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Abstract— Age of information (AoI), defined as the time that
elapsed since the last received update was generated, is a newly
proposed metric to measure the timeliness of information updates
in a network. We consider AoI minimization problem for a
network with general interference constraints, and time varying
channels. We propose two policies, namely, virtual-queue based
policy and age-based policy when the channel state is available
to the network scheduler at each time step. We prove that the
virtual-queue based policy is nearly optimal, up to a constant
additive factor, and the age-based policy is at-most a factor of
4 away from optimality. Comparison with previous work, which
derived age optimal policies when channel state information is not
available to the scheduler, demonstrates significant improvement
in age due to the availability of channel state information.
Our analysis relies on the age conservation law and age-square
conservation law developed in this paper, which hold more
generally and may be of independent interest.

Index Terms— Age of information (AoI), wireless networks,
scheduling, information freshness, channel state information.

I. INTRODUCTION

T IMELY delivery of information updates is gaining
increasing relevance with the emergence of cyber-

physical systems, internet of things, and unmanned aerial
vehicular networks. In unmanned aerial vehicular networks,
timely delivery of status updates, such as vehicle position
and velocity, may be critical to network safety [1], [2].
In internet of things or cyber-physical systems, timely delivery
of sensor information can significantly improve the overall
system performance [3].

Age of information (AoI) is a recently proposed time
evolving measure of information freshness that is defined
as the time that elapsed since the last received update was
generated by the source [4], [5]. Figure 1 shows the typical
evolution of AoI at a destination node, as a function of
time. Upon reception of a new update packet AoI drops
to the time that elapsed since the generation of the packet,
and grows linearly until the next delivery. Therefore, AoI
is a destination centric measure, unlike packet delay, and is
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Fig. 1. Time evolution of age, Ae(t), of a link e. Times ti and t′i are
instances of ith packet generation and reception, respectively. Upon reception
of packet i, the age is reset to t′i − ti + 1.

better suited for applications involving dissemination of time
sensitive information. Peak and average age are two metrics
of AoI. Peak age is defined as the average of all the peaks in
the AoI curve, shown in Figure 1, whereas the average age is
time average of the AoI.

In [4], a simulation study considered AoI in a network of
vehicles exchanging status updates. Motivated by [4], AoI was
analyzed for several queueing models [5]–[22]. The advantage
of having parallel servers and setting packet deadlines was
studied in [6]–[9] and [11]–[13], respectively. The problem
of determining an optimal, or near-optimal, queue scheduling
discipline for minimizing AoI was considered in [15].

However, prior to this work, AoI minimization for commu-
nication links operating in a wireless network with interference
had received very little attention. A problem of scheduling
finitely many update packets under physical interference con-
straints was shown to be NP-hard in [23]. Age for a broadcast
network, where only a single link can be activated at any time,
was studied in [24], [25]. Distributed ALOHA like random
access to minimize AoI was considered in [26], [27]. Age in
multi-hop wireless network has been studied in [28].

In [29], we considered the problem of age minimization for
a wireless network under general interference constraints, and
time varying channel. We considered two types of sources:
active sources, which generate fresh information in every slot,
and buffered sources, which cannot generate fresh information
in every slot. We showed that for a network with active
sources, a stationary scheduling policy, which schedules links
according to a stationary probability distribution, is peak age
optimal and factor-2 average age optimal. We also showed that
the same scheduling policy, with a certain packet generation
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rate control, is nearly optimal in the buffered case. In [29],
however, the space of policies was limited to not using the
channel state information. In this paper, we consider schedul-
ing policies which have perfect channel state information S(t)
at every time slot t.

We consider a wireless network consisting of several com-
munication links E. Each link is a source-destination pair,
and need to transmit update packets across. Packets cannot be
transmitted over all links simultaneously due to the wireless
interference constraints, and a transmission may fail because of
channel errors. We consider the space of scheduling policies
which have perfect channel state information at every time
slot t, and minimize peak and average age. We first show,
by considering a simple example, that AoI can be consider-
ably improved, over the proposed optimal policies in [29],
by utilizing the current channel state information.

We then show that the peak age minimization problem can
be formulated as a network utility maximization problem.
Using this, we propose the virtual-queue based scheduling
policy which constructs virtual queues Qe(t) for each link
e ∈ E. The virtual queues evolve in time, depending on
whether a successful transmission occurred over the link or
not. The set of links to be scheduled, at time t, is determined
by a max-weight policy:

mt = arg max
m⊂E

∑
e∈m

weSe(t)Qe(t),

where we are predefined weights on each link, and Se(t)
denotes the channel state of link e. We show that this policy
nearly achieves peak age optimality, up to a small additive
constant.

Next, we propose age-based policies, which use age Ae(t)
of each link e ∈ E, instead of the virtual queues Qe(t) to
determine the schedule at time t:

mt = arg max
m⊂E

∑
e∈m

weSe(t)g (Ae(t)) ,

where g(·) is some non-decreasing function. We show that for
a specific choice g(x) = x2+βx, the policy is at most a factor
of 4 away from the optimal peak and average age. However,
simulation results suggest that this age-based policy performs
much better in practice, and can be very close to the optimal
average age for certain networks.

