
Ad Hoc Networks 85 (2019) 131–144 

Contents lists available at ScienceDirect 

Ad Hoc Networks 

journal homepage: www.elsevier.com/locate/adhoc 

Learning algorithms for scheduling in wireless networks with 

unknown channel statistics 

� , �� 

Thomas Stahlbuhk 

a , ∗, Brooke Shrader a , Eytan Modiano 

b 

a MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02421, United States 
b Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, United States 

a r t i c l e i n f o 

Article history: 

Received 29 May 2018 

Revised 31 August 2018 

Accepted 16 October 2018 

Available online 17 October 2018 

Keywords: 

Wireless networks 

Network control 

Transmission scheduling 

a b s t r a c t 

We study the problem of learning channel statistics to efficiently schedule transmissions in wireless net- 

works subject to interference constraints. We propose an algorithm that uses greedily-constructed sched- 

ules in order to learn the channels’ transmission rates, while simultaneously exploiting previous obser- 

vations to obtain high throughput. Comparison to the offline solution shows our algorithm to have good 

performance that scales well with the number of links in the network. We then turn our attention to the 

stochastic setting where packets randomly arrive to the network and await transmission in queues at the 

nodes. We develop a queue-length-based scheduling policy that uses the channel learning algorithm as 

a component. We analyze our method in time-varying environments and show that it achieves the same 

stability region as that of a greedy policy with full channel knowledge. 
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. Introduction 

A major challenge in the design of wireless networks is the

eed to schedule transmissions so that the nodes in the network

an efficiently share the common spectrum. Nodes that are nearby

an interfere with one another, and, therefore, network controllers

ust choose simultaneous link activations that do not violate in-

erference constraints. Additionally, scheduling decisions must take

hannel state information into account. In many settings, it is not

ossible to know the channel in advance. The nodes can only

earn the channel statistics by transmitting on the channels and

sing receiver feedback to observe the results. Due to multi-path

ading and environmental interference, the channel state is often

ime-varying, and multiple observations are needed in order to ob-

ain an accurate estimate of the channel statistics. This introduces

 tradeoff between exploration and exploitation. The nodes may

ave to forgo scheduling those channels that, so far, have given
� Funding: This work was sponsored by NSF Grants AST-1547331 , CNS-1701964 

nd CNS-1524317 . This material is based upon work supported by the United States 

ir Force under Air Force Contract No. FA8702-15-D-0 0 01. Any opinions, findings, 

onclusions or recommendations expressed in this material are those of the au- 

hor(s) and do not necessarily reflect the views of the United States Air Force. 
� A subset of the material presented in this paper appeared in [1] . 
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he highest throughput in order to improve their understanding of

nder-observed channels. 

With perfect channel knowledge, it is well known that the max-

eight policy, first explored in [2] , provides a throughput optimal

cheduling scheme that activates edges based on queue length and

hannel conditions, subject to interference constraints. The max-

eight policy weights each edge by the product of its queue back-

og and channel rate and chooses a link activation that maximizes

he summation of weights in the set [3] . Depending on the inter-

erence constraints imposed on the network, this requires that the

ontroller solves a complex combinatorial optimization problem at

ach time step of the algorithm. 

A drawback of the max-weight policy is that it is heavily cen-

ralized and assumes that the network controller knows the queue

acklog at every edge in the network. For this reason, the use

f greedy scheduling methods have been explored in the litera-

ure [4–8] . Under these methods, at each time step, the activa-

ion set is chosen according to a greedy combinatorial algorithm.

n many settings, this construction can be performed in a dis-

ributed manner by the nodes of the network. The cost of using

reedy algorithms is that, in general, they are not able to guar-

ntee throughput optimality. However, under certain interference

onstraints, they can obtain network stability over a guaranteed

raction of the network’s throughput region. 

The aforementioned work assumes perfect knowledge of the

hannel conditions, which enables the combinatorial scheduling

roblem to be solved to optimality or approximation at each time

tep. However, in practice the channel conditions are not known a
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Fig. 1. Example graph G and its conflict graph G c . Edges that share a common node 

conflict and cannot be in the same activation set. 
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1 This constraint is called primary interference and is discussed in the following 

section. 
2 An independent set in a graph is a subset of the nodes such that no two nodes 
priori by the network and instead must be learned through inter-

action with the channel. In this work, we explore scheduling algo-

rithms for learning channel statistics while simultaneously adapt-

ing to stochastic traffic demand. We begin by exploring how com-

binatorial multi-armed bandit algorithms can be used to tradeoff

the exploration/exploitation requirements of channel learning and

scheduling. In particular, we explore the use of the Upper Confi-

dence Bound (UCB) method (see [9–11] ). Bandit algorithms are his-

torically evaluated using regret, which is defined to be the ex-

pected difference between the performance of an algorithm that

must learn the best action versus a method that knows the best

action a priori. It is well known that UCB obtains a regret that

grows sub-linearly over time [12] . In this work, we provide a sum-

mary of these results and provide novel contributions for several

combinatorial problems induced by scheduling constraints that

have been previously considered in the wireless networking litera-

ture. 

We then turn our attention to the problem of integrating learn-

ing algorithms into network controllers that must schedule acti-

vations to support stochastic traffic demand. To this end, we con-

sider the use of frame-based max-weight scheduling that uses UCB

methods to solve the exploration/exploitation tradeoff over the du-

ration of a frame. Frame-based scheduling has been previously

used to solve scheduling problems that are subject to Markov de-

cision processes [13–15] . The inspiration for this method is to al-

low a complex decision process to be embedded within the max-

weight framework. Over the length of a frame, the decision pro-

cess optimizes transmissions to meet a target, while the algorithm

changes the target at the frame boundaries to adapt to the arrival

processes. The existence of efficient methods for solving the deci-

sion process is therefore critical to the success of the algorithm.

Our proof of stability uses the sub-linear growth of regret over

time to prove negative drift over the frame boundaries. 

The use of learning algorithms in wireless systems has been

previously considered in the literature. In particular, learning algo-

rithms for channel access and contention resolution have been ex-

tensively analyzed (see [16–21] ). In this setup, the wireless nodes

can transmit on a set of shared channels in order to communicate

to a receiver. The nodes must then access the different channels

to both assess their capacity and effectively communicate, while

resolving contention with one another. This line of work was ex-

tended in [22–24] , where learning algorithms for channel access

with spectrum reuse were considered. 

In contrast, in the following, we consider ad-hoc networks that

are geographically dispersed. Ad-hoc networks are decentralized

wireless networks, that do not rely on pre-existing infrastructure

to establish communications, and have application to sensor net-

works and autonomous systems. In this setting, nodes must sched-

ule their transmissions; transmitters and receivers must be paired

with one another and interfering pairs must not be simultaneously

scheduled. The challenge in achieving this coordination is to deter-

mine which links to activate at any given time, as only a subset of

the links can be activated simultaneously. Additionally, this deci-

sion often must be made by a distributed method. This application

motivates our following analysis. 

The rest of this paper is organized as follows. Section 2 in-

troduces the wireless network model and learning problem. In

Section 3 , we provide a summary of previous results for the

closely related combinatorial multi-armed bandit problem. In

Section 4 , we provide a distributed, greedy algorithm for learn-

ing and scheduling. The algorithm’s performance relative to an of-

fline scheduler is analyzed in Section 5 . We then show how to

use learning algorithms for scheduling networks with stochastic ar-

rivals in Section 6 . Our results are then extended to a general class

of interference constraints in Section 7 . Simulation results are pre-

sented in Section 8 . 
s
. Network model and problem formulation 

We consider a wireless network modeled as a graph G = (N, E)

here N is a set of wireless nodes and E is a set of undirected

dges over which the nodes can communicate. The network oper-

tes over discrete time slots t = 1 , 2 , . . . , n for a finite time horizon

 . At each time t , the nodes can choose an activation set, M t ⊆E ,

f edges to communicate. The set of edges that can be simultane-

usly activated is limited by transmitter interference. In this work,

e consider activation sets that are limited by an underlying con-

ict graph. 

A conflict graph is denoted G 

c = (N 

c , E c ) and consists of a set

f nodes N 

c and undirected edges E c . For each edge in G (i.e., each

 ∈ E ) there is a corresponding node in N 

c . Then, for every two

dges in E that conflict, and thus cannot be simultaneously ac-

ivated, there exists an edge in E c between the nodes in N 

c that

orrespond to those two edges. The structure of the conflict graph

epends on the wireless technologies used at the nodes. 

In Fig. 1 , we show an example of a network and its conflict

raph. In this example, there are 5 nodes with 4 edges and no two

dges that share a common node may be activated at the same

ime. 1 On the left-hand side we show the graph and on the right

he corresponding conflict graph. Note that a valid activation set is

n independent set in the conflict graph. 2 

Given a conflict graph, each edge has a set of adjacent edges

hat it interferes with and therefore cannot be simultaneously acti-

ated with. We assume that the network knows the conflict graph

t the start of time and therefore does not need to learn which

airs of edges conflict. Let M denote the set of all activation sets

hat are permissible under the given conflict graph. 

