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Abstract—Large blackouts in power grids are often the
consequence of uncontrolled failure cascades. The ability to
predict the failure cascade process in an efficient and accurate
manner is important for power system contingency analysis. In
this paper, we propose to apply the influence model for the
prediction and screening of failure cascades in large scale DC
and AC power networks. Then, the trained influence model
is applied to some large power grids with thousands of buses
and transmission lines. The prediction performance is evaluated
in four different aspects, from the global perspective of the
overall failure size to the individual information regarding the
link failure time. The results show that under limited training
samples, the proposed framework is capable of predicting the
failure cascade size with a 7% error rate, the final state of links
with a 10% error rate, and the failure time within 1 time unit
for both the DC and AC model. One major advantage of the
proposed method is that it can reduce the computational time
of the failure cascade prediction by a few orders of magnitude
with limited compromise in accuracy, as compared to the power
flow based contingency analysis. Another important feature of
the proposed method is that the trained influence parameters
can reveal the critical initial contingencies. This information is
very helpful for identifying the worst contingency scenarios for
system operators.

Index Terms—Failure cascade, influence model, large scale
DC/AC power flow model, contingency analysis

I. INTRODUCTION

Large blackouts in modern power systems are often the
result of uncontrolled failure cascades from some initial
contingencies. In 2003, a 345kV line tripped off after touching
a tree limb. The initial failure expanded from several links
to over 500 generating units in the US and Canada within 1
hour [1]. In 2019, midtown Manhattan suffered a widespread
blackout which resulted from a disabled transformer [2]. These
blackouts are shown to be associated with a rapid propagation
of failures from initial contingencies. Such propagation
process, termed failure cascade, is difficult to analyze and
predict in large power systems due to its enormous scale
of involved components with complex underlying interactions
and time-varying parameters [3].

A number of studies have been carried out from historical
records of large blackouts. Vaiman et al. listed possible
sources of initially tripped links, and further summarized large
blackouts that occurred every year from 1984 to 2006 due to
different natural disasters [4]. Hines et al. discovered from
cascade records that the blackout size follows the Weibull
distribution when the size is small, and power-law distribution
when it is large [3]. These works, based on the historical
records, reveal basic statistical properties of failure cascades
and paved the way for quantitative modeling and analysis.

However, the scarce historical records of cascading failures
are far from fully representing all the possibilities, leaving
potential blackouts concealed. To tackle this challenge,
numerical simulations and analysis of different initial outages
are studied based on power flow models [5]–[10]. The AC flow
model suffers from heavy computational burden as it requires
solving nonlinear equations iteratively, and it is difficult to find
an AC power flow solution when the network configuration
changes drastically [5]. For the DC flow model, Zussman et.al.
analytically revealed how failure propagates with multiple
tripped links [6], [7] based on solving flow equations, while
Beinstock and Varma gained insights using the mixed-integer
linear optimization [8]. Zussman et.al. also formulated a
general failure cascade model under both the deterministic
and probabilistic cases predicated on DC flow calculation [9].
Although, the DC power flow model can achieve analytic
results and fast simulation speed, Cetinay et al. showed that
the DC flow model may underestimate the failure size and the
AC flow model is more accurate in characterizing real failure
cascades [5], [10].

To overcome the high complexity of flow-model-based
methods, researchers sought various flow-free approaches.
For example, the percolation-based analysis on random graph
models has been used to model local cascades whose failure
probability depends on neighboring link degree [11]–[14].
This model overlooks the nonadjacent correlations among
geographically distant failures, and the analysis does not
capture the power system dynamics, which may render the
model rather inaccurate in practice. The branching process is
a popular tool that measures the distribution of the number of
outages in a cascade [15], [16], and the random chemistry
algorithm together with such a distribution can efficiently
estimate the overall blackout risk [17], [18]. In addition,
Hines et.al. applied differential equations to model the cascade
process [19] while Zhang et.al. did so by mean field theory
[20]. Moreover, Tse et.al. tried chemical master equation
model to grasp the collective behavior of failure propagation
[21] while Qi et.al. learned such behavior via EM algorithm
[22]. These works aspired to propose models that capture the
flow dynamics and the failure cascade process. However they
still lack explicit quantification of how network components
influence each other to render a failure sequence. Moreover,
most of the existing flow-free approaches are only specialized
in characterizing one or two aspects of failure cascades such
as failure size distributions or final states [3], [15], [23]–[27],
lacking a comprehensive evaluation at different levels of
granularity.

In order to (i) explicitly quantify the superimposed influence
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from all the components in power systems, (ii) evaluate failure
cascades at different levels of granularity, and (iii) predict
failure cascades in a highly efficient way, in this paper,
we focus on modeling failure cascades through a flow-free
approach using the Influence Model [28], [29]. It is a special
graphic model that captures the underlying influence of all
the network components on each individual component. It is
essentially a Markovian-like model which is easy to construct
and implement for large-scale applications. Thus, it is a
powerful tool for analyzing and predicting failure cascades in
power networks [23]–[25]. To apply the influence model to the
prediction of failure cascades in power systems, Hines et. al.
utilized the Monte Carlo method to learn the pairwise influence
values [3]. Their trained model generates the appropriate
distribution of failure cascade sizes that best match the existing
records. Zhou et. al. further extended the pairwise influences
to capture more complex influences [26], [27] for failure size
prediction.

The interaction model [30], [31] shares a similar idea
to the influence model approach. For any component j,
the interaction model specifies the cause of the failure of
component j as the components whose failure most frequently
leads to the failure of j in the sample pool. Then the
probability that the failure of component i causes the failure
of j can be computed, and is applied in the failure cascade
generation process. The difference between the interaction
model and the influence model in [3], [26], [27] is that the
influence model first determines the number of outages in the
next generation, and samples which component will fail based
on the influence value, without specifying the exact cause of
the failure of any component j.