Our analysis relies on the age conservation law and age-
square conservation law developed in Section III, which hold
more generally and may be of independent interest.

In numerical simulations, we also observe the benefit/utility
of using channel state information in scheduling to minimize
age, especially when the network has ‘high’ level of inter-
ference or ‘bad’ channel quality. Even though channel state
information may not be perfectly available in certain network
settings, this work establishes the utility of acquiring such
channel state information for scheduling to minimize age.

A preliminary version of this work was presented at WiOpt
2018 [30]. In [30], however, we made restricting assumptions
on the space of scheduling policies. In this work, we have
relaxed those restricting assumptions. This work also develops
age conservation laws, which are critical in establishing the

results in this paper, and may be of independent interest.
In [31], we extended the virtual-queue based and age-based
policies described above to the case when the channel state
information is not available.

A. Literature Review

The notion of Age-of-information was developed in [4],
[5], [32]. In [5], average age was analyzed and optimized for
update generation rate, for simple queueing systems such as
M/M/1, M/D/1, and D/M/1. This motivated several researchers
to study peak and average age for various queueing sys-
tems [4]–[8], [11]–[13], [18], [20], [33]–[38]. Many of these
works focused on optimizing peak and average age over
the update generation and service rate. Queue scheduling
disciplines and packet management strategies to minimize
age were also considered. The advantage of having parallel
servers towards improving age was demonstrated in [6]–
[8]. Age improvements by having smaller buffer sizes and
introducing packet deadlines, in which a packet deletes itself
after the expiration of its deadline, was demonstrated in [4],
[11] and [11]–[13], respectively.

Age, for updates traversing a network of queues, was
considered in [36]. The last come first serve queue scheduling
discipline, with preemptive service, was shown to be age opti-
mal, when the service times are exponentially distributed [36].
Optimal update generation policy to improve age was inves-
tigated in [16]. AoI for energy harvesting communication
systems was considered in [39]–[44], while AoI for gossip
type information dissemination was analyzed in [32], [45].

Little work existed, prior to this, on link scheduling for
age minimization. In [23], [46], link scheduling problem for
age minimization, in transmitting finitely many updates, was
posed. It was shown to be NP-hard under the physical and
protocol model for interference. Scheduling for age minimiza-
tion in a broadcast network, in which at most one link can be
activated simultaneously, was considered first in [24]. Index
based policies were proposed and were shown to be factor
8 optimal. In [25], age minimization in a broadcast network
with no channel uncertainties was considered. The problem
was formulated as a Markov Decision Process, and several
structural results on optimal policies were derived.

In [29], a simple randomized stationary scheduling policy
was shown to be peak age optimal and factor-2 average
age optimal for single-hop wireless networks under general
interference constraints. This result was presented indepen-
dently for broadcast networks, and its optimality proved for
broadcast networks under throughput constraints in [47] and
[48], respectively. [29] also proved an important separation
principle for the special case when the sources are not active,
i.e. they cannot generate fresh updates for every transmission.
It was shown that the peak age optimal randomized stationary
policy, designed assuming active sources, could be nearly
optimal.

Broadcast networks under ALOHA-like scheduling pro-
tocol, in which the link’s attempt transmission with some
attempt probabilities, was considered in [49]. Exact solu-
tion for ALOHA-like distributed scheduling policies under
more general interference constraints was obtained in [27].

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2020 at 00:13:45 UTC from IEEE Xplore.  Restrictions apply. 



TALAK et al.: IMPROVING AGE OF INFORMATION IN WIRELESS NETWORKS 1767

Age minimization for multi-hop wireless networks under
general interference was considered in [28], [50], whereas
multi-hop, multi-cast networks was studied in [51]. Scheduling
for age minimization, when different sensors view correlated
information, has been considered in [52]. Age minimization
under power constraints has been recently considered in [53],
while a game theoretic view on users competing to minimize
age is studied in [54].

In this work, and it’s preliminary versions [30], [31], we pro-
pose age-based scheduling and virtual queue based scheduling
for single-hop wireless networks under general interference
constraints. Such age-based policies have since been proposed
for broadcast networks [47], [48]. More recently, age-based
policies have been extended to problems when information is
no longer freshly available at the source [55], [56].

B. Organization

System model is introduced in Section II and some useful
identities on AoI are proved in Section III. We propose and
analyze the virtual-queue based scheduling policy and the
age-based scheduling policy in Section IV and Section V,
respectively. Simulation results are discussed in Section VI.
We conclude in Section VII.

II. SYSTEM MODEL

Consider a wireless network G = (V, E), where V denotes
the set of nodes and E the set of directed links. Each directed
link is a source-destination pair which need to be activated
for the source to transmit update packets to the destination.
Not all links can be activated simultaneously. Thus, we call
a set m ⊂ E that can be activated simultaneously without
interference a feasible activation set. We use A to denote the
collection of all feasible activation sets. We consider a slotted
time system, where the slot duration is normalized to unity.