Our objective is to choose at each time slot an activation set

hat maximizes the network’s throughput. To this end, we intro-

uce a variable w t ( e ) that indicates the capacity of edge e at time

lot t (i.e., the achievable data rate over the edge). At the start of

he time slot, the value of w t ( e ) is not immediately known to the

etwork. If edge e is included in the activation set M t , then the

odes adjacent to e can access the link, observe the channel’s in-

tantaneous state, and communicate at rate w t ( e ). Thus, activating

et M t yields a reward equal to 
∑ 

e ∈ M t 
w t (e ) . Due to fading and ex-

ernal interference, w t ( e ) is time-varying. In this work, we assume

 t ( e ) fluctuates over time as an i.i.d. random process with mean

 (e ) . This model encompasses Bernoulli random failures as a spe-

ial case. Note that edge weights in the same time slot can be cor-

elated (e.g., if the same external interference signal impacts mul-

iple edges). 

Now, if the means of the variables w t ( e ) were known by the

etwork a priori, then an optimal policy would choose to activate
hare a common edge. 
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t every time slot the activation set 

 

∗ � arg max 
M∈M 

∑ 

e ∈ M 

w (e ) . (1)

owever, the statistics of w t ( e ) are usually not known at the start

f time and must instead be learned through observation. This in-

roduces an exploration/exploitation tradeoff, where the network

ust simultaneously learn the rates of its edges and use this

nowledge to transmit data. 3 Moreover, the value of w t ( e ) is only

bserved by the nodes that are adjacent to edge e and must be dis-

eminated across the network in order to compute M 

∗. In many ap-

lications, this network-wide coordination is impractical. To over-

ome this, the activation set can be sub-optimally constructed via

 distributed, greedy method. We further discuss this below. 

.1. Notation and additional assumptions 

Before continuing we provide some additional notation that will

e used in the following sections. Without loss of generality, each

dge reward is normalized so that w t ( e ) ∈ [0, 1]. For each edge e ,

e use N (e ) to denote the set of edges adjacent to e in the net-

ork’s conflict graph (i.e., e ’s neighborhood ). For now, we assume

ny two edges that are adjacent in the conflict graph do not have

he same expected edge weight. This assumption is mild. Since the

xpected edge weights are real numbers, we would in general ex-

ect that no two weights have exactly the same mean. Then, N (e )

an be partitioned into two sets: a superior neighborhood 

 

s (e ) � { e 0 ∈ N (e ) : w (e 0 ) > w (e ) } 
nd an inferior neighborhood 

 

i (e ) � { e 0 ∈ N (e ) : w (e 0 ) < w (e ) } . 
ote that e 0 ∈ N 

s (e ) if and only if e ∈ N 

i (e 0 ) . 

For any two edges e, e 0 ∈ E define the expected difference be-

ween the edges’ weights (referred to as gap ) to be �e,e 0 � w (e 0 ) −
 (e ) . Furthermore, define the minimum gap between two adjacent

dge weights in the conflict graph to be 

min � min 

e ∈ E,e 0 ∈N s (e ) 
�e,e 0 . 

ote that by its definition, �min ∈ (0, 1]. 

. Scheduling with uncertain channel statistics 

The above problem of Section 2 can be seen as a subset of

he combinatorial multi-armed bandit problem first considered in

25] . In the combinatorial bandit problem, a decision maker has

ccess to a set of elements that each offer an amount of reward

hat varies over time according to an i.i.d. random process with un-

nown mean. At each time step, a subset of the elements can be

hosen subject to a known combinatorial constraint. 4 The individ-

al rewards of each element in the chosen subset is then revealed

o the decision maker and the total aggregate reward of the subset

s collected. The rewards that would have been obtained from all

lements not in the chosen subset remain hidden. 

The combinatorial bandit problem could be solved inefficiently

y simply using the classical multi-armed bandit framework [12] .

his approach would declare each subset that is admissible under

he combinatorial constraint to be an arm in the multi-armed ban-

it problem. Then the selection of combinatorial subsets could be

ecided using classical multi-armed bandit policies (e.g., [9–11] ),

here the aggregate reward of the chosen subset would serve as
3 We concretely describe how to apply our results to networks with stochastic 

rrivals, where queueing dynamics must be considered, in Section 6 . 
4 Note that the interference graph in our problem specifies a pairwise-exclusive 

ombinatorial relationship. 

c

n

n observation for the associated arm. The problem with this ap-

roach is that it does not exploit the fact that subsets that share

lements reveal information about one another [25] . For example,

n our problem of the previous section, for an edge that is a mem-

er of two different activation sets, activating that edge in either

et reveals partial information about the performance of the other.

Therefore, in [25] , policies that assign weights to each indi-

idual element and then select subsets based on these individual

eights were proposed. In [25] , it was shown that such policies

an have a regret that is logarithmic in time and polynomial in

he combinatorial problem’s size. In contrast, inefficient policies

hat assign weights to combinatorial subsets can have a regret that,

hile still logarithmic in time, is exponential in the combinatorial

roblem’s size. Subsequent work in [26–28] has yielded improved

ounds that, while still having a logarithmic dependence on time,

ave a decreased polynomial order on the problem’s size. Further-

ore, [27] provides a gap independent bound on the regret as well.

The above works provide a fairly complete solution for the

ombinatorial multi-armed bandit problem. However, one direc-

ion that is less well explored in the literature is the behavior

f greedy, sub-optimal algorithms when applied to combinatorial

ulti-armed bandits. Greedy algorithms are of special interest in

ireless networking as they can often be easily implemented by a

istributed process. 

Greedy algorithms for solving combinatorial multi-armed ban-

its where the combinatorial constraint had a matroid structure

ere explored in [29,30] . However, most interference constraints

onsidered in the wireless networking literature do not induce ma-

roid constraints on the activation sets. In [31] , the performance of

reedy methods applied to general combinatorial bandit problems

as analyzed with respect to the offline greedy solution. In that

ork, it was shown that regret scales with, at most, the number

f incorrect decision branches that may be followed before arriv-

ng to the greedy solution multiplied by the cost that is incurred

y following the wrong decision branch. This result holds for gen-

ral combinatorial structures. In this work, however, our focus will

e on combinatorial constraints that have a pairwise-exclusive re-

ationship through a conflict graph, which is a standard model for

ireless networks [32] . By focusing on these constraints, we will

e able to derive improved bounds. 

In the following sections, we will derive regret bounds on

he performance of greedy algorithms for learning activation sets,

here each set is constrained to be an independent set in a con-

ict graph. We begin our analysis by specifically focusing on the

ase of primary interference. By doing so, we will derive insights

hat facilitate analyzing more complex interference models, which

ill be done towards the end of the paper. 

Under primary interference, each wireless node in the network

s constrained to transmit to or receive from at most one other

ode in the network (i.e., no node can engage in communication

ith multiple nodes at a given time). This constraint captures the

ehavior of ultra-wideband and spread spectrum communications

nd has been extensively used to model wireless networks in the

iterature [33–35] . Under the primary interference constraint, each

ctivation set must be a matching in the network’s graph. 5 Then,

sing the notation of the previous section, M t would correspond

o the matching chosen at time t by the controller and M would

enote the set of all matchings. 6 

Given the objective of (1) , at each time step, the controller

eeks to activate the Maximum Weighted Matching (MWM) in the

raph (i.e., the matching whose expected sum rewards is maxi-
5 A matching is defined to be a set of edges such that no two edges share a 

ommon node. 
6 Note that under primary interference, N (e ) is the set of all edges that share a 

ode with edge e ∈ E . 
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Fig. 2. Greedy Maximal Matching (GMM) Algorithm [36] . 

Fig. 3. Online Learning Algorithm. 
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mum over all other matchings). However, in this work we will

focus on algorithms that, rather than finding a MWM, will use

greedy methods to construct a Greedy Maximal Matching (GMM).

A GMM is constructed, starting from an empty set, by adding the

next best edge to the matching until no further edge may be added

without violating the matching constraint. It is well known that

any GMM is a 1 
2 -approximation of the MWM [36] and that a GMM

can be found via distributed algorithms. In Section 4 , we present

an algorithm for learning GMMs. The regret performance of the al-

gorithm is analyzed in Section 5 . In Section 6 , we show how the

distributed algorithm can be combined with frame-based schedul-

ing to control networks with stochastic traffic demands. 