In this paper, we propose a hybrid learning framework that
can efficiently train the influence model for large systems.
The proposed framework integrates the Monte Carlo method,
a regression approach, and a novel adaptive threshold selection
scheme to train the model in an efficient way and to
achieve a better prediction accuracy. A preliminary version
of this work appeared in [29]. Here, we extend [29] in the
following significant ways: (i) We extend our framework to
large-scale power systems in the nonlinear AC flow model, and
demonstrate its good prediction performance at all levels of
granularity. (ii) By comparing our framework to an appropriate
flow-model-based oracle, we show that the proposed method
is able to predict failure cascades at a much faster speed (at
least two orders of magnitude faster) with acceptable small
error rates. (iii) We propose a ranking scheme to sort out the
most critical initial contingencies from the learned influence
values. It works well in both the DC and the AC power flow
models with higher computational efficiency compared with
prior works [3], [27], which demonstrates the applicability of
our influence model framework.

The rest of the paper is organized as follows: Section
II introduces the basics of the influence model. Section III
describes our hybrid learning framework. Section IV presents
two sets of evaluation metrics that capture different aspects
of the failure cascade prediction. Section V summarizes the
result of cascade prediction accuracy and time efficiency based
on the trained influence model over large scale DC and AC

systems. Section VI demonstrates the ability of this model to
identify the critical initial contingencies.

II. INFLUENCE MODEL

The influence model is a Markovian-like model whose
dynamics are described by the state variable transitions. In
the failure cascade analysis, the state variable of the influence
model is chosen to be the binary operational state of each
transmission line∗, taking on values of either 0 (failed) or 1
(normal) respectively [15]. Given the i-th link, we use si[t]
to denote its state at time step t. The collection s[t] :=
[s1[t], . . . , sM [t]]′ ∈ {0, 1}M×1 of all the M link state
variables represents the network state at time t, and we define
s := {s[t]}Tt=0 as the state (failure cascade) sequence where
T is the termination time of the cascade.

The transition of a state variable si[t] from the current time
t to the next time t+ 1 is given by

s̃i[t+ 1] =

M∑
j=1

dij
(
A11

ji sj [t] + A01
ji (1− sj [t])

)
, (1)

where A11 and A01 are interpreted as

A11
ji := P

(
si[t+ 1] = 1 | sj [t] = 1

)
(2)

A01
ji := P

(
si[t+ 1] = 1 | sj [t] = 0

)
(3)

are the transition probabilities from the state of link j at t
to the state of link i at t + 1; The weight dij represents the
proportional affect from the link j to i, under the constraint
that for any link i and j,

∑M
j=1 dij = 1, dij ≥ 0. The dij can

be regarded as the ratio of the influence from link j to i among
all the influence over link i. s̃i[t+ 1] ∈ [0, 1] is the estimated
value of si[t + 1]. The physical meaning of eqn. (1) is that
s̃i[t+1] is the weighted sum of the probability that link i being
normal at time t+1 (i.e. si[t+1] = 1) given the network state
s[t] at time t. Specifically the term A11

ji sj [t] +A01
ji (1− sj [t])

can be interpreted as follows. Consider link j for example.
Given that sj [t] = 1, then this term becomes A11

ji , which is
exactly the conditional probability that link i is normal at t+1
given link j is normal at t. Similarly when sj [t] = 0.

We collect all the A11
ji ’s into an M × M matrix A11,

and collect all the A01
ji ’s into A01. We refer to each of

A11 and A01 as the “pairwise influence matrix”. We collect
{dij}i,j=1,...,M into an M ×M matrix D, referred to as the
“weighted influence matrix”.

An illustrative 5-node example of the influence model can
be found in Fig. 1. The left subfigure depicts the pairwise
influence of component 1 on 5, concerning A11

15 and A01
15 in

(1). The right subfigure reflects that component 5 is mutually
influenced by component 1 and 3, where A11

15 and A01
15 take

weight d51, while A11
35 and A01

35 take weight d53 in (1).
After s̃i[t + 1] is obtained, to make predictions consistent,

we apply the following deterministic bisection scheme with
a threshold εi for each link i rather than doing randomized
rounding to {0, 1}:

ŝi[t+ 1] =

{
1 if s̃i[t+ 1] ≥ εi
0 if s̃i[t+ 1] < εi

, (4)

∗We also term ‘transmission line’ as ‘link’ in the following for brevity.
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Failure of node-3 can also induce 
failure of node-5.

We can also estimate a 2-by-2 
influence matrix A35 for the pair of 
node-3 and node-5.

Therefore, node-1 and node-3 are 
in “superposition” to influence 
node-5. (Other nodes also involve.) 

: probability of node-j normal at time t.

: weight for node-j’s influence on node-i.

We need to learn the weights from data.
Fig. 1: Influence Model Toy Example

We will propose a way to quantify the threshold value later in
Section III-D.

We stack ŝi, the predicted status of each link i, into a vector
ŝ[t] and refer to it as the prediction of the network state at time
t. Then, the sequence ŝ[t], denoted as ŝ, is a predicted failure
cascade sequence for the system.

To apply the influence model in failure cascade analysis,
the pairwise influence matrices {A11,A01}, the weighted
influence matrix D, and the bisection thresholds {εi}Mi=1 need
to be specified.

III. LEARNING INFLUENCE MODEL PARAMETERS

In this section, we discuss how to generate the training
sample pool and use it to acquire A11, A01, D and {εi}Mi=1.
Before that, we first introduce the failure cascade assessment
oracle we apply in this work.

A. Cascade Failure Assessment Oracle

Many cascading outage and blackout assessment oracles
have been proposed, for example, OPA [32], [33], improved
OPA [34], Practice [35], CFS [17], etc. A comprehensive
comparison of different oracles can be found in [36]. However,
there is no standard oracle for assessing failure cascades
at present [36]. In this paper, we follow the CFS oracle
proposed in [17]. The CFS oracle is similar to the short-term
OPA except that the line outages are treated deterministically,
and the optimal re-dispatch is assumed not applicable during
a fast failure cascade. Only urgent load shedding and
generation curtailment are available if system-wide power
mismatch occurs. This situation can happen in the real
world. For example, on Sep 8th, 2011 the San Diego
blackout experienced dozens of transmission lines triggered
off within 11 minutes, leaving insufficient time for optimal
re-dispatch [9]. Another practical consideration for following
the CFS oracle is its relatively fast evaluation speed compared
to optimization-based re-dispatch. in generating cascade
sequences, including system failure check and proportional
load shedding [5], [34]. Thus, in this paper we rely the
CFS oracle to generate our training pool, and will consider
more factors as important issues in future work, including the
optimal flow redispatch [34], voltage and frequency instability
[36], etc.

