xn])

(
f(E[Xn])− E[f(Xn)]

)]
=
(
f(E[Xn])− E[f(Xn)]

)
E
[
(Xn − E[Xn])

]
=
(
f(E[Xn])− E[f(Xn)]

)(
E
[
Xn]− E[Xn]

)
= 0.

The first equality follows since (f(E[Xn]) − E[f(Xn)]) is a
constant and it can be pulled out of the expectation. The second
equality similarly follows since E[Xn] is a constant and can be
pulled out of the expectation. Now, it is easy to see that the term
is zero.

(75C) follows since f(·) is a monotone decreasing function
and (a − b)(f(a) − f(b)) ≤ 0,∀a, b. This concludes the proof
since we have show that Xn and Tn are negatively correlated.

This approach is not easy to extend for the case with vacations.
This is primarily because the recursion for system time involves
the residual time of the current vacation interval when the packet
enters an empty queue. So, we provide numerical evidence of
negative correlation in both the original system (which has non
i.i.d. service) and for Ber/G/1 queues with i.i.d vacations and
service times.

In Figure 1, we plot the network peak and average age under
our proposed trajectory and transmission rates for the information
dissemination setting. We observe that the average age is always
upper bounded by the peak age irrespective of the network size
or topology. Figures 2, 3, and 4 plot peak and average age for
Ber/G/1 queues with i.i.d. vacations and service intervals. We
observe that irrespective of the arrival rates and vacation/service
time distributions peak age is always an upper bound for the
average age. This strongly suggests that Assumption 1 is true.

APPENDIX E
PROOF OF LEMMA 4
Consider a randomized trajectory P and Bernoulli arrival rates
λ = (λ1, λ2, . . .). From the arguments made in Section 4, we
know that the peak age for the ground terminal i is upper-bounded
by the peak age of a discrete time FCFS Ber/G/1 queue with
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Fig. 1: Network peak and average age as a function of network
size n for the dissemination setting
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Fig. 2: Peak and average age v/s load for a Ber/G/1 queue with
geometric vacations and service.
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Fig. 3: Peak and average age v/s load for a Ber/G/1 queue with
bounded uniform random vacations and service.
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Fig. 4: Peak and average age v/s load for a Ber/G/1 queue with
deterministic vacations and service.

vacations, for which the service times and vacation times have the
same distribution as the inter-visit times H1,i. Applying Lemma
3, we obtain

Ap
i ≤

1

πi

[
1 + zii +

1

ρi
+

ziiρi
1− ρi

]
− ρi

1− ρi
− 1 , AUB

i , (11)

where we have used the first and second moment of inter-visit
times H1,i [30, Ch.4]:

E[H1,i] =
1

πi
, E[H2

1,i] =
−1

πi
+

2zii
π2
i

,∀i ∈ V. (12)

Similarly, we know that the average age for the ground
terminal i is also upper-bounded by the average age for the FCFS
Ber/G/1 queue with vacations. Using the fact that Aave ≤ Ap

for the Ber/G/1 queue with vacations (see Lemma 3, we get
Aave
i ≤ AUB

i .