We use Se(t) to denote the channel state process, where
Se(t) = 1 if the channel is in the ON state at time t and
Se(t) = 0 if the channel is in the OFF state at time t. The space
of all channel states is given by S = {0, 1}|E|. We consider
an i.i.d. channel model, in which the channel state process
{Se(t)}t≥0 is independent and identically distributed (i.i.d.)
across time t, with γe = P [Se(t) = 1] > 0, for all e ∈ E.
Further, the channel processes {Se(t)}t≥0 are independent
across links e; but may not be identically distributed.

We use Ue(t) ∈ {0, 1} to denote transmission decision on
link e at time t. We set Ue(t) = 1 if link e is scheduled
to transmit at time t. For a transmission to be successful the
channel state must also be ON. Thus, a successful transmission
occurs over link e, at time t, if and only if Ue(t)Se(t) = 1.

We consider active nodes, which transmit fresh information
at every transmission opportunity. We define the age Ae(t),
of a link e at time t, to be the time that elapsed since the last
successful activation of link e. We consider the discrete time
evolution of age. Figure 2 shows the evolution of Ae(t) for a
link e over discrete time slots t ∈ {0, 1, 2, . . .}. Ae(t) drops
to 1 upon a successful activation of link e, and increases by 1
in every slot in which there is no successful activation of link

Fig. 2. Discrete time evolution of age of link e, namely Ae(t), as a function
of time slots t.

e, i.e.,

Ae(t + 1) =

{
Ae(t) + 1 if Ue(t)Se(t) = 0
1 if Ue(t)Se(t) = 1.

(1)

This age evolution equation can be written compactly as,

Ae(t + 1) = 1 + Ae(t) − Ue(t)Se(t)Ae(t), (2)

for all t ≥ 0 and e ∈ E. For the ease of presentation,
we assume that Ae(0) = 0 for all links e ∈ E.1

We consider two age measures, namely, average age and
peak age. Average age is the area under the age curve
in Figure 2, while peak age is the average of all the peaks of
the age curve. Note that the sum of all the peaks, until time t,
in the age curve can be expressed as

∑t
τ=0 Ue(τ)Se(τ)Ae(τ).

This is because Ue(τ)Se(τ) = 1 only at times when age peaks.
We, therefore, define the peak age of a link e to be

A
p
e = lim sup

t→∞

E

[∑t−1
τ=0 Ue(τ)Se(τ)Ae(τ) + Ae(t)

]
E

[∑t−1
τ=0 Ue(τ)Se(τ) + 1

] . (3)

The average age, of link e, is defined as:

A
ave
e = lim sup

t→∞
1
t
E

[
t∑

τ=0

Ae(τ)

]
. (4)

The network average and peak age are defined to be the
weighted sum of link edges:

A
ave

=
∑
e∈E

weA
ave
e and A

p
=
∑
e∈E

weA
p
e. (5)

Without loss of generality, we assume the weights we to be
positive, and normalized to sum to 1:

∑
e∈E we = 1. We are

interested in designing link scheduling policies that minimize
the network peak and average age.

A. Scheduling Policies

A scheduling policy determines the set of links mt ⊂ E that
will be activated at each time t, i.e., mt = {e ∈ E|Ue(t) = 1}.
The policy can make use of the past history of link activations
and observed channel states to make this decision, i.e., at each
time t, the policy π will determine mt as a function of the set

H̄(t)={U(τ),S(τ ′),A(τ ′) | 0 ≤ τ < t, 0 ≤ τ ′ ≤ t}, (6)

1All the lemmas and proofs can be extended when Ae(0) is a constant
away from 0. The results stated in the theorems, however, remain unchanged
if Ae(0) are taken to be some constants.
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where U(τ), S(τ), and A(τ) denote the vectors (Ue(τ))e∈E ,
(Se(τ))e∈E , and (Ae(τ))e∈E , respectively.

We consider centralized scheduling policies, in which this
information is available to a scheduler, which is also able to
implement its scheduling decision. Let Π denote the space
of all such scheduling policies, which decide on the current
action mt, using the history H̄(t), for all t. Our goal is to
minimize peak and average age over the space of scheduling
policies π ∈ Π. We define the optimal peak and average age
to be

A
p∗

= min
π∈Π

A
p
(π) and A

ave∗
= min

π∈Π
A

ave
(π). (7)

Here, and throughout the paper, we use the min notation to
denote the technically correct inf .

B. Advantage of Knowing Channel State Information

In this subsection, we illustrate the advantage of using the
channel state in scheduling for age minimization. In [29],
we considered age minimization with unknown channel state
information. Specifically, we considered all policies which
scheduled feasible activation set mt ∈ A, at time t, as a
function of the history

H(t)={U(τ),S(τ),A(τ ′)
∣∣0≤τ < t and 0 ≤ τ ′ ≤ t}. (8)

The history H(t), unlike H̄(t) in (6), does not include the
current channel state S(t). We showed in [29] that stationary
policies, which schedule links according to a probability
distribution, which is independent of H(t), is in fact peak age
optimal and factor-2 average age optimal.