In Section 7 , we consider more general conflict graph con-

straints. Under these constraints, the activation sets correspond to

the independent sets of the conflict graph. We will specifically con-

sider networks that are parameterized by an interference degree,

χ . The interference degree of the graph is defined as follows. For

each e ∈ E , define 

χ(e ) � max 
M∈M 

| N (e ) ∩ M | . 
Then the interference degree of the entire graph is given by 

χ � max 
e ∈ E 

χ(e ) . 

Throughout the rest of this paper, we assume χ > 0 since other-

wise the problem is trivial. It is well known that greedy methods

achieve a 1 
χ -approximation of the maximum weighted set when

applied to a conflict graph with interference degree χ . 7 Wire-

less networks parameterized by different interference degrees have

been considered in the literature. (See [32] , which examines sev-

eral interference models and gives the corresponding interference

degree.) In Section 7 , we derive regret bounds for greedy learn-

ing algorithms applied to networks with interference degree con-

straints. 

4. Learning greedy maximal matchings 

In this section, we present an algorithm for learning the edge

weights and scheduling activation sets under the primary interfer-

ence model. Recall that under primary interference, each chosen

activation set M t must be a matching in the graph. The learning

algorithm will be analyzed in the following sections. Our presen-

tation will proceed in two parts. In Section 4.1 , we present a high-

level view of a method that can construct a GMM in the graph

and discuss how it can be implemented in a distributed manner

across the nodes of the network. We then subsequently present in

Section 4.2 a learning algorithm that constructs greedy maximal

matchings as a subroutine. 

4.1. Greedy maximal matching 

In this subsection we discuss greedy maximal matchings and

briefly review the distributed method of [37] for constructing

them. 

For a given graph G and edge weight function W : E �→ R , the

GMM is the matching constructed by the myopic policy that, start-

ing with a base empty set, iteratively adds the next best edge to

the matching until no more edges can be added without violating

the matching constraint [36] . See Fig. 2 . The algorithm maintains

a set of candidate edges E ′ that can be added to M . At each step,

the algorithm selects a locally heaviest edge in E ′ to add to M . An

edge is termed locally heaviest in E ′ if it does not have a neighbor

e 0 ∈ N (e ) ∩ E ′ such that e 0 has a greater weight than e . After an
7 Note that under primary interference χ = 2 . 

o  

M  

t  
dge is added to the matching, the algorithm removes the neigh-

ors of that edge from E ′ since they may no longer be added to

 without violating the matching constraint. This process contin-

es until E ′ is empty. In [37] it is shown that this algorithm can

e easily implemented in a distributed manner. This is achieved

y having each node iteratively choose its best unmatched neigh-

or to match with. An edge then enters the matching when two

eighbors choose one another. In [37] it is shown that this method

onverges with each node sending at most one message over each

ncident edge and thus has low control overhead. 

We define the offline solution to be the GMM, M 

o , that is found

y a method that knows the average edge rewards w (e ) and uses

hese values as the edge weights W in the GMM algorithm. An im-

ortant result from [36] is that ∑ 

 

o ∈ M 

o 

w (e o ) ≥ 1 

2 

∑ 

e ∗∈ M 

∗
w (e ∗) . (2)

hat is, the GMM is guaranteed to achieve at least 1 
2 the reward

f the optimal matching. Since we assume no two adjacent edges

ave the same average reward, it can be shown that the GMM is

nique (i.e., the algorithm will only return M 

o for the offline so-

ution). However, as noted in Section 2 , in general a network will

ot know the average rewards w (e ) a priori and must instead es-

imate these values from observations. In the following subsection,

e present an online learning algorithm for choosing matching M t 

t time t that uses the GMM algorithm as a subroutine. 

.2. Online learning algorithm 

We now present the online learning algorithm that uses previ-

us observations of edge rewards in order to choose a matching

 t at each time t (see Fig. 3 ). The algorithm maintains at time t

wo sets of variables: T t ( e ) and 

̂ w t (e ) , where T t ( e ) is the number
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shown in solid lines, and online solution M t is shown in dashed lines. 
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l  
f times edge e has been chosen to be in the graph matching up

o time t (i.e., the number of times the edge’s weight has been ob-

erved), and 

̂ w t (e ) is the sample mean of the observations. 

At each time t , the algorithm calculates the Upper Confidence

ound (UCB) weight [11] for each edge: 

 t (e ) � 

̂ w t (e ) + 

√ 

2 log t 

T t (e ) 
. (3)

hese weights are then used to construct a GMM M t as shown in

ig. 2 . If an edge e is chosen to be in M t , the edge is activated by

ts adjacent nodes and its weight w t ( e ) is observed by these nodes.

hen, ̂ w t+1 (e ) and T t+1 (e ) are updated to reflect this new observa-

ion. All other edges not in M t have their corresponding variables

nchanged. 

We assume U t ( e ) is defined on the extended real number line

nd takes the value infinity when T t (e ) = 0 . Then in the construc-

ion of matching M t , edges that have not yet been observed are

iven preference over edges that have been observed. It is clear

hat by time t = | E| + 1 every edge will have been observed at

east once. 

The above online learning method is easily made distributed.

n the distributed implementation, each node maintains local vari-

bles ̂ w t (e ) and T t ( e ) for each of its adjacent edges, and uses the

CB weights to distributively obtain a GMM. Then the nodes that

re adjacent to an edge in the matching will activate the edge, ob-

erve the resulting reward, and update their internal variables ac-

ordingly. 

. Performance analysis under primary interference 

We evaluate the performance of the online learning algorithm

f Fig. 3 by comparing it to the offline solution. In general, we ex-

ect that as time advances, the sample means ̂ w t (e ) used by the

lgorithm will converge to w (e ) , and, thus, the sequence of match-

ngs M t will approach M 

o . In this section, we analyze the difference

n the rewards obtained by the online and offline solution during

his process. 

We define the regret between the offline and online algorithms

s 

 

o (n ) � E 

[ 

n ∑ 

t=1 

( ∑ 

e o ∈ M 

o 

w t (e o ) −
∑ 

e ∈ M t 

w t (e ) 

) ] 

. (4)

his metric evaluates the expected cost incurred by the online al-

orithm’s need to learn the edge weights, and is a commonly con-

idered metric in the stochastic multi-armed bandit literature (see

12] ). We proceed to analyze this regret by first upper bounding

ts value. We then provide a lower bound on the regret that is

symptotically tight in the problem’s parameters. Our analysis will

how that the online learning algorithm efficiently learns the of-

ine GMM. 

.1. Regret bounds 

We begin our discussion by first establishing several relation-

hips between the offline solution M 

o and online solution M t . An

mportant observation, noted in [35] , is that given two maximal

atchings M t and M 

o on graph G , the union of the matchings’

dges ( M t ∪ M 

o ) form a set of connected components (see Fig. 4 ).

ach connected component is either: (1) a single edge between

wo nodes, (2) an even-length ring of alternating edges in M t and

 

o , or (3) a path of alternating edges [35] . From this we see that

f an edge is in M t but not M 

o (i.e., set M t − M 

o ), then it must be

djacent to at least one but no more than two edges in M 

o . The

nalogous statement applies to those edges in M 

o − M t . Using the

bove, we give, in Lemmas 1 and 2 , two important relationships
etween M t and M 

o . Note that these lemmas follow from the anal-

sis of greedy algorithms for graph matchings and are provided

ere for completeness. 

emma 1. For all e ∈ M t , either 

1) e ∈ M 

o , or 

2) ∃ e o ∈ M 

o ∩ N 

s (e ) . 

roof. If e ∈ M 

o then by the definition of a matching, no adjacent

dge to e may be in M 

o . Thus, if (1) is true (2) cannot be. 

Now, assume e �∈ M 

o . Consider the offline solution M 

o con-

tructed by running the algorithm in Fig. 2 with edge weights

 (e ) . By the algorithm’s definition, in the iterative construction of

 

o , e was removed from E ′ when one of its neighbors e o became

ocally heaviest (implying w (e o ) > w (e ) ) and entered the matching

 

o . Thus, (2) is true. �

An immediate consequence of Lemma 1 is that an edge e ∈ M t 

an be adjacent to at most one edge in M 

o with an expected edge

eight that is less than e ’s expected weight. Given the above, we

roceed with the following analogous lemma. 

emma 2. At each time t and edge e o ∈ M 

o , either 

1) e o ∈ M t , or 

2) ∃ e ∈ M t ∩ N (e o ) such that U t ( e ) ≥ U t ( e 
o ) . 

roof. The online algorithm constructs the matching M t via the

ame method as the offline algorithm, except the online algo-

ithm uses the UCB variables U t ( e ) as edge weights instead of

he expected edge weights w (e ) as in the offline algorithm. Thus,

he result follows from a simple modification of the proof of

emma 1 . �

Now, consider the edges sorted in descending order based on

ean rewards w (e ) . If the sorting based on UCB weights U t ( e ) pre-

erves this order, then the online and offline matchings will be

qual. However, errors emerge when the UCB weights swap the

rder of two adjacent edges in the graph. Complicating matters,

hether an edge is or is not added to M t cannot be concluded sim-

ly by determining whether its UCB weight places it out-of-order

ith respect to its neighbors. 