In CFS after each failure event, the DC/AC power flow
problem is solved using the MATPOWER Toolbox [37]. A
detailed oracle of generating synthetic failure cascades is
presented in Appendix. By this procedure we can build up
the training sample pool Strain. We denote the k-th cascade
sequence in Strain as sk := {sk[t]}Tk

t=0 where Tk denotes
the final time step that the k-th cascade terminates; sk[t] is

the network state at time t; and sk records the k-th cascade
sequence.

The influence model can be directly learned from regression
by a constrained optimization problem as follows.

min
D,A11,A01

1

K

K∑
k=1

Tk∑
t=1

f(sk[t], s̃k[t])

s.t. s̃ki [t+ 1]=
M∑
j=1

dij
(
A11

ji s
k
j [t] + A01

ji (1− skj [t])
)
, ∀i, k;

M∑
j=1

dij= 1, ∀i; dij ,A
11
ji ,A

01
ji ≥ 0,∀i, j,

(5)
where s̃k[t] is the estimated value of the network state sk[t];
f(sk[t], s̃k[t]) is the cost function that quantifies the distance
between sk[t] and s̃k[t]; M is the number of links, and K is
the number of cascade sequences in Strain.

The problem size of (5) is very large because for each
link pair (i, j) there exist two independent pairwise influence
values A11

ji , A01
ji and a weight dij , thus the problem size is

O(M2). In order to improve the computational efficiency, we
train {A11,A01} and D separately.

B. Learning Pairwise Influence Matrices A11 and A01

We use a Monte Carlo based method to learn A11 and A01.
Let τki be the time step that link i changes to failure state in
the k-th cascade sequence sk. If link i does not fail in sk, we
set τki to be the termination time of sk. Then, the value of
A11

ji for any link i and j is computed by

A11
ji :=

∑K
k=1 C

11
ji (sk, τki )∑K

k=1 C
1
j (sk, τki )

(6)

where C1
j (sk, τki ) is the number of time steps before τki in sk

such that link j is normal; C11
ji (sk, τki ) is the number of time

steps before τki in sk such that link i is normal, given link j
is normal on the adjacent upstream time step.

Similarly, we can estimate A01
ji via

A01
ji :=

∑K
k=1 C

01
ji (sk, τki )∑K

k=1 C
0
j (sk, τki )

(7)

where C0
j (sk, τki ) is the number of time steps before τki in sk

such that link j is failed; C01
ji (sk, τki ) is the number of time

steps before τki in sk such that link i is normal, given link j
is failed on the adjacent upstream time step [29].

We take the following toy example to gain a more intuitive
view of (6) and (7). We consider two cascade sequences, s1

and s2, over 2 links, where

s1 =

[
1 1 1 1 1 0
1 1 0 0 0 0

]
, s2 =

[
1 1 1 0 0 0
1 1 1 1 1 0

]
.

We can observe that τ11 = 6 and τ21 = 4. For A11
21, we have

C1
2 (s1, τ11 ) = 2 and C11

21 (s1, τ11 ) = 2 in s1, and meanwhile
C1

2 (s2, τ21 ) = 3 and C11
21 (s2, τ21 ) = 2 in s2. According to (6)

and (7),

A11
21 =

C11
21 (s1, τ11 ) + C11

21 (s2, τ21 )

C1
2 (s1, τ11 ) + C1

2 (s2, τ21 )
=

2 + 2

3 + 2
=

4

5
,
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A01
21 =

C01
21 (s1, τ11 ) + C01

21 (s2, τ21 )

C0
2 (s1, τ11 ) + C0

2 (s2, τ21 )
=

2 + 0

3 + 0
=

2

3
.

C. Learning Weighted Influence Matrix D

Once {A11,A01} have been obtained, their values can be
substituted into (5) to form a reduced optimization problem
whose decision variables are only from D. We choose the
objective function f(·) to be the least square error function,
which induces the following convex quadratic programming.

min
D

1

K

K∑
k=1

Tk∑
t=1

M∑
i=1

(
ski [t+ 1]

−
M∑
j=1

dij(A
11
ji s

k
j [t] + A01

ji (1− skj [t]))

)2

s.t.
M∑
j=1

dij = 1, ∀i; dij ≥ 0, ∀i, j.

(9)

Note that the weighted influences on each link i
are independent of the influences on any other link j,
which further supports a problem decomposition into M
sub-problems. We can solve these small optimization problems
in parallel in practice to further reduce the training time.

D. Learning Bisection Thresholds {εi}Mi=1

The threshold value εi should be carefully selected;
otherwise it can easily induce large prediction errors. A naive
way is to set an universal εi = 0.5 for every link i. However,
this undifferentiated threshold value can easily incur wrong
predictions. For example in Fig. 2, the third row shows that
link 2 fails at the fourth time step. However, the fourth row
indicates that the predicted state value at the fourth time step
is 0.63 which is greater than 0.5. Thus, by (4) the state
of link 2 will be assigned to 1 instead of 0, misidentifying
the failure. To tackle this, we propose a scheme to estimate
the thresholds value {εi}Mi=1 adaptively according to different
initial contingencies. We summarize our adaptive threshold
selection scheme for a specific link i as follows.

Step 1: Identifying a threshold value of link i in a sample
sequence sk. Three situations can happen. 1) Link i fails
initially in the sample sequence sk. In this situation, there is no
way to know the threshold value. 2) Link i fails but not from
the beginning of the sample sequence sk. Then, we recursively
compute the estimated state variable s̃ki [t + 1] by assigning
s̃kj [t] to skj [t] on the right hand side of (1). The critical time
step where link i fails is determined. We choose the threshold
value for this sequence to be the intermediate value of the
estimated state at the critical time step and the estimated state
at its upstream adjacent time step. 3) Link i never fails in the
sample sequence sk. In this situation, we recursively compute
the estimated state variable s̃ki [t], and choose the threshold
value to be α× s̃ki [Tk] at the final time Tk, where α ∈ (0, 1)
can be selected arbitrarily. Fig. 2 shows the identification of
εi among these three situations by a toy example.