In stationary scheduling policies, every feasible activation
set m ∈ A is assigned a fixed probability xm with which it
is activated in slot t, independent across slots. The probability
that a link e ∈ E is activated in a slot is given by

fe =
∑

m:e∈m

xm, (9)

for all e ∈ E. This set of equations can be compactly written as
f = Mx. Note that an activated link will result in a successful
transmission if the corresponding channel is in the ON state.
Therefore, the probability of a successful transmission on a
link e in any slot is given by αe = γefe.

Further, notice that, if a link e is successfully activated with
probability αe = γefe in each slot, independent across slots,
then the time since last transmission, i.e. age Ae(t), is geomet-
rically distributed with rate 1

γefe
. In [29], we showed that the

peak age of link e equals this rate 1
γefe

, under any stationary
policy. As a result, the peak age for the stationary policy,
determined by distribution x, is given by A

p
=
∑

e∈E
we

γefe
,

and thus, the optimal peak age is given by

A
p∗

= Minimize
x,f

∑
e∈E

we

γefe
,

subject to f = Mx,

1Tx ≤ 1 and x ≥ 0. (10)

The peak age optimal stationary policy is obtained by solv-
ing (10). We will now argue that in the case when the channel

Fig. 3. Plot of achievable successful link activation frequency regions for the
two link network, in which only one link can be activated at a time. Shown
are regions when channel state is observed (grey) and unobserved (black).

state information is available for scheduling, smaller age than
what is given by (10) can be achieved.

To see the difference between age minimization under
known and unknown channel process consider the two link
example shown in Figure 3. In this example, only one link
can be activated at a time. Let the weights w1 = w2 = 1
for the two links, and the channel success probabilities be
γ1 = γ2 = 0.5. When the channel state S(t) = (S1(t), S2(t))
is unavailable the peak age minimization problem is given by
(from (10)):

A
p∗

= Minimize
f1,f2

1
γ1f1

+
1

γ2f2
,

subject to f1 + f2 ≤ 1,

f1 ≥ 0 and f2 ≥ 0. (11)

Here, f1 denotes the fraction of times link 1 is scheduled and
f2 denotes the fraction of times link 2 is scheduled. Since
γ1 = γ2 = 0.5, the optimal solution to (11) is given by f∗

1 =
f∗
2 = 0.5, i.e. with probability 0.5 each link gets scheduled in

each slot, and as a result the optimal peak age is A
p∗

= 8.
However, if we can observe the channel state S(t) in every

slot before making scheduling decision, we can achieve even
smaller age than A

p∗
= 8. Consider the following policy:

schedule link 1 whenever S1(t) = 1, and otherwise link 2.
The successful link activation frequency on link 1 is then
α1 = γ1 = 0.5, while on link 2 it is α2 = γ2(1− γ1) = 0.25.
The peak age is given by A

p
= 1

α1
+ 1

α2
= 6 < A

p∗
= 8. This

happens primarily because the set of achievable successful
link activation frequencies, namely αe, is larger in the case
when the channel can be observed before deciding on the
schedule in each slot. In Figure 3, we show these regions in the
observed and unobserved channel state case for the two link
example.

This shows that when the channel state information is
available for making scheduling decisions, the network age
performance can be improved. In Sections IV and V, we will
propose two scheduling policies which make use of the current
channel state. In the next section, we present some age iden-
tities, which bring out the inter-relation between the channel
state process, scheduling decisions, and the age process. These
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identities hold under greater generality, and will be used
in proving performance bounds on the proposed policies in
Sections IV and V.

III. AGE IDENTITIES

The age evolution in (2) shows that the channel state
process, the scheduling decisions, and the age processes
are interrelated. We first present two identities, namely,
age-conservation law and the age-square conservation law.
We then prove that for any scheduling policy, the peak
age is upper-bounded by twice the average age, under the
same policy. The results presented here hold in greater gen-
erality, in the sense, that we do not make any assump-
tions on the channel state process or the scheduling
decisions.

Let us define finite time horizon versions of peak and
average age. The t-slot average age, of link e, is defined as:

Aave
t,e =

1
t

t∑
τ=0

Ae(τ), (12)

and the t-slot peak age, of link e, is defined as:

A
p
t,e =

∑t−1
τ=0 Ue(τ)Se(τ)Ae(τ) + Ae(t)∑t−1

τ=0 Ue(τ)Se(τ) + 1
. (13)

The finite time horizon, network average and peak age are
defined to be the weighted sum of link edges:

Aave
t =

∑
e∈E

weA
ave
t,e and Ap

t =
∑
e∈E

weA
p
t,e, (14)

where the weights we are positive, and normalized to sum to
1:
∑

e∈E we = 1.
We first present the age conservation law. It states that for

any scheduling policy, the sum of all age peaks is equal to the
total time elapsed.

Lemma 1: For any scheduling policy, and for all e ∈
E, we have

t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ) + Ae(t) = t. (15)

Proof: See Appendix A.
The lemma states that the sum of all age peaks, and the

residual age at time t, equals the total time that elapsed,
namely, t. Note that the result holds even if link e is never
scheduled. The result doesn’t depend on the scheduling policy,
and is an invariant principle that holds for all triplets of age
{Ae(t)}t, channel process {Se(t)}t, and the decision variables
{Ue(t)}t.