For example, consider an edge e �∈ M 

o . This edge may have en-

ered M t because its UCB weight falsely indicated that it had a

igher mean reward, w (e ) , than a neighboring edge e o ∈ M 

o that

hould have been added instead. This can be thought of as a lo-

al inaccuracy in the UCB weights. However, e may also have been

laced in M t because its superior neighbor e o was prevented from

ntering the matching by a local inaccuracy e o had with one of its

ther neighbors. Then, since e o was excluded from M t , e was pro-

oted into the matching. 

From the above, one can see that a local error can propa-

ate through the graph. Indeed, the difference between the two

atchings in Fig. 4 could be caused by only two out-of-order UCB

eights. For greedy algorithms in arbitrary combinatorial prob-

ems, this behavior could be very problematic; a single mistake
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Fig. 5. A single connected component in the graph used for Theorem 3 . 
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could set the greedy policy down a path where it accrues very

large regret that grows with the number of elements in the com-

bination. However, the above lemmas can be used to show that

although a single, unrepresentative UCB weight can cause M t to

look very different from M 

o , the amount of regret that is accrued

is constrained to the cost of the original mistake. This allows us

to bound the regret using the following theorem. The proof is pro-

vided in Appendix A . 

Theorem 1. 

R 

o (n ) ≤∑ 

e ∈ E 

( ∑ 

e o ∈ M 

o ∩N s (e ) 

w (e o ) 

(
8 log n 

�2 
e,e o 

+ 

π2 

3 

)) 

+ 

| N|| E| 
2 

(5)

which implies the following asymptotic bound 

lim sup 

n →∞ 

R 

o (n ) 

log n 

≤ 16 

| E| 
�2 

min 

. (6)

Note that (6) follows by bounding w (e ) by 1 and �e,e o with

�min in (5) . To give intuition, note that the summations in (5) in-

clude every edge e and its (no more than two) superior neighbors

in M 

o . These are the boundaries where regretful decisions can be

made. However, given the mistake, the resulting expected regret

accounted for in the summation is a value that depends only on

the time horizon n and local edge weights. As a result, (6) shows

that, asymptotically in n , the expected regret grows at most lin-

early with the number of edges in | E |. 

Furthermore, it can be shown that the number of times that

M t does not equal M 

o is bounded asymptotically by the following

theorem. 

Theorem 2. The expected number of time slots during which the

online learning algorithm does not select M t to be equal to M 

o is

O (log n ) . 8 

The proof of Theorem 2 can be found in Appendix B , and we

will use the result to construct a lower bound on the regret of the

online algorithm. 

The right-hand side of (6) scales linearly with the number of

edges in the graph and 

1 

�2 
min 

. For UCB methods in stochastic multi-

armed bandits, it is well-known (cf., [12, Theorem 2.1] ) that there

exists an upper bound on regret that scales inversely proportional

to the minimum difference between two arms. Thus, a reason-

able question is whether we could improve the bound of (6) with

a bound that scales linearly with 

1 
�min 

. In the following, we will

show that there exists a graph G and distribution on edge weights

w t ( e ) where the regret of the online learning algorithm has the

same scaling behavior as in (6) . Thus, the above bound is tight in

its parameters. 

Next, we provide an instantiation of graph G and edge weights

w t ( e ) such that there exists a lower bound on R o ( n ) that has the

same dependence on �2 
min 

and | E | as (6) . We begin with the theo-

rem statement. 

Theorem 3. There exists a graph G and specified edge weights such

that for the online learning algorithm 

lim inf 
n →∞ 

R 

o (n ) 

log n 

≥ 1 

24 

| E| 
�2 

min 

. (7)

To this end, consider a graph G composed of a set of | E| 
3 con-

nected components as shown in Fig. 5 . (Each component is dis-

connected from the others.) The weights of every edge in the
8 For two functions f ( n ) and g ( n ), we denote f (n ) = O ( g(n ) ) if ∃ n 0 and β > 0 such 

that | f ( n )| ≤β| g ( n )| for all n ≥ n 0 . 

t  

e  

s  

r

raph are drawn from a Bernoulli distribution. For each connected

omponent, the exterior edges, e ext 1 and e ext 2 , are perfectly cor-

elated (i.e., at each time t have the same realization) and take

he value 1 with probability 0.5. Likewise, for each component, the

eight of the interior edge, e int , is independent of the exterior edge

eights and takes value 1 with probability 0 . 5 − � for some con-

tant �∈ (0, 0.5). Then, using Theorem 2 which guarantees that,

or any graph instantiation G and edge weight distributions, all

atchings not equal to M 

o are chosen O (log n ) times in expectation

nd applying a well known result for multi-armed bandits (see [12,

heorem 2.2] ) gives the theorem. The complete proof can be found

n Appendix C . 

It is important to note that Theorem 3 applies only to the al-

orithm in Fig. 3 and is not meant to bound the regret for ev-

ry possible policy. The theorem results from the fact that the on-

ine learning algorithm aggressively targets finding M 

o , choosing all

ther matchings O (log n ) times. This comes at a cost. It drives the

lgorithm to include in the matching an edge that has slightly bet-

er expectation than two of its potential neighbors, even if choos-

ng those two neighbors in combination is clearly the better option

n terms of reward. This leads to the �2 
min 

term in the denomina-

or of (7) . 

.2. Simulation of the learning algorithm’s convergence 

To illustrate the above results, in Fig. 6 we show the per-

ormance of the online learning algorithm on a 4 × 4 grid with

ernoulli rewards on each edge. The graph is pictured in Fig. 6 (a),

here each edge is labeled with its mean reward w (e ) . The offline

atching M 

o is shown in solid lines. Note that M 

o is not equal to

he MWM for this problem. In Fig. 6 (b) the average regret R o (n ) 
n 

s shown to be decaying to zero with the time horizon n as the

equence of matchings M t settle on M 

o . Note that in this exam-

le the average regret approaches zero from above. However, since

n general M 

o � = M 

∗, this is not always the case, and it is not hard

o construct problem instantiations where the average regret be-

omes negative and approaches zero from below. This can occur

hen there is a matching near to M 

o that outperforms the GMM. 

In Fig. 6 (c), we show the rate at which four different edges, la-

eled 1 through 4 in Fig. 6 (a), are selected to be in matching M t 

ver time horizon n (i.e., T n (e ) 
n ). As would be expected, those edges

n M 

o approach 1 with increasing n , and those outside of M 

o ap-

roach 0. We note that the online algorithm has an easier time dis-

erning that edge 2 should not be in the GMM than it does edge 3.

his is because edge 2 has a large gap between its average reward

nd the average reward of its neighbors in M 

o . 

. Stochastic network control 

We now turn to the problem of learning channel conditions

n order to control networks with stochastic traffic demands. In

his section, we will continue to focus on the primary interfer-

nce model and the learning algorithm of Fig. 3 . At the end of this

ection, we address other interference models and learning algo-

ithms. 
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Fig. 6. (a) Graph with edge set in light dots; edges labeled with their mean rewards 

w (e ) . Matching M 

o is shown in solid lines. (b) Average regret accrued over the time 

horizon n . (c) Fraction of time slots that labeled edges are chosen to be in matching 

M t . Plots are averaged over 100 pseudo-random runs. 
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9 The UCB weights consider time to be “restarted” at the beginning of each frame. 

Thus, for frame k , U t (e ) � ̂

 w t (e ) + 

√ 

( 2 log ( t k − t + 1 ) ) /T t (e ) . 
Time is slotted and indexed as t = 1 , 2 , . . . . Let A t ( e ) denote the

umber of packets that arrive to the network at time t to be trans-

itted over edge e . All traffic is single-hop and, for simplicity, we

ssume traverses the edge in a single direction. Extensions to ac-

ommodate bidirectional and multi-hop traffic can be derived from

ur results. We consider A t ( e ) to be a Bernoulli process with rate

( e ). We denote the vector of arrivals � λ ∈ R 

| E| 
+ . Upon arrival, pack-

ts wait in a queue until successfully transmitted over the edge.

enote the queue backlog at time t as Q t ( e ). 

We let c t ( e ) ∈ [0, 1] be the number of packets that can traverse

dge e at time t and assume this process is i.i.d. with mean c (e ) .

hen c t ( e ) ∈ (0, 1), we allow for a fraction of a packet to be trans-

itted. Note that in the previous sections we used w t ( e ) to denote
n edge’s throughput and it was this edge weight that our online

lgorithm was focused on learning. In this section, w t ( e ) will be

sed to denote a normalized edge capacity as defined below. Im-

ortantly, as above, w t ( e ) will be the edge weight that is learned

y our algorithm. However, as opposed to the previous sections,

he results of this section do not require that adjacent edges have

ifferent average weights. 