Step 2: Forming the threshold pool of link i from Strain.
For each link i, we compute the threshold value εki for every
sample sequence sk and collect them in a set Ωi.

Step 3: Selecting the threshold value of link i for a new
contingency. The basic idea is to select the threshold value
εi from the known threshold set Ωi such that the associated
known contingency is “closest” to the new contingency
denoted as snew[0]. The closest known contingency to snew[0]
is defined by†

k∗ = arg mink=1,2,··· ,K ||snew[0]− sk[0]||1 (10)

where k is the index of the known contingency; sk[0] is
the known contingency; snew[0] is the new contingency; and
||snew[0] − sk[0]||1 is the L1-norm, denoting the number of
links that have different initial states in snew[0] and sk[0].
Then, we select the threshold value ε̂i to be

ε̂i = εk
∗

i . (11)

Sometimes multiple solutions for k∗ exist for (10). We choose
ε̂i to be the median value among multiple options.

ε̂i = median{εki }k∈K∗ (12)

where K∗ is the optimal solution set of (10).

t

Link 1

0

Link 2

Link 3

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 1 1

0 0.45 0.36 0.29 0.28 0.26

1 0.78 0.71 0.67 0.63 0.62

1 0.91 0.85 0.80 0.77 0.76

No Way to 
Estimate!

(0.67+0.63)/2=0.65

0.8*0.76=0.608

[t]s1
~

1 2 3 4 5

[t]s2
~

[t]s3
~

Fig. 2: This is an example of determining thresholds on all 3 link
categories in a cascade sample. Each link representative has two rows
of records: the first row denotes the real state value at each time step,
while the second row denotes the iterative values of s̃i[t] for every
link i based on (1). For link 2 we set εk2 as the average of s̃2[4] and
s̃2[5], while for link 3 we set εk3 to be 0.8× s̃3[Tk] = 0.8× 0.76 =
0.608, where 0.8 can be replaced by any real value within (0, 1).

E. Overall Procedure

The overall procedure of learning the influence model
and using it for failure cascade predictions is presented in
Algorithm 1. Algorithm 1 consists of two parts: Learning
Influence Model Parameters (Step 1-5); Failure Cascade
Prediction (Step 6-11). In the learning part, step 1 uses the
Monte-Carlo estimation (6) and (7) to obtain the pairwise
influence matrices; step 2 learns the weighted matrix D by
the convex quadratic optimization (9); step 3-4 follow the
procedure in Section III-D to build the threshold pool from
the training set and step 5 selects the threshold value for each
link based on the given new initial contingency represented by
snew[0]. In the prediction part, step 7 to step 10 demonstrate
that given the new initial contingency, the prediction iteratively
calculates the intermediate state value s̃ based on (1) in step 8,
predicts the state of any link based on the selected threshold
value in step 9, and updates the predicted state and initiates

†Other ways to select the closest contingency is also possible.
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the prediction over the next generation in step 10, until no
new links predicted to be in a failed state.

The time complexity of the training framework is dominated
by the process of convex optimization (9) to learn D. We
explain this under a single training sample as follows. In the
learning module, the Monte-Carlo learning of A11 and A01

has time complexity O(M2T ) where M is the number of links
and T denotes the largest length of failure sequence in the
training sample pool. This is because both pairwise influence
matrices contain M2 elements, where each element represents
the influence from one link to another, and estimating each
element takes O(T ) as we need to traverse the state evolution
of the involved link pair as the example in Section III-B shows.
The convex optimization (9) can be solved by the conjugate
gradient method with time complexity O(M4), since the size
of variables n = O(M2) and thus the time complexity of
each iteration is O(M2). In addition, the conjugate gradient
method produces the exact solution after a finite number of
iterations, which is not larger than the size n = O(M2)
[38]. The threshold estimation has time complexity O(MT )
as it requires to traverse the state transition, with length
O(T ), of one of the M links to determine its threshold each
training sample. Fortunately, all these three operations can be
implemented in parallel to enhance the time cost in practice.

The prediction module costs much less, since it only
requires multiplication and addition manipulations. Such time
efficiency in prediction compared with flow calculation will
be numerically verified later in Section V.

Algorithm 1: Learning Approach and Failure Cascade
Prediction based on Influence Model

Input: Training Sample Pool Strain = {sk[t]}k=1,...,K
t=0,...,Tk

; New
Initial State snew[0].

Output: Weighted Influence Matrix D; Pairwise Influence
Matrices {A11,A01}; Sequence Prediction ŝnew.

// Learning Influence Model Parameters
1 Estimate A11 and A01 based on (6) and (7) respectively;
2 Learn D from the quadratic optimization (9);
3 Build the threshold set Ωi for each link i;
4 Find k∗ based on equation (10) and form the set K∗ containing

all k∗s;
5 Obtain ε̂i by equation (12) for each link i;
// Failure Cascade Prediction

6 t← 0;
7 while there are new links predicted failed at time t do

8 s̃new
i [t+ 1]←

M∑
j=1

dij(A
11
ji s

new
j [t] + A01

ji (1− snew
j [t]))

for each link i;
9 ŝnew

i [t+ 1]← 0 if s̃new
i [t+ 1] < ε̂i or ŝnew

i [t] = 0;
ŝnew
i [t+ 1]← 1 otherwise;

10 snew[t+ 1]← s̃new[t+ 1], t← t+ 1;

11 T ← t− 1;
12 return D, A11, A01, ŝnew.

IV. PERFORMANCE METRICS

To evaluate prediction performance via the proposed
learning framework, we consider two sets of metrics:
sample-based metrics and link-based metrics. Sample-based
metrics capture the prediction performance for each cascade

sequence samples in the test set, while link-based metrics
focus on the prediction on any specific link we are interested
in, for example the links connected to crucial infrastructures.