We now present the age-square conservation law, which
states that the sum of squares of the age peaks is equal to the
average age.

Lemma 2: For any scheduling policy, and for all e ∈
E, we have

Aave
t,e =

1
t

{
1
2

t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ) +

1
2
A2

e(t)

}
+

1
2
.

Proof: See Appendix B.
For an intuitive understanding of Lemma 2, note that aver-

age age is essentially the time averaged area of the triangles
formed by the age curve in Figure 2. Since Se(t)Ue(t)Ae(t)
either equals the age peaks in Figure 2, or is 0, the term∑t−1

τ=0
1
2Se(τ)Ue(τ)A2

e(τ) is the sum of the areas of all the
triangles formed by age peaks in Figure 2. The last term
1
2A2

e(t) captures the area formed by the residual age.
Just like the age conservation law, the age-square conser-

vation law holds for any all triplets of age {Ae(t)}t, channel
process {Se(t)}t, and the decision variables {Ue(t)}t. Notice
that Lemma 2 would hold even when the link e is never
scheduled.

We will typically be interested in peak and average age per-
formance of the scheduling policies. In the following lemma,
we prove a useful relation between the peak and average age,
that holds for any scheduling policy.

Lemma 3: For any policy π, we have

Ap
t (π) ≤ 2Aave

t (π) − 1, (16)

and

A
p
(π) ≤ 2A

ave
(π) − 1, (17)

for all e ∈ E, and any t ≥ 1.

Proof: This result follows by a direct application of the
Cauchy-Schwartz inequality. See Appendix D.

An important implication of this result is as follows. If we
want to minimize peak and average age over some policy
space Π, then the same relation in Lemma 3 will hold for
the optimal peak and average age, namely, A

p∗ ≤ 2A
ave∗ − 1,

where A
p∗

and A
ave∗

denote the peak and average age,
respectively. This result will provide with a natural lower-
bound on the optimal average age A

ave∗
in terms of the optimal

peak age.
In the next two sections, we propose scheduling policies,

that use the channel state information, to minimize peak and
average age.

IV. VIRTUAL QUEUE-BASED POLICY

In II-A, we defined the policy space Π to be the policies
which make use of the entire history H(t), and not just the cur-
rent channel state S(t). In Section II-B, we saw that scheduling
using the channel states can improve age. In this section,
we propose a virtual-queue based policy, which uses only
the current channel state information to make the scheduling
decisions. We will prove that these policies can be nearly peak
age optimal.
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We first note that a direct consequence of the age conserva-
tion law, namely Lemma 1, is that the peak age minimization
problem minπ∈Π A

p
(π) reduces to

Minimize
α≥0,π∈Π

∑
e∈E

we

αe
,

subject to lim inf
t→∞ E

[
1
t

t−1∑
τ=0

Ue(τ)Se(τ)

]
≥ αe ∀ e ∈ E.

(18)

We prove this equivalence in Appendix C. This result is
significant because it shows that the peak age minimization
problem is independent of the age evolution equation. For this
reason peak age minimization is much simpler than average
age minimization.

In [29], we showed that when the current channel states
were not available, a randomized scheduling policy is peak
age optimal. We now define a sub-class of policies, which
always contain a peak age optimal policy. These policies do
not use any past history, but only the current channel state
S(t), and are defined as follows [57]:

S-Only Policy: For each observed channel state S ∈ S

we assign a probability distribution p(S, m) over the set of
feasible activation sets m ∈ A. If channel state S(t) is
observed then the activation set m ∈ A is activated for slot t
with probability p (S(t), m).

For an S-only policy, the rate at which a successful transmis-
sion occurs over link e is given by

αe = E [Ue(t)Se(t)] = P [Ue(t)Se(t) = 1]
= γeP [Ue(t) = 1|Se(t) = 1] , (19)

for all e ∈ E. The space of all such rates α will depend
on channel statistics γe, and thus, we use ΛS(γ) to denote
this space of all feasible α using S-only policies. For the two
link example in Figure 3, ΛS(γ) is exactly the grey region of
successful link activation frequencies (α1, α2). Let Λ(γ) be
the space of rates α achievable under all policies in Π. Then,
it is known that Λ(γ) equals ΛS(γ) [57], i.e., S-only policies
are sufficient to achieve the full rate region. This will help us
show that an S-only policy can be nearly peak age optimal.

We first characterize the optimal peak age by showing that
there exists a S-only policy that is nearly peak age optimal.

Theorem 1: The optimal peak age A
p∗

is given by

A
p∗

= Minimize
α

∑
e∈E

we

αe
,

subject to α ∈ ΛS (γ) , (20)

and as a consequence, for any ε > 0, there exists a S-only
policy πε that attains a peak age A

p
(πε) ≤ A

p∗
+ ε.

Proof: In Appendix E, we show that the peak age
minimization problem over the space of S-only policies can
be written as (20).

Theorem 1 can be used to obtain a S-only policy that is
nearly peak age optimal. However, the search space ΛS (γ)
is usually difficult to characterize for general interference
constraints. Another issue is that, solving (20), requires exact
knowledge of the channel statistics γe. We propose a schedul-
ing policy that attains near optimal peak age, even when the
channel statistics γe is not known apriori.