At time t , the network can activate an activation set M t of

dges. Then, the queue backlogs evolve according to the following

pdate equation: 

 t+1 (e ) = 

{
max { Q t (e ) − c t (e ) , 0 } + A t (e ) if e ∈ M t 

Q t (e ) + A t (e ) if e �∈ M t 

 queue is defined to be rate stable if [3] 

lim 

→∞ 

Q t (e ) 

t 
= 0 , with prob. 1 . 

hen, our objective is to design a scheduling policy that stabilizes

ll queues in the network. For a given graph G and average ca-

acities c (e ) , we let � denote the stability region of the network.

ecall that the stability region is defined to be the set of all ar-

ival rate vectors, � λ, that permit a scheduling policy that can rate

tabilize the queues. 

The max-weight policy that at each time t weights each edge

y Q t (e ) c (e ) and then schedules the MWM in the graph, is known

o stabilize any arrival rate vector interior to � [3] . If instead of

cheduling a MWM, a GMM is scheduled at each time step, then

rom [4,5] , any arrival rate vector interior to �
2 can be stabilized.

i.e., The set � λ such that 2 � λ is interior to �.) In the proceeding,

e refer to this latter policy as the offline GMM scheduler . To di-

ectly implement the offline GMM scheduler, the nodes must know

ean capacities c (e ) . Since these quantities are not known a pri-

ri, we proceed to describe a learning algorithm that can stabilize

he same �
2 throughput region. Our method will use the online

earning algorithm as a component. 

We propose a frame-based scheduling policy to stabilize the

etwork. Our method partitions time into frames of length n time

lots, where frame k ∈ N begins at time slot t k = (k − 1) × n + 1 . At

he start of each frame, a snapshot of the queue backlogs Q t k 
(e )

s taken. Then, over the duration of each frame, the policy sched-

les a sequence of matchings M t using the algorithm in Fig. 3 . 9 

owever, rather than observing the edge capacities directly as in

ection 4 , the online learning algorithm uses the following normal-

zed observations: 

 t (e ) � 

Q t k (e ) c t (e ) 

max e ∈ E Q t k (e ) 
. (8) 

ote that (8) is the (normalized) product of the queue backlog at

he start of the frame with the edge capacity that is observed by

ctivating edge e at time t . If max e ∈ E Q t k 
(e ) = 0 , we set w t ( e ) � 0.

ince, c t ( e ) ∈ [0, 1], w t ( e ) ∈ [0, 1] as well. Furthermore, it is easy to

ee that, when max e ∈ E Q t k 
(e ) � = 0 , the average edge weight condi-

ioned on Q t k 
is given by 

 (e ) = 

Q t k (e ) c (e ) 

max e ∈ E Q t k (e ) 
, (9) 

nd it is this value that the online learning algorithm is estimat-

ng with its UCB weights. In this section, two adjacent edges are

llowed to have the same mean weight w (e ) . Over each frame, the

bjective of the learning algorithm is to converge to the GMM that

ould be constructed using edge weights w (e ) (i.e., the offline so-

ution). 
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Fig. 7. Average queue backlog for the online learning algorithm with varying frame 

size n and the offline GMM scheduler operating on a 4 × 4 grid with uniform ar- 

rival rate λ to each edge. 

Fig. 8. Markov chain for time-varying channel state. When in a given state, the 

edge has Bernoulli rates with the labeled mean. 
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10 This asymptotic bound holds when there exists a pair of adjacent edges in the 

graph such that the edges do not have the same expected weight. Then, �min is 

defined to be the minimum of the gaps not equal to zero. Otherwise, we can replace 

the asymptotic bound with 0. 
We now analyze the stability of the frame-based policy. Assume

the arrival vector is interior to the GMM throughput region (i.e.,
�
2 ). This implies there exists a scalar ε > 0 such that � λ + ε�

 1 ∈ 

�
2 

where � 1 is the vector of all ones. For each frame k , define the

Lyapunov function L (t k ) � 

1 
2 

∑ 

e ∈ E 
(
Q t k 

(e ) 
)2 

and the Lyapunov drift

D (t k ) � L (t k +1 ) − L (t k ) . Then, using standard techniques (see [3] ) it

can be shown that 

E 
[

D (t k ) | � Q t k 

]
≤ V + n 

∑ 

e ∈ E 
λ(e ) Q t k (e ) 

−E 

[ 

t k + n −1 ∑ 

t= t k 

∑ 

e ∈ M t 

c t (e ) Q t k (e ) 

∣∣∣∣∣�
 Q t k 

] 

(10)

where �
 Q t k 

is the vector of queue backlogs at the start of frame

k and V is a finite constant for a fixed value of n . Now,

if the right-hand side of (10) becomes negative as L ( t ) be-
k 
omes large, it follows that all queues in the network are rate

table [3] . Define M 

∗ to be a (possibly nonunique) MWM in

raph G given mean edge weights w (e ) defined in (9) (i.e.,

he offline maximum weighted matching). Adding and subtract-

ng 1 
2 E 

[ ∑ t k + n −1 
t= t k 

∑ 

e ∈ M 

∗ c t (e ) Q t k 
(e ) 

∣∣∣�
 Q t k 

] 
from the right-hand side of

10) and using �
 λ + ε�

 1 ∈ 

�
2 gives 

 

[
D (t k ) | � Q t k 

]
≤ V − εn 

∑ 

e ∈ E 
Q t k (e )+ 

E 

[ 

t k + n −1 ∑ 

t= t k 

( 

1 

2 

∑ 

e ∈ M 

∗
c t (e ) Q t k (e ) −

∑ 

e ∈ M t 

c t (e ) Q t k (e ) 

) 

∣∣∣∣∣� Q t k 

] 

. (11)

ince, by the definition of w t ( e ) in (8) , 

 

[ 

t k + n −1 ∑ 

t= t k 

( 

1 

2 

∑ 

e ∈ M 

∗
c t (e ) Q t k (e ) −

∑ 

e ∈ M t 

c t (e ) Q t k (e ) 

) 

∣∣∣∣∣� Q t k 

] 

=E 

[ 

t k + n −1 ∑ 

t= t k 

( 

1 

2 

∑ 

e ∈ M 

∗
w t (e ) −

∑ 

e ∈ M t 

w t (e ) 

) 

∣∣∣∣∣� Q t k 

] (
max 

e ∈ E 
Q t k (e ) 

)
e see from (11) that if 

1 

n 

E 

[ 

t k + n −1 ∑ 

t= t k 

( 

1 

2 

∑ 

e ∈ M 

∗
w t (e ) −

∑ 

e ∈ M t 

w t (e ) 

) 

∣∣∣∣∣ �
 Q t k 

] 

< ε (12)

he Lyapunov drift will be negative for sufficiently large values of

 ( t k ) and thus all queues will be rate stable [3] . 

We proceed to analyze the rate at which the left-hand side of

12) goes to zero when the online learning algorithm is used to

chedule the activations M t over the frame. For each frame, the on-

ine learning algorithm is run independently of the previous frames

nd does not use the observations obtained in those frames. We

efine the regret with respect to the approximation ratio to be 

 

a (n ) � E 

[ 

n ∑ 

t=1 

( 

1 

2 

∑ 

e ∗∈ M 

∗
w t (e ∗) −

∑ 

e ∈ M t 

w t (e ) 

) ] 

. 

ote that R a (n ) 
n is the left-hand side of (12) where, for simplicity,

e have dropped the notation for conditioning on 

�
 Q t k 

and indicate

he start of the frame with time 1. As opposed to the definition

f regret R o ( n ) in (4) which compared the performance of the on-

ine learning algorithm to the offline solution M 

o , R a ( n ) compares

he performance relative to the approximation-ratio of the offline

WM, M 

∗. We then have the following lemma. 

emma 3. 

 

a (n ) ≤

1 

2 

∑ 

e ∈ E 

( ∑ 

e ∗∈ M 

∗∩N s (e ) 

(
8 log n 

�e,e ∗
+ 

π2 

3 

�e,e ∗

)) 

+ 

1 

2 

| E|| M 

∗| 

hich implies the following asymptotic bound 10 

im sup 

n →∞ 

R 

a (n ) 

log n 

≤ 8 

| E| 
�min 

. 

The complete proof is given in Appendix D . 