A. Sample-based Metrics

Sample-based metrics include‡:
Avg. Failure Size Error Rate lsize: lsize = 1

K

∑K
k=1 l

k
size,

where lksize is the failure size prediction error, relative to real
failure size, in the k-th test sample.

Avg. Final State Error Rate lf : lf = 1
K

∑K
k=1 l

k
f , where lkf

is the ratio of links whose final states are mistakenly predicted,
in the k-th test sample.

Avg. Failure Time Error lt: lt = 1
K

∑K
k=1 l

k
t , where lkt

is the failure time prediction error among all links that fail
eventually in the k-th test sample§.

Fig. 3 illustrates the way we calculate lksize, lkf , and lkt for
each test sample sktest and each link i. For lksize and lkf , we
use Venn graph, divided into four disjoint subsets A,B,C,D,
to show the calculation. Inside, A ∪C denotes the set of real
failures, B ∪C denotes the set of predicted failures, C is the
set of correctly predicted failures, while D represents links not
failed and meanwhile not predicted to be failed.
• For lksize, |Ak

size ∪ Ck
size| is the real failure size while

|Bk
size ∪ Ck

size| is the predicted failure size in sktest, and

lksize =

∣∣|Bk
size ∪ Ck

size| − |Ak
size ∪ Ck

size|
∣∣

|Ak
size ∪ Ck

size|
× 100%.

• For lkf , |Ak
f ∪Bk

f | is the number of effective links whose
final states we mistakenly predict in sktest, while |Ak

f ∪
Bk

f ∪Ck
f ∪Dk

f | denotes the number of effective links, and

lkf =
|Ak

f ∪Bk
f |

|Ak
f ∪Bk

f ∪ Ck
f ∪Dk

f |
× 100%.

For lkt , we take an example on a cascade sequence over 6
links that fail during the cascade. Each number in the first
row denotes the time step a link becomes failed, while each
number in the second row denotes our prediction on the time
step it fails¶.

We ignore counting in initially failed links in all the metrics.

B. Link-based Metrics

We consider four link-based metrics, and use an example to
explain them. Consider the final state of link i in 8 different
cascade sequences, say, [0, 1, 1, 0, 0, 1, 0, 1], where it fails
initially for the 4th cascade sequence only. Assume that our
prediction of its final states is [1, 1, 0, 0, 0, 0, 1, 0].

Link i Final State Prediction Error Rate lf,i: lf,i denotes
the ratio of incorrect final state prediction for link i among all
test samples except for samples that link i trips initially. In
the example, lf,i = 5/7 ≈ 71%.

‡For more explanations of these metrics, please refer to [29].
§In this paper, the failure time is discretized as time steps. For example, a

link fails at time step 3 while we predict it to be time step 5, then the failure
time prediction error is 5− 3 = 2. The adjacent two time steps can represent
some time interval length (e.g. 10 seconds or 5 minutes) in real systems.
¶If we predict a link to be normal, then the corresponding number in the

second row is our predicted termination time of this cascade.
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Fig. 3: An illustrative example of all metrics

Link i Final State Miss Detection Rate lmd,i: lmd,i

denotes the ratio of predicting link i to be normal among all
test samples that link i fails, except for samples that link i
trips initially. It reflects the ratio of failure misidentification.
In the example, lmd,i = 2/3 ≈ 67%.

Link i Final State False Alarm Rate lfa,i: lfa,i denotes
the ratio of predicting link i to be failed among all test
samples that link i is normal during the cascade process. In
the example, lfa,i = 3/4 = 75%.

Link i Time Prediction Error lt,i: lt,i denotes the average
failure time prediction error for link i among all test samples
that link i fails except for cases that link i trips initially.
Suppose in the above example, the time record of link i is
[2, 7, 8, 1, 5, 7, 4, 6] and our prediction is [3, 5, 9, 1, 4, 2, 7, 6],
then lt,i = 1

3 (|2− 3|+ |5− 4|+ |4− 7|) ≈ 1.67, as link i fails
in the cascade process only in the 1st, 5th, and 7th sample.

Compared with the sample-based metrics, link-based
metrics capture different prediction difficulties among different
links with different failure frequencies. The failure frequency
of link i is defined as the ratio of link i experiencing failure
during the cascade process among the training sample pool.
For example, if link i fails during the cascade process in
200 cascade sequences among the training sample pool of
1000 cascade sequences, then the failure frequency of link
i is 200/1000 = 20%. For the effect of failure frequency on
prediction accuracy, it is intuitive that a link that rarely fails
can induce a large lmd,i. Therefore, evaluating the prediction
performance on links with different failure frequencies can
deepen our understanding of the model and features in a very
detailed manner.

V. SIMULATION RESULTS

In this section, we conduct a numerical study of the
proposed method for failure cascade prediction on both the
DC flow and AC flow model, under the two sets of metrics.

A. Dataset Information

We apply the standard datasets in Matlab MATPOWER
toolbox [37]. We choose three systems as examples: 1354-bus,
2383-bus, 3012-bus. We use the provided transmission line and
generator values, and set capacity values which are not given

Linked failed at step 1
Linked failed at step 2

Linked not failed till step 5

Linked failed at step 3
Linked failed at step 4
Linked failed at step 5

Fig. 4: A cascade sequence generated by Algorithm 1

to be large enough such that the corresponding transmission
lines are free from cascading failure.

In our simulation we will vary the loading conditions, hence
for convenience we define as the power generation and loading
given by the dataset as the default setting for each system.
Table I presents the information for cascade samples in 3
systems under DC and AC flow and their default settings,
where #Eff. Rate is the portion of effective links, which have
ever experienced failure induced by the cascade process in
Strain. The data is calculated from 50, 000 cascade samples
from the total of N − 2 initial contingencies.

In our experiment, we consider at most 50, 000 cascade
sequence samples for training in each system. Note that the
ratio of the training samples compared with the set of all
possible N − 2 initial contingencies is very low, for example
in 1354-bus system, the ratio is 50, 000/

(
1710
2

)
= 3.4%, and

this ratio is even lower in larger systems.