We now propose a policy that solves the peak age mini-
mization problem (18). Note that a policy π can decide on
the activation set mt, at time t, based on the entire history
H(t). However, we do not need the entire history to make
a choice at time t but only a representation of it. To do
so, we construct virtual queue Qe(t) for each link e, which
decreases by (at most) 1 upon a successful transmission over
link e and increases otherwise. These queue lengths determine
the ‘value’ of scheduling link e in time slot t. Therefore, a set
mt ∈ A that maximizes

∑
e∈mt

weQe(t)Se(t) is activated in
slot t. This virtual-queue based policy, πQ, is described below.
Here, V > 0 is any chosen constant.

Virtual-queue based policy πQ Start with Qe(0) = 1
for all e ∈ E. At time t,

1) Schedule activation set mt given by

mt = arg max
m∈A

∑
e∈m

weQe(t)Se(t), (21)

2) Update Qe(t) as

Qe(t + 1) =

[
Qe(t) +

√
V

Qe(t)
− Ue(t)Se(t)

]
+1

,

for all e ∈ E, where [x]+1 = max{x, 1}.

We now show that the virtual-queue based policy approx-
imately solves the peak age minimization problem (18). The
policy πQ is nearly peak age optimal up to an additive
factor.

Theorem 2: The peak age for policy πQ is bounded by

A
p
(πQ) ≤ A

p∗
+
(

1
2

+
1

2V

)
, (22)

where A
p∗

is the optimal value of (20).

Proof: Let αe(t) =
√

V
Qe(t) and αe(t) = 1

t

∑t−1
τ=0 αe(τ)

for all t ≥ 0 and e ∈ E. Also, let g(α) =
∑

e∈E
we

αe
(i.e.,

the objective function in our optimization problem (18)). The
proof is divided into three parts:

Part A: For all time t, we have

lim sup
t→∞

E [g (α(t))]≤A
p∗

+
1
2

∑
e∈E

we+
1

2V

∑
e∈E

we. (23)

Part B: The virtual queue Q(t) is mean rate stable, i.e., for
all e ∈ E we have

lim sup
t→∞

1
t
E [Qe(t)] = 0. (24)
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Part C: If Q(t) is mean rate stable then

lim inf
t→∞ E [αe(t)] ≤ lim inf

t→∞
1
t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)

]
, (25)

and

A
p
(πQ) ≤ lim sup

t→∞
E [g (α(t))] . (26)

The proofs of Part A, B, and C are given in Appendix F.
Since the virtual queues are mean rate stable, by Part B, (25)
and (26) are true. From (23) and (26) we get the result
in (22).

Theorem 2 shows that even when the channel statistics are
not known the optimal peak age A

p∗
can be achieved, up to

an additive factor of 1
2

∑
e∈E we, with arbitrary precision. The

precision can be chosen by selecting V . For example, we may
obtain peak age of at most A

p∗
+ 1

2

∑
e∈E we + δ by setting

V = 1
2δ

∑
e∈E we.

V. AGE-BASED POLICY

The virtual-queue based policy, in the previous section,
relied on constructing virtual queues for each link, which
would accurately weigh the importance of scheduling the link
at time t. Instead of constructing artificial link weights to
measure the importance of scheduling a link, we could use
the actual age. We define age-based policies, which schedule
links as a function of links’ age Ae(t). It is intuitive that
scheduling a set of links with high age is better, at least
in a myopic sense. We define an age-based policy to be
one that schedules a set of links mt ∈ A with maximum
weight

∑
e∈m weSe(t)h (Ae(t)), where h(·) is an increasing

function.

Age-based Policy πA The policy activates links mt ∈
A in slot t given by:

mt = arg max
m∈A

∑
e∈m

weSe(t)h (Ae(t)) , (27)

for all t ≥ 1.

The following Lemma gives an alternate characterization of
average age, which helps us deduce a function h() to use in
the age-based policy.

Lemma 4: Define Be(t) = A2
e(t) + βAe(t) for all

t and e ∈ E, and any given β ∈ R. Then, for any
scheduling policy, and for all e ∈ E, we have

Aave
t,e =

1
t

{
1
2

t−1∑
τ=0

Ue(τ)Se(τ)Be(τ) +
1
2
Be(t)

}
+

1 − β

2
.

Proof: The proof follows from Lemma 1 and
Lemma 2.

Lemma 4 implies that average age minimization problem
over π ∈ Π can be equivalently posed as minimizing

lim sup
t→∞

E

[
1
t

t−1∑
τ=0

∑
e∈E

weUe(τ)Se(τ)Be(τ) +
1
2
Be(t)

]
,

(28)

where Be(τ) = A2
e(τ)+βAe(τ), for all τ ≥ 0, e ∈ E, and any

chosen β ∈ R. Since, age reduces to 1 after a link activation
it makes intuitive sense to choose U(t) such that as

U(t)=arg max
U′(t)

∑
e∈E

weU
′
e(t)Se(t)

[
A2

e(t)+βAe(t)
]
, (29)

in time slot t. This, in the least, should minimize age in the
next slot. Motivated by this, we choose the function h(·) to
be h(x) = x2 + βx.