Note that �e,e ∗ is a function of �
 Q t k 

and can be arbitrarily small.

herefore, Lemma 3 does not imply that there exists a value of

 such that (12) holds for all L ( t k ) sufficiently large. However, we

ow apply a well known technique from the multi-armed bandit
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Fig. 9. (Top) The average queue backlog across the network for the frame-based learning algorithm with frame size n = 100 and the offline GMM scheduler. The values of 

c (e ) are determined by the Markov Chain of Fig. 8 . (Bottom) Instantaneous upper bound on the network’s capacity. 
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iterature in order to obtain a bound on R a ( n ) that is independent

f the gaps (see [12, Section 2.4.3] ). The technique designates each

air of adjacent edges as belonging to one of two sets: those that

ave an expected difference greater than positive value �th and

hose that have an expected difference less than �th . Since the

ontribution to R a ( n ) of the latter group must grow slowly with

ime, strategically choosing �th and using Lemma 3 gives 

orollary 1. 

 

a (n ) ≤ 4 

√ 

2 | E|| M 

∗| n log n + | E| 
(

π2 

3 

+ 

| M 

∗| 
2 

)
. 

The complete proof is given in Appendix E . 

Note that | M 

∗| ≤ | N| 
2 . Therefore, we can obtain a bound that is

nly a function of the number of edges and nodes in the graph

nd the time horizon n . Moreover, as n → ∞ , R a (n ) 
n → 0 . Compar-

ng to (12) , we see that there exists an n large enough such that

he Lyapunov drift is negative for large queue backlogs. Thus, by

hoosing a value of n such that (12) is true, the network can be

ate stabilized. We therefore have the following theorem. 

heorem 4. Under the primary interference constraint, the frame-

ased learning policy can achieve rate stability for any set of arrival

ates interior to the �
2 region. 

We now briefly address some practical aspects of the frame-

ased method. The method relearns the channel statistics at ev-

ry frame boundary. When w t ( e ) is strictly i.i.d. for all time t , this

s unnecessary. However, in many practical wireless networks, al-

hough w t ( e ) is i.i.d. over short time horizons (e.g., because of

ulti-path fading and interference), over larger horizons the un-

erlying statistics of w t ( e ) vary as the network and its environment

volve over time. Then, the frame-based method learns the chan-

el statistics in order to favor edges with temporary, high through-

uts. The frame corresponds to the window over which the statis-

ics are averaged. In general, the length of this window, n , will be

pplication dependent and may even need to adapt to changing

etwork dynamics. The online learning algorithm is suited for this

cenario as its computations do not depend on n . In Section 8 , we
llustrate the algorithm’s performance in a network with changing

tatistics. 

Finally, we discuss the use of the frame-based algorithm under

ther interference constraints and learning algorithms. Note that

he key to proving network stability, above, was to show that there

xists a gap independent bound for the regret relative to the ap-

roximation ratio. In Corollary 1 , we showed that the distributed,

earning algorithm of Fig. 3 has such a bound. Previously, in [27] ,

t was shown that learning algorithms that solve the combinato-

ial multi-armed bandit algorithm using a centralized method can

ikewise achieve a similar bound. Thus, we see that when cen-

ralized control can be implemented, the frame-based algorithm

an use these methods over its frame boundaries to achieve the

ntire network stability region. Note that these bounds hold for

eneral combinatorial constraints and, therefore, scheduling con-

traints that are subject to conflict graphs. Importantly, the dura-

ion of the frame length depends on the speed at which learn-

ng can take place. Longer frame boundaries, in general, lead to

arger packet delays. Thus, it is critical to establish methods that

re quick to learn the network’s edge weights. This requirement

otivated our previous derivation of regret bounds for networks

hat are constrained by primary interference and reliant upon dis-

ributed, learning algorithms. In the next section, we extend these

esults to networks that have conflict graphs with a fixed interfer-

nce degree. 

. Extensions to other scheduling constraints 

In this section, we extend our analysis to conflict graphs that

ave a fixed interference degree χ . We proceed to derive bounds

hat are analogous to Theorem 1, Lemma 3 , and Corollary 1 . 

Note that the algorithm in Fig. 3 can be used to learn acti-

ation sets in networks with general interference constraints. The

nly difference is that the chosen activation set M t will now be an

ndependent set in the conflict graph and not necessarily a graph

atching. Now, when the algorithm of Fig. 2 is called to construct

he activation set, it iteratively adds elements to the set until no

ore edges can be added without violating the conflict graph’s
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constraints. As before, an edge is added when it becomes locally

heaviest (i.e., it is in E ′ with a weight that is no less than any of its

conflicting neighbors, N (e ) , that are still in E ′ ). Note that this al-

gorithm can be made distributed by having the end nodes of each

edge inform the end nodes of the conflicting edges of changes in

status. Since conflicts tend to be localized in the network, this pre-

vents the nodes from having to know the entire network’s state. 

Let M 

o be the greedy offline activation set that is found by the

greedy method when the average weights w (e ) are known. Note

that Lemmas 1 and 2 continue to be true for general conflict graph

constraints (i.e., there was nothing specific to the primary inter-

ference model that made these claims true). Defining the learning

algorithm’s regret with respect to the greedy offline activation set

M 

o as R o ( n ) (see (4) ), we then have the following bounds. 

Corollary 2. For a generalized interference graph with interference

degree χ , 

R 

o (n ) ≤

| M 

o | ∑ 

e ∈ E 

( ∑ 

e o ∈ M 

o ∩N s (e ) 

(
8 log n 

�2 
e,e o 

+ 

π2 

3 

)) 

+ | M 

o || E| 

which implies the following asymptotic bound 

lim sup 

n →∞ 

R 

o (n ) 

log n 

≤ 8 χ
| E|| M 

o | 
�2 

min 

. 

The proof of Corollary 2 follows from the proof of

Theorem 2 and noting that the expected regret at time t given that

M t � = M 

o is at most | M 

o |. Note that this bound is, in general, worse

than the bound of Theorem 1 . This is because an estimation error,

that causes an erroneous edge to be added to the greedy schedule,

can set the greedy algorithm down a path where it chooses a

much worse activation set than M 

o . As can be seen in the proof of

Theorem 1 , this effect does not occur in GMMs. 

Now, for a conflict graph with interference degree, χ , define the

regret with respect to the 1 
χ -approximation ratio to be 

R 

a 
χ (n ) � E 

[ 

n ∑ 

t=1 

( 

1 

χ

∑ 

e ∗∈ M 

∗
w t (e ∗) −

∑ 

e ∈ M t 

w t (e ) 

) ] 

. 

Then, in a proof similar to Lemma 3 and Corollary 1 , we can

show the following. 

Corollary 3. For a generalized interference graph with interference

degree χ , 

R 

a 
χ (n ) ≤

1 

χ

∑ 

e ∈ E 

( ∑ 

e ∗∈ M 

∗∩N s (e ) 

(
8 log n 

�e,e ∗
+ 

π2 

3 

�e,e ∗

)) 

+ 

1 

χ
| E|| M 

∗| 

which implies the following asymptotic bound 

lim sup 

n →∞ 

R 

a 
χ (n ) 

log n 

≤ 8 

| E| 
�min 

and the following gap independent bound 

R 

a 
χ (n ) ≤ 4 

√ 

2 | E|| M 

∗| n log n + | E| 
(

π2 

3 

+ 

| M 

∗| 
χ

)
. 

Note that, as with Lemma 3 and Corollary 1 , this corollary does

note require that conflicting edges have different average weights

and that it produces a gap independent bound. Thus, if the greedy

method is used in frame-based scheduling, in an analysis similar

to the previous section, we can show that it achieves network sta-

bility for the �
χ –throughput region. 
. Simulation results 

In this section, we illustrate the performance of the online

earning algorithm for stochastic network control. Our simulations

re for a 4 × 4 grid topology (as in Fig. 6 (a)) where each edge re-

eives Bernoulli arrivals with the same fixed rate, λ, for all edges.

e consider the primary interference constraint where each acti-

ation set must be a matching in the graph. 

We first consider an environment where the mean edge capaci-

ies c (e ) do not vary with time. In Fig. 7 we show the performance

f the offline GMM scheduler (that knows the means c (e ) a priori)

nd the frame-based learning algorithm for varying frame sizes, n .

he plots show the nodes’ average queue backlog over a simula-

ion of 10 million time slots for increasing arrival rate λ. The point

here the backlogs grow rapidly indicates the boundary of that

ethod’s stability region. We show results for two different distri-

utions on the channel capacities c t ( e ). In Fig. 7 (a) the capacities

re Bernoulli (i.e., the channel is on or off) with a mean that was

hosen, at the start of time, uniformly between 0.25 and 0.75. In

ig. 7 (b) the distributions are Rayleigh with a scale parameter cho-

en uniformly between 0.05 and 0.25. 

An upper bound on the maximum arrival rate λ that can be

upported by the network is given by 

≤ min 

v ∈ N 
1 ∑ 

e ∈A (v ) ( c (e ) ) 
−1 

(13)

here A (v ) denotes the set of edges adjacent to node v . Apply-

ng this bound to the values of c (e ) used in Fig. 7 (a) and (b) gives

.0969 and 0 . 0325 , respectively. Therefore, we see that in both

ases, the offline GMM scheduler nearly achieves the network’s ca-

acity. As n becomes large, the online learning algorithm’s stability

egion approaches the stability region of the offline GMM sched-

ler. 