TABLE I: Sample Information under DC and AC Flow

System Size 1354 2383 3012
Flow Model DC| AC DC| AC DC
#Generators 260 | 260 327 | 327 297

#Links 1710 | 1710 2886 | 2886 3566
#Eff. Links 762 | 1547 2088 | 2815 2083
Eff. Rate 45% | 91% 72% | 98% 58%

Avg. Fail Size 179 | 80.3 598 | 390 263
Max Fail Size 314 | 1292 862 | 2606 792
Min Fail Size 2 | 2 110 | 2 11

A typical failure cascade sequence generated by
Algorithm 1 fundamentally based on the influence model (1)
is shown in Fig. 4, which represents the 1354-bus under the
AC system with 1.5× default loading. Two lines are initially
tripped (bold brown lines) and the failure cascades propagate
to a broader regime. These failed lines are generally with low
capacity and high initial flow levels.

B. Performance Evaluation on DC Systems

In this part, we present the evaluation results under DC
flow model. We only present the results on link-based metrics,
where evaluations of sample-based metrics can be found in
[29]. For the link-based metrics, based on different ranges
of failure frequencies, effective links are grouped into 10
categories, ranging from (0, 10%] to (90%, 100%].
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Fig. 5: Results on each link for 2383-bus DC system with 1.5× default loading

Fig. 6: Results on each link for 3012-bus DC system with 1.5× default loading

Fig. 5 and 6 present the results on link-based metrics for
the 2383-bus and 3012-bus systems under the DC flow model.
We only present one loading condition for each system. Other
loading conditions lead to results with similar pattern. For
each system, the four subfigures represent the evaluation of
lf,i, lmd,i, lfa,i and lt,i. For all the metrics, we calculate
the average metric value among all the links in each failure
frequency interval, marked as asterisks in each subfigure.

Different sizes of the training sample pools are considered,
from 5,000 to 50,000, as shown in Fig. 5 by different
colors. As the sample pool increases, the prediction accuracy
is greatly improved. To demonstrate that our proposed
framework scheme captures the failure cascade features, we
compare it to two prediction methods that do not depend
on the influence model: the deterministic prediction and the
randomized prediction. The deterministic prediction is to
predict a link to be failed if its failure frequency is larger
than 50%, and to be normal if its failure frequency is smaller
than 50%. The randomized prediction is to predict a link to
be failed with probability equal to its failure frequency. These
two methods are to some extent naive since they determine
the final state of each link purely based on the link failure
frequency. We now explain the results in Fig. 5 and Fig. 6.

For lf,i, we highlight two observations. First, the prediction
error based on the trained influence model is lower than the
two commonly used methods among all the failure frequency
intervals. Second, with increasing number of training samples,
the average prediction error in each frequency interval
decreases, and it decreases most among links with failure
frequency around 50%, which are predicted with maximum
deviation by the two naive methods.

For lmd,i and lfa,i, they are “conjugate” metrics. By
comparing the two common methods with our prediction
mechanism, we can observe that the prediction based on
the influence model induces lower miss detection rate than
the randomized method. Meanwhile, links with higher failure
frequency leads to generally lower miss detection rate. This is

because such links have more failure records in the training set,
which instructs the model to predict these links to be failed.
For lfa,i, we have similar analysis but opposite results, where
links fail with high frequency generally lead to large false
alarm rate. Note that the deterministic prediction performs 0%
miss detection rate for links with failure frequency [0.5, 1].
However, for such links the deterministic prediction performs
100% false alarm rate, as it always predicts links with failure
frequency in [0.5, 1] to be failed in the final state. Therefore,
we cannot say that the deterministic prediction performs well
for links with failure frequency [0.5, 1]. This tells that we need
to combine the miss detection rate lmd and the false alarm rate
lfa together to judge and compare the performance.

For lt,i, we can find that the prediction error for links with
higher failure frequency is generally lower. The reason is that
links fail with high frequency feed more information about
its failure to the model. In addition, the prediction error for
links with lower failure frequency is large, as they tend to be
predicted to be normal, and whenever it happens, the time step
we predict is the termination time, and thus the error may be
very large if the truth is that this links fails very early.

Generally, the influence model trained in our proposed
scheme can overall achieve a better prediction performance
for each category of the links than the common prediction
methods, especially for those link categories that the common
methods will result in the maximum error.

C. Performance Evaluation on AC Systems

The evaluation over AC systems is similar to that in
DC systems. We consider both sample-based and link-based
metrics. We present the result over two systems: 1354-bus and
2383-bus systems, and in each system we consider two loading
conditions: 1.5× and 2× default loading for 1354-bus system;
1× and 1.25× default loading for 2383-bus system.

1) Sample-based metrics: Fig. 7 and 8 show the result of
the three sample-based metrics in the 1354-bus, and 2383-bus
system. The left column in each figure illustrates the metric
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values with increasing training samples. In the 1354-bus
system, we only consider at most 5,000 training samples
because the cascade pattern under the AC flow model in this
system is not complex so that 5,000 samples are enough to
reach a high quality prediction performance. In the 2383-bus
system, 30,000 samples are adequate to yield a high quality
prediction performance. In both systems, we can observe that
with more training samples, the decreasing trend is generally
over all the metrics, and the failure size prediction error rate
can be reduced below 4%, the final state prediction error rate
can be down to 10%, and the time prediction error is lower
than 1.25 time step units.
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Fig. 7: Results on lsize, lf , lt in order for 1354-bus AC system

The right column in each figure shows the cumulative
distribution function (CDF) of each metric when the largest
number of training samples are used in each setting. The result
informs us that most of the test samples can be predicted
within reasonable range. For the 1354-bus system, more than
90% of the test samples can have < 10% failure size error
rate; more than 70% can have < 5% final state error rate; and
more than 80% can have time prediction error within 1 step.
Such result is similar in the 2383-bus system.