We next show that the average and peak age of policy πA,
with h(x) = x2+βx, is within a factor of 4 from the respective
optimal values.

Theorem 3: The age-based policy πA, with h(x) =
x2+βx, is at most factor-4 peak and average age optimal,
i.e.,

A
ave

(πA) ≤ 4A
ave∗ − c1(β)

∑
e∈E

we, (30)

and

A
p
(πA) ≤ 4A

p∗ − c2(β)
∑
e∈E

we, (31)

where c1(β) = 20+8β−β2

8 and c2(β) = 8+8β−β2

4 .

Proof: To obtain the bound we define two functions f(t)
and Δ(t), where f(t) is a representation of our objective
function, which is age at time t, while Δ(t) is the drift of
a certain Lyapunov function L(t). We obtain a bound on
E [f(t) + Δ(t)|A(t)] where A(t) denote the vector of all
Ae(t). Telescoping f(t) + Δ(t) over T slots then yields the
result. The detailed proof is given in Appendix G.

We note that β ∈ R can be chosen to improve the additive
factor of optimality. The best bounds, for both peak and
average age, occur when β = 4, for which both c1(β) and
c2(β) are maximized. In the next section, we evaluate the
age-based policy for different choices of β. We also compare
it with the virtual-queue based policy πQ from Section IV.

VI. SIMULATION RESULTS

Consider a network of N = 20 links, in which at most K
links can be activated at any given time. We study the perfor-
mance of our proposed scheduling policies for this network
via simulations. We set we = 1/N for all links e. We assume
links to be either ‘good’, in which case γe = γgood = 0.9, or
‘bad’ in which case γe = γbad = 0.1. We use nbad to denote the
number of bad links in the network. We simulate the policies
πQ, πA, and the optimal policy for the unknown channel case,
proposed in [29], over 105 time slots.
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Fig. 4. Network peak age A
p

for various policies as a function of K .

Fig. 5. Network average age A
ave

for various policies as a function of K .

In Figure 4 and 5, we plot the network peak and average
age, namely A

p
and A

ave
, as a function of K . Here, we have

chosen the parameters V = 1 for the virtual-queue policy πQ,
and β = 1 for the age-based policy πA. Also, nbad = 5. Also
plotted in Figures 4 and 5, is the case when the channel state
is not observed, i.e., scheduling decisions are made only using
history H(t). We plot the peak age optimal policy πC of [29],
while in Figure 5, we also plot a lower-bound on average age
that can be achieved by any such policy [29], since πC is not
average age optimal.

We observe that the gap between the optimal policy πC in
the unknown channel case and policies πQ, πA of the known
channel case is large when K is small, and diminishes as
K increases. Smaller K implies more network interference,
as fewer links can be activated simultaneously. This shows
that there is a significant utility, in terms of age reduction,
in knowing the channel state, especially when the network
suffers from a lot of interference.

In Figure 6 and 7 we plot the network peak and average age
as a function of the fraction of nodes with bad channel, namely
θ = nbad

N . We observe that the gap between the optimal policy
πC in the unknown channel state case, and our policies πQ

and πA of the known channel case, increases as the fraction
θ increases. This indicates that if the channel statistics of the
network are poor then there is a significant utility, in terms of
age reduction, in knowing the channel state information. For
example, when all channels are ‘bad’, i.e. θ = 1, the gap is
as large as 4 fold.

We also observe that the peak and average age of the virtual-
queue based policy πQ and the age-based policy πA nearly
coincide. The two scheduling policies are quite distinct in
their construction, and there is no reason to expect a similar
performance, unless they are both near optimal.

Fig. 6. Network peak age A
p

for various policies as a function of θ.

Fig. 7. Network average age A
ave

for various policies as a function of θ.

Fig. 8. Network peak age A
p
t(πQ) computed till time t for the virtual-queue

policy πQ for V = 0.1 and V = 100. Also plotted is the peak age A
p
(πQ)

achieved over a much larger time horizon.

From Theorem 2 we know that the virtual-queue based
policy is nearly peak age optimal, barring an additive factor
of 1

2 + 1
2V . This factor equals 1 in the simulation results,

as we have chosen V = 1. Figures 4 and 6 show that the
age-based scheduling policy πA also attains approximately
the same peak age. This implies that the age-based policy
πA is also near peak age optimal. We cannot make a similar
claim about the average age performance of the two policies.
We can at best claim, using Theorem 3, that the average age
performance of the virtual-queue based policy is also about
factor-4 away from the optimal.

A. Choice of Parameters V and β

We now analyze performance of our proposed policies πQ

and πA over the choice of parameters V and β, respectively.
Here, we set K = 5 and the number of ‘bad’ channels
also to be nbad = 5. For the virtual-queue based policy
πQ, we observe that the parameter V has nearly no effect
on convergence time of the algorithm. To illustrate this,
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Fig. 9. Network average and peak age, namely A
ave

(πA) and A
p
(πA), as a

function of parameter β.

in Figure 8, we plot the network peak age A
p
(πQ) computed

over the first t time slots, for two different values of V = 0.1
and V = 100. We observe that the peak age measured over
the first t slots converged to the peak age A

p
(πQ) at nearly

the same time.
For the age-based policy πA, we again observe no difference

in convergence time with respect to β. Theorem 3 guarantees
bounds for any β ∈ R. However, in Figure 9, we observe
that the peak and average age achieved by πA gets worse
as β becomes negative. This is because c1(β) and c2(β) in
Theorem 3 are large and negative when β < 0.