In Fig. 9 we illustrate the performance of the offline GMM

cheduler and the frame-based learning algorithm when each

dge’s average capacity, c (e ) , is time-varying. In this scenario, for

ach edge e ∈ E , c (e ) evolves over the time slots according to the

arkov chain in Fig. 8 . We choose δ = 2 × 10 −5 in order to en-

ure the channels’ statistics are stationary for long periods of time.

iven an edge’s mean value c (e ) at time t , the edge capacities c t ( e )

re Bernoulli with the given rate. The arrival rate to each edge is

= 0 . 07 . In the bottom of Fig. 9 , we plot the bound on the net-

ork’s capacity given by (13) for the mean edge capacities at time

 . Note that when the bound falls below 0.07 the queue backlogs

f both the offline GMM scheduler and the frame-based learning

ethod grow since the arrival rate exceeds the network’s instanta-

eous capacity. Overall, the frame-based learning algorithm’s per-

ormance mirrors the performance of the offline GMM scheduler

ith the frame-based learning algorithm maintaining a slightly

arger backlog. 

. Conclusion 

Scheduling policies based upon greedily constructed schedules

ave been well studied in the literature and have produced dis-

ributed algorithms with good performance. However, previous

ork required channel state information be known in advance.

n this work, we considered the problem of jointly learning the

hannel statistics while simultaneously scheduling transmissions to

upport high throughput. We presented learning algorithms that

hoose sequences of greedily constructed schedules in order to

olve this exploration/exploitation tradeoff. By analyzing how es-

imation errors impacted the greedy construction, we were able

o derive novel bounds on the algorithms’ regrets. Subsequently,

or networks with stochastic traffic arrivals, we illustrated how our

ethods could be used in frame-based scheduling. 
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ppendix A. Proof of Theorem 1 

We use Lemmas 1 and 2 to establish a bound on the regret of

ny sample path of w t ( e ). Note that the weights w t ( e ) determine

 t ( e ) and M t at each time step. We begin by noting that ∑ 

 

o ∈ M 

o 

w t (e o ) −
∑ 

e ∈ M t 

w t (e ) = 

∑ 

e o ∈ M 

o −M t 

w t (e o ) −
∑ 

e ∈ M t −M 

o 

w t (e ) . (A.1)

rom Lemma 2 , each edge e o ∈ M 

o − M t must be adjacent to an

dge e ∈ M t with U t ( e ) ≥ U t ( e 
o ). Since this edge is in N (e o ) it can-

ot be in M 

o . Now, this adjacent edge can be in either N 

s (e o ) or

 

i (e o ) . Thus, denoting the indicator function as 1 {.} , we can upper

ound (A.1) with ∑ 

e o ∈ M 

o 

w t (e o ) −
∑ 

e ∈ M t 

w t (e ) ≤
∑ 

e o ∈ M 

o 

∑ 

e ∈N s (e o ) 

w t (e o ) 1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } 

+ 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

w t (e o )1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } −
∑ 

e ∈ M t −M 

o 

w t (e ) . (A.2) 

ote that the inequality in (A.2) results from the possibility that

here can be two edges in M t that are adjacent to edge e o that

oth have greater UCB weights than e o . In this case, the right-hand

ide would over count the contribution of w t ( e 
o ) to the regret. 

Now, from Lemma 1 , each edge e ∈ M t − M 

o must be adjacent

o at least one edge e o ∈ M 

o with w (e o ) > w (e ) . As noted above,

his implies that e can be adjacent to at most one edge e o ∈ M 

o 

ith weight w (e o ) < w (e ) . In other words, there exists at most one

dge e o ∈ M 

o such that e ∈ N 

s (e o ) . From this we can upper bound

A.2) as ∑ 

e o ∈ M 

o 

w t (e o ) −
∑ 

e ∈ M t 

w t (e ) ≤
∑ 

e o ∈ M 

o 

∑ 

e ∈N s (e o ) 

( w t (e o ) − w t (e ) ) 1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } 

+ 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

w t (e o ) 1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } . (A.3) 

ote that the above inequality results from the fact that we may

ndercount the (negative) contribution of the edges e ∈ M t − M 

o on

he right-hand side. 

We now bound the regret (cf., (4) ) over times | E| + 1 , | E| +
 , . . . , n . Starting with (A.3) , summing over time, and taking expec-

ation 

E 

[ 

n ∑ 

t= | E| +1 

( ∑ 

e ∈ M 

o 

w t (e ) −
∑ 

e ∈ M t 

w t (e ) 

) ] 

≤E 

[
n ∑ 

t= | E| +1 

(
. . . 

∑ 

e o ∈ M 

o 

∑ 

e ∈N s (e o ) 

( w t (e o ) − w t (e ) ) 1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } 

+ 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

w t (e o ) 1 { e ∈ M t ∩ U t (e ) ≥U t (e o ) } 
)] 

. (A.4) 

ow, at time t , random variables w t ( e ) and events 

 

e ∈ M t ∩ U t (e ) ≥ U t (e o ) } 

re independent since the UCB variables are only dependent on ob-

ervations prior to time t . Thus, we can bound (A.4) as 
 

[ 

n ∑ 

t= | E| +1 

( ∑ 

e ∈ M 

o 

w t (e ) −
∑ 

e ∈ M t 

w t (e ) 

) ] 

≤
n ∑ 

t= | E| +1 

(
. . . 

∑ 

e o ∈ M 

o 

∑ 

e ∈N s (e o ) 

( w (e o ) − w (e ) ) P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) 

+ 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

w (e o ) P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) 

)
. (A.5)

or edge pair e o ∈ M 

o and e ∈ N 

s (e o ) , w (e o ) − w (e ) < 0 . Therefore,

e can upper bound the first term on the right-hand side of

A.5) with 0. Doing so, we obtain from (A.5) 

 

[ 

n ∑ 

t= | E| +1 

( ∑ 

e ∈ M 

o 

w t (e ) −
∑ 

e ∈ M t 

w t (e ) 

) ] 

≤
n ∑ 

t= | E| +1 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

w (e o ) P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) 

= 

∑ 

e o ∈ M 

o 

w (e o ) 
∑ 

e ∈N i (e o ) 

n ∑ 

t= | E| +1 

P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) (A.6) 

here the equality follows by changing the order of summation. 

Using the proof of [11, Theorem 1] , we have for e o ∈ M 

o and e ∈
 

i (e o ) 

n ∑ 

= | E| +1 

P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) ≤ 8 log n 

�2 
e,e o 

+ 

π2 

3 

. 

Plugging this into (A.6) gives 

 

[ 

n ∑ 

t= | E| +1 

( ∑ 

e ∈ M 

o 

w t (e ) −
∑ 

e ∈ M t 

w t (e ) 

) ] 

≤
∑ 

e o ∈ M 

o 

w (e o ) 
∑ 

e ∈N i (e o ) 

(
8 log n 

�2 
e,e o 

+ 

π2 

3 

)

= 

∑ 

e ∈ E 

( ∑ 

e o ∈ M 

o ∩N s (e ) 

w (e o ) 

(
8 log n 

�2 
e,e o 

+ 

π2 

3 

)) 

. 

here the equality follows from changing the order of summation.

ounding the regret over the first | E | time steps with 

| N| 
2 | E| gives

he result. 

ppendix B. Proof of Theorem 2 

Assume at time t, M t � = M 

o . Then there must exist at least one

dge e �∈ M 

o that is in M t . Consider the first such edge e �∈ M 

o that

nters M t in the greedy construction of M t by Algorithm 2 . By

emma 1 , there is a neighbor of e that is in M 

o and N 

s (e ) . Let

 

o denote this neighbor. Since e was added to M t instead of e o ,

 t ( e ) ≥ U t ( e 
o ). This implies 

{ M t � = M 

o } ⊆
{ ∃ e ∈ M t and e o ∈ M 

o ∩ N 

s (e ) : U t (e ) ≥ U t (e o ) } . 
aking a union bound we see that 

 

[ 

n ∑ 

t= | E| +1 

1 { M t � = M 

o } 

] 

≤
n ∑ 

t= | E| +1 

∑ 

e o ∈ M 

o 

∑ 

e ∈N i (e o ) 

P ( e ∈ M t ∩ U t (e ) ≥ U t (e o ) ) . 
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Comparing to equation (A.6) , we see that following a similar anal-

ysis as above that 

E 

[ 

n ∑ 

t= | E| +1 

1 { M t � = M 

o } 

] 

≤
∑ 

e ∈ E 

( ∑ 

e o ∈ M 

o ∩N s (e ) 

(
8 log n 

�2 
e,e o 

+ 

π2 

3 

)) 

which gives the result. 