2) Link-based metrics: Fig. 9 and 10 present the results
over link-based metrics in the 1354-bus and 2383-bus systems.
Similar to the trend in the DC flow cases, we find that
prediction based on the trained influence model is more
accurate than the deterministic and randomized methods, and
more training samples will reduce the error rate among all
these four metrics, especially for links whose failure frequency
is around 50% generally.
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Fig. 8: Results on lsize, lf , lt in order for 2383-bus AC system

Two additional issues should be noted. (i) No links have
failure frequency between 20% and 60% in 1354-bus system
under AC flow. (ii) The miss detection rate for links that fail
with low frequency may be even larger under more training
samples, because for these links, more training samples may
‘dilute’ the cases of the cascading failure.

D. Comparison between Prediction Performance DC and AC

We have presented the prediction results over DC and AC
flow models respectively. In this part we compare DC and AC
under the same network settings. The results for 1354-bus and
2383-bus systems are summarized in Table II. We can observe
that with enough training samples, generally the prediction
performance in AC power systems slightly outperforms that
in DC power systems. A few potential reasons may contribute
to this difference. First, the nonlinearity of the AC model
may render clustering of failure spots, leading to stronger
patterns than that of the DC model. Second, load sheddings
and generation curtailments in the AC model may be more
aggressive than that in the DC model because the existence
of AC power flow solutions is not guaranteed after an initial
small load shedding. Third, the threshold values in determining
link failures may be selected differently, causing different
predicting results. However, the exact reason is still elusive,
and can be one of the future research directions.
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Fig. 9: Results on each link for 1354-bus AC system with 2× default loading

Fig. 10: Results on each link for 2383-bus AC system with 1× default loading

TABLE II: Prediction Performance on DC and AC Systems

Metric
IEEE1354

(Loading ×1.5)
IEEE2383

(Loading ×1)
DC AC DC AC

lsize 3.9% 3.2% 3.1% 2.1%
lf 9.6% 7.7% 7.4% 6.0%
lt 0.91 0.32 0.81 1.2

E. Computational Efficiency

Next, we demonstrate the superiority of the influence
model based prediction framework to the power flow based
contingency calculation by CFS in computational time cost
reduction under both DC and AC flow models. We test both
methods in MATLAB 2019a on Intel(R) Core(TM) i9-7920X
CPU@2.90GHz Processor. In each setting, we run 1, 000 test
samples.

We summarize the results in Table III, where Tflow denotes
the computational time (in seconds) of the power flow based
method, TIM denotes the computational time of the influence
model based prediction method, and r =

Tflow

TIM
is the

improvement ratio. Results show that our method works better
in larger systems and under higher loading conditions that
tend to cause large failures. The result also suggests that the
proposed method reaches a large improvement ratio on the AC
systems because it avoids solving nonlinear equations.

TABLE III: Prediction Time Cost on 1,000 Samples

System Low Load High Load
Tflow TIM r Tflow TIM r

2383DC 2597 43.3 60 3603 34.7 104
3012DC 3891 59.4 66 5864 46.9 125
1354AC 5280 24.9 212 4950 23.5 211
2383AC 14498 34.4 421 29197 33.5 872

F. Structures of System-Wide Influence

Two interesting system-wide influence structures are
observed here. Firstly, the relative influence matrix D has a

sparse structure. For example, Fig. 11 shows the structure of
the D matrix for the 2383-bus system for both DC and AC
models. We define an influence to be visible from link i to j if
dji > 0.01. Then, the average numbers of visible links on each
link is 4.7 and 3.1 under the DC model and the AC model,
respectively. Such sparsity property of D promises lower time
cost and higher scalability of learning D in Section III-B.
Another observation in Fig. 11 is that in the DC model the
matrix D has a rough symmetric structure, indicating a mutual
influence between each pair of links. However, in the AC
model, most visible links are structured in columns, suggesting
a uni-directional influence from one link to other links.
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Fig. 11: Elements of D larger than 0.01 in 2383-bus system
under DC (left) and AC (right) flow model

VI. CRITICAL INITIAL CONTINGENCY IDENTIFICATION

In this section we propose a scheme to identify the critical
initial contingencies based on the influence model.

Intuitively based on (1), a link whose failure has enormous
negative effects on the whole system should greatly reduce the
intermediate state values s̃[t] of other links during the cascade,
as this will drag the value s̃i[t] down below the threshold
values εi for each link i with higher probability. Therefore, a
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natural idea to identify the links that may cause large failure
size, is to find the link j∗ such that

j∗ = arg max
j

M∑
i=1

τij = arg max
j

M∑
i=1

dij(A
11
ji −A01

ji ). (13)

where τij
4
= dij(A

11
ji − A01

ji ) represents the integrated
influence from link j to i based on (1), as it combines both
pairwise influences and the weights. When sj [t] turns from 1 to
0, the value of s̃i[t+1] is decreased by τij . We define the sum∑M

i=1 τij as the total influence of link j on the whole system.
Intuitively, the link j∗ with highest total influence value is the
link whose failure is most prone to cause large failures. We
can find the top-L links {jl}Ll=1 that maximize

∑M
i=1 τij . Any

N − k initial contingency among these L links has a better
chance to lead to a large failure size.

Based on this idea, we examine N − 2 initial contingencies
on the 1354-bus and 2383-bus systems under both DC and AC
power flow models. We sort the total influence value

∑M
i=1 τij

for each link j in an increasing order, as shown in Fig. 12 and
choose the 10 links with largest total influence values, to serve
as our critical link pool.

Fig. 12: Link indexes sorted based on total influence values
for 1354-bus and 2383-bus systems

In each setting of both systems, we use the training pool
Strain to obtain the empirical distribution of the failure
size, which is denoted as p0. In the critical link pool, we
enumerate all the combinations of N − 2 contingencies, and
find the empirical failure size distribution pmax. It involves(
10
2

)
many initial contingencies. Comparisons of p0 and pmax

are presented in Fig. 13 to 15. Besides, we plot our prediction
of failure size distribution in each figure as a supplement of the
performance evaluation metrics in Section IV-A. Results show
that our prediction can capture the pattern of the distribution
accurately in general, while it takes a more concentrated form
whose peak value is greater than the failure size distribution
obtained by the flow calculation.