Appendix C. Proof of Theorem 3 

Consider the graph G and the distributions on the edge weights

w t ( e ) explained in Section 5 after the theorem. Given that the ex-

terior edges are perfectly correlated, the problem facing the algo-

rithm is to determine whether the weight of the first exterior edge

is greater than the weight of the interior edge; since the greater of

these two edges should be included in the GMM. Thus, each con-

nected component can be viewed as a two-armed stochastic bandit

problem with independent Bernoulli rewards. 

From Theorem 2 , for any given graph G and defined edge

weight distributions, the expected number of times a matching not

equal to M 

o is chosen to be activated is O (log n ). This implies that

any edge not in M 

o is activated in expectation o ( n α) times for all

α > 0. 

Denote the edges of the j th connected component as e 
j 
int 

, e 
j 
ext1 

,

and e 
j 
ext2 

. Define T 
j 

n 

(
e 

j 
int 

)
the number of times the interior edge of

the j th connected component is pulled over n time slots. From the

above, each connected component is equivalent to solving a two-

armed bandit problem with Bernoulli rewards, and we are using

a strategy that selects the inferior arm o ( n α) times in expectation

for all α > 0. Then from [12, Theorem 2.2] which bounds, asymp-

totically, the number of expected times the inferior edge is pulled

in the two-armed bandit by any strategy meeting the o ( n α) con-

straint, we see that 

lim inf 
n →∞ 

E 
[
T j n 

(
e j 

int 

)]
log n 

≥ 1 

kl(0 . 5 − �, 0 . 5) 
(C.1)

where kl ( p, q ) is the Kullback–Leibler divergence between two

Bernoulli random variables with parameters p and q . Therefore, the

regret across all connected components can be bounded as 

lim inf 
n →∞ 

R 

o (n ) 

log n 

= lim inf 
n →∞ 

| E| 
3 ∑ 

j=1 

(
2 w (e j 

ext1 
) − w (e j 

int 
) 
)E 

[
T j n 

(
e j 

int 

)]
log n 

≥ | E| 
3 

( 0 . 5 + �) 
1 

kl(0 . 5 − �, 0 . 5) 
. (C.2)

where the inequality follows from (C.1) and plugging in the ex-

pected edge weights. 

Now, by a well known simple inequality 

kl(p, q ) ≤ (p − q ) 2 

q (1 − q ) 
. 

Using this in (C.2) we see that 

lim inf 
n →∞ 

R 

o (n ) 

log n 

≥ | E| 
3 

( 0 . 5 + �) 
1 

4�2 
≥ | E| 

24 

1 

�2 

where the second inequality follows from dropping the � term

from the numerator. Since � is by the definition of the graph

equivalent to � , the proof is established. 
min 
ppendix D. Proof of Lemma 3 

Consider any sample path for w t ( e ) and the corresponding val-

es U t ( e ) and chosen matchings M t . Then for time t > | E |, 

1 

2 

∑ 

e ∗∈ M 

∗
w t (e ∗) −

∑ 

e ∈ M t 

w t (e ) 

≤ 1 

2 

( ∑ 

e ∗∈ M 

∗−M t 

w t (e ∗) − 2 

∑ 

e ∈ M t −M 

∗
w t (e ) 

) 

(D.1)

here the inequality follows from simple algebra. 

Now, by an argument similar to Lemma 2 , if e ∗ ∈ M 

∗ − M t then

t must be adjacent to an edge e ∈ M t such that U t ( e ) ≥ U t ( e 
∗). Fur-

hermore, we note that each edge e ∈ M t − M 

∗ can be adjacent to

t most two edges in M 

∗ (see Fig. 4 for example). Thus, denoting

he indicator function as 1 {.} , we can bound (D.1) as 

1 

2 

∑ 

e ∗∈ M 

∗
w t (e ∗) −

∑ 

e ∈ M t 

w t (e ) ≤

1 

2 

∑ 

e ∗∈ M 

∗

∑ 

e ∈N (e ∗) 

( w t (e ∗) − w t (e ) ) 1 { U t (e ) ≥U t (e ∗) ∩ e ∈ M t } (D.2)

Noting that the event { U t ( e ) ≥ U t ( e 
∗) ∩ e ∈ M t } is independent of

he values of w t ( e ) and w t ( e 
∗) we see that 

 

[ 

n ∑ 

t= | E| +1 

( 

1 

2 

∑ 

e ∗∈ M 

∗
w t (e ∗) −

∑ 

e ∈ M t 

w t (e ) 

) ] 

≤1 

2 

n ∑ 

t= | E| +1 

∑ 

e ∗∈ M 

∗

∑ 

e ∈N (e ∗) 

�e,e ∗ P ( U t (e ) ≥ U t (e ∗) ∩ e ∈ M t ) 

≤1 

2 

∑ 

e ∗∈ M 

∗

∑ 

e ∈N i (e ∗) 

�e,e ∗

n ∑ 

t= | E| +1 

P ( U t (e ) ≥ U t (e ∗) ∩ e ∈ M t ) (D.3)

here the second inequality follows from changing the order of

ummation and noting that for all pairs e ∗ ∈ M 

∗ and e ∈ N (e ∗) −
 

i (e ∗) , �e,e ∗ ≤ 0 . Now, using the proof of [11, Theorem 1] , for

 

∗ ∈ M 

∗ and e ∈ N 

i (e ∗) , 

n ∑ 

= | E| +1 

P ( e ∈ M t ∩ U t (e ) ≥ U t (e ∗) ) ≤ 8 log n 

�2 
e,e ∗

+ 

π2 

3 

. 

lugging into (D.3) , we obtain 

 

[ 

n ∑ 

t= | E| +1 

( 

1 

2 

∑ 

e ∗∈ M 

∗
w (e ∗) −

∑ 

e ∈ M t 

w (e ) 

) ] 

≤ 1 

2 

∑ 

e ∈ E 

( ∑ 

e ∗∈ M 

∗∩N s (e ) 

(
8 log n 

�e,e ∗
+ 

π2 

3 

�e,e ∗

)) 

here on the right-hand side we have changed the order of sum-

ation. Bounding the total regret over the first | E | time steps with
1 
2 | E|| M 

∗| gives the result. 

ppendix E. Proof of Corollary 1 

We start with Eq. (D.3) . We will now apply a well known trick

n the bandit literature (cf., [12, Section 2.4.3] ) by partitioning the

airs e ∗ ∈ M 

∗ and e ∈ N 

i (e ∗) into two disjoint sets using a threshold

th . Our two sets are those pairs that have a gap �e,e ∗ < �th and

hose that have a gap �e,e ∗ ≥ �th . 
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For the set where �e,e ∗ < �th we begin by noting that each

 

∗ ∈ M 

∗ may be adjacent to at most two edges in M t . Therefore, 

1 

2 

∑ 

e ∗∈ M 

∗

∑ 

e ∈N i (e ∗): 
�e,e ∗ < �th 

�e,e ∗

n ∑ 

t= | E| +1 

P ( U t (e ) ≥ U t (e ∗) ∩ e ∈ M t ) 

< 

1 

2 

∑ 

e ∗∈ M 

∗
�th E 

⎡ ⎢ ⎣ 

n ∑ 

t= | E| +1 

∑ 

e ∈N i (e ∗): 
�e,e ∗ < �th 

1 { e ∈ M t } 

⎤ ⎥ ⎦ 

≤ 1 

2 

| M 

∗| �th 2 n (E.1) 

here the first inequality follows from bounding all �e,e ∗ by �th 

nd using 1 { U t (e ) ≥U t (e ∗) ∩ e ∈ M t } ≤ 1 { e ∈ M t } . The second inequality fol-

ows from noting that over any sample path at most two neighbors

f e ∗ ∈ M 

∗ may be in M t at any given time. 

Likewise, for the set �e,e ∗ ≥ �th we can bound, in an analysis

imilar to the proof of Lemma 3 

1 

2 

∑ 

e ∗∈ M 

∗

∑ 

e ∈N i (e ∗): 
�e,e ∗ ≥�th 

�e,e ∗

n ∑ 

t= | E| +1 

P ( U t (e ) ≥ U t (e ∗) ∩ e ∈ M t ) 

≤ 1 

2 

∑ 

e ∈ E 
2 

(
8 log n 

�th 

+ 

π2 

3 

)
(E.2) 

Combining (E.1) and (E.2) into (D.3) and using 1 
2 | E|| M 

∗| to

ound the regret of the first | E | steps we obtain 

 

a (n ) ≤ | E | 
(

8 log n 

�th 

+ 

π2 

3 

)
+ ( | M 

∗| �th ) n + 

1 

2 

| E || M 

∗| . 

Now, choosing the threshold 

th = 

√ 

8 | E| log n 

| M 

∗| n 

ives the result. 
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