Fig. 13 presents the results for both systems under DC
flow model. The blue bars represent p0, while the orange
bars represent pmax. We can observe that in both cases
the distribution of pmax has a heavy tail which tends to
concentrate on large failure size cases. pmax contains larger
failure sizes with higher frequency, which indicates that the
selection of the top-10 influential links by (13) tends to induce
larger failure sizes. Failure cascades with small sizes are rarely

observed from the contingencies selected in the top-10 critical
links for the DC model.
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Fig. 13: N − 2 contingency failure size distribution of Strain
and top-10 influential links in DC systems (Left: 1354-bus,
2× default loading; Right: 2383-bus 1.25× default loading)

Fig. 14 and Fig. 15 present the results over AC flow case
with different loading conditions for 1354-bus and 2383-bus
systems respectively. In both systems, the N−2 contingencies
selected from the top-10 critical links are more likely to induce
larger failure sizes than the contingencies randomly selected
from all the links.
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Fig. 14: N − 2 contingency failure size distribution of Strain
and top-10 influential links in 1354-bus AC system (Left: 1.5×
default loading; Right: 2× default loading)
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Fig. 15: N − 2 contingency failure size distribution of Strain
and top-10 influential links in 2383-bus AC system (Left: 1×
default loading; Right: 1.25× default loading)

Table IV presents the results in a more quantified manner.
For each of the six settings discussed above, we calculate the
ratio of N − 2 initial contingencies in the critical link pool
whose failure size is no smaller than the median (1/2-quantile)
value and 3/4-quantile value of the failure size in Strain. Such
ratios are denoted as γ1/2 and γ3/4 respectively. The reference
values are γ1/2 = 50% and γ3/4 = 25%. We can observe
that γ1/2 > 50% for all the settings, and for γ3/4, it largely
surpasses 25% in all the cases except ‘2383AC (1×)’. In fact,
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TABLE IV: γ1/2 and γ3/4 of all the six settings under our mechanism

Ratio Strain Critical Link Pool
All Systems 1354DC (2×) 1354AC (1.5×) 1354AC (2×) 2383DC (1.25×) 2383AC (1×) 2383AC (1.25×)

γ1/2 50% 68% 71.5% 55% 87.5% 78% 73.5%
γ3/4 25% 57% 66% 55% 67.5% 0% 60.5%

for this setting, shown in Fig. 15, we can show that its γ2/3 =
75.5%. The results verify that our mechanism works in broad
settings as well. In addition, the identification of critical initial
contingencies is purely based on the influence model trained
by our framework. Its time complexity is O(M2) and can be
implemented in parallel, which makes it favorable for large
scale system screenings compared with the methods in [3],
[26] which involves computing the matrix inverse with respect
to the link flow, whose time complexity is at least O(M2.373)
by the most efficient algorithm till now [39].

VII. CONCLUSION

In this paper, we study the failure cascades in power grids
by using the influence model. It is a flow-free approach
that can explicitly characterize system-wide influences on
each component. This influence information can be used
for efficient predictions of failure cascades and assist in
identifying the most critical initial contingencies.

To acquire the influence model of power grids, we proposed
a hybrid learning method which combines the Monte Carlo
method, a regression method, and an adaptive selection
scheme. It has polynomial time complexity, and each module
can be implemented separately in parallel. We applied this
method to obtain influence models for both the DC and
the AC large-scale power system examples. Four metrics
of prediction performances in different levels of granularity
have been proposed and tested on these examples. Numerical
results showed that the influence model learned from our
proposed method can achieve a good prediction accuracy in
all the metrics for both the DC model and the AC model.
A comparison between the influence model and an apposite
flow-model-based approach revealed that the influence model
can predict failure cascades in a much faster manner (at
least two orders of magnitude faster) with acceptable small
error rates. Thus, it is very suitable for screening severe
contingencies in large quantities. A further investigation on
the learned influence values revealed the critical information
of severe contingencies, which further helped us identify the
most critical initial link outages.

One of future research directions can explore the sparse
structure of the weighted matrix D. It can help further
accelerate the learning procedure, and abstract important
influence relationship in the system. Another important future
research direction is to improve the training structure to better
capture rare events. A possible approach could be using the
importance sampling to enhance the weight of the events with
lower occurrence frequencies. A broader application of the
influence model in other network systems is also promised
in the future, especially for interdependent systems such as
power-communication systems, etc.
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APPENDIX

A. Oracle of Cascade Sequence Generation

The CFS oracle [17] is summarized below.
1) Given the loading, compute the initial link flows.
2) Randomly initiate an N − k contingency (k initially

failed links) where k = 2 in our setting.
3) Detect all the islands (disconnected sub-graphs) that

appear. If the whole network is connected, then it can
be viewed as the only island.

4) For each island, specify a bus as the slack bus.
5) Re-balance the power in each island by either generation

curtailment or load shedding depending on whether the
supply exceeds the demand.

6) Recompute the link flows in each island.
7) Detect the newly overflowed links, remove them and

return to Step 3). Otherwise, terminate.
We use Newton-Raphson method to solve nonlinear

equations in AC power model in each island during cascade.
However, if it does not converge, we proportionally decrease
the power injection and loading until convergence [5].

B. Test Results on the RTS-96 System

In [36], different oracles for failure cascade are compared
under the standard RTS-96 3-area system model [40],
consisting of 73 buses and 120 transmission lines. Here we
validate the CFS oracle used in this paper to the existing
results presented in [36]. Fig. 16 illustrates the log-log plot
of the distribution of the number of outages among all the
N − 2 initial contingencies of transmission lines. It is closely
matched to the DC OPA and AC OPA curves in Fig. 4 of [36].
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Fig. 16: Distribution of number of outaged lines of the RTS-96
system under the CFS oracle in this work (log-log scale)

C. Brief Summary of the Settings of Tested Systems

All the data of three systems come from the MATPOWER
Toolbox [37]: (1) 1354-bus system (file: case1354pegase.m);
(2) 2383-bus system (file: case2383wp.m); (3) 3012-bus
system (file: case3012wp.m). The transmission line flow
capacity is defined as the rateA term in the data files. The
given generator capacities, power generation and load values
are regarded as the default values in our setting.
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