VII. CONCLUSION

We considered the problem of age minimization for a single-
hop wireless network under general interference constraints
and time varying channels. We first argued that the knowledge
of channel state information can greatly improve the network’s
age. We proposed a virtual-queue based policy and an age-
based policy, in which the scheduler uses the current channel
state information, to minimize age. We proved that the virtual-
queue based policy is nearly peak age optimal, up to a constant
additive factor, and that the age-based policy is at most a
factor 4 away from age optimality. In comparison to the
optimal scheduling policies, which do not use the channel
state information, we demonstrate several fold improvement
in age performance. This, therefore, establishes the utility in
obtaining or using the channel state information in scheduling
to minimize age. Our proofs relied on the use of age conserva-
tion law and age-square conservation law, which were derived
under greater generality here, and may be of independent
interest.

APPENDIX

A. Proof of Lemma 1
Age evolution for link e can be written as

Ae(t + 1) = 1 + Ae(t) − Ue(t)Se(t)Ae(t), (32)
for all t. As a result, we have

Ae(t) − Ae(0) =
t−1∑
τ=0

(Ae(τ + 1) − Ae(τ)) ,

=
t−1∑
τ=0

(1 − Ue(τ)Se(τ)Ae(τ)) ,

= t −
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ). (33)

Substituting Ae(0) = 0, we obtain the result.

B. Proof of Lemma 2

We know that the age of link e evolves as

Ae(t + 1) = 1 + Ae(t) − Ue(t)Se(t)Ae(t), (34)

for all t. Squaring this we obtain

A2
e(t + 1) = 1 + A2

e(t) + U2
e (t)S2

e (t)A2
e(t) + 2Ae(t)

− 2Ue(t)Se(t)A2
e(t) − 2Ue(t)Se(t)Ae(t). (35)

Since Ue(t)Se(t) ∈ {0, 1}, we have U2
e (t)S2

e (t) = Ue(t)Se(t).
Substituting this in (35) we get

A2
e(t + 1) − A2

e(t) = 1 + 2Ae(t) − Ue(t)Se(t)A2
e(t)

− 2Ue(t)Se(t)Ae(t), (36)

for all t. Telescoping this over t time slots we get

A2
e(t) − A2

e(0) =
t−1∑
τ=0

(
A2

e(τ + 1) − A2
e(τ)

)
,

= t + 2
t−1∑
τ=0

Ae(τ) −
t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)

− 2
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ). (37)

Applying Lemma 1, we obtain

t∑
τ=0

Ae(τ)=
t

2
+

1
2

t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)+

1
2
A2

e(t). (38)

Dividing both sides by t yields the result.

C. Derivation of the Peak Age Minimization Problem

Using Lemma 1, we first show that

A
p
e =

1

lim inft→∞ E

[
1
t

∑t
τ=0

∑
e∈E Ue(τ)Se(τ)

] , (39)

for every e ∈ E. To see this, note that the peak age of link e
is given by

A
p
e = lim sup

t→∞

E

[∑t−1
τ=0 Ue(τ)Se(τ)Ae(τ) + Ae(t)

]
E

[∑t−1
τ=0 Ue(τ)Se(τ) + 1

] ,

= lim sup
t→∞

t

E

[∑t−1
τ=0 Ue(τ)Se(τ) + 1

] ,
=

1

lim inft→∞ E

[
1
t

∑t−1
τ=0 Ue(τ)Se(τ)

] , (40)

where the second equality follows from Lemma 1. Since
A

p
(π) =

∑
e∈E weA

p
e(π), the peak age minimization problem

minπ∈Π A
p
(π) can be written as

Minimize
π∈Π

∑
e∈E

we

lim inft→∞ 1
t

∑t−1
τ=0 Ue(τ)Se(τ)

. (41)

Using auxiliary variables αe, this can be written as (18).
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D. Proof of Lemma 3

Using Cauchy-Schwartz inequality we obtain(
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ) + Ae(t)

)2

≤
(

t−1∑
τ=0

Ue(τ)Se(τ) + 1

)

×
(

t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ) + A2

e(t)

)
,

since U2
e (τ)S2

e (τ) = Ue(τ)Se(τ) as Ue(τ)Se(τ) ∈ {0, 1}.
Applying Lemma 1, we obtain

Ap
t,e =

∑t−1
τ=0 Ue(τ)Se(τ)Ae(τ) + Ae(t)∑t−1

τ=0 Ue(τ)Se(τ) + 1

≤ 1
t

(
t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ) + A2

e(t)

)
, (42)

which is equal to 2Aave
e,t − 1 by Lemma 2. Summing this

over e ∈ E, and making use of the normalizing assumption∑
e∈E we = 1, yields (16). Applying lim sup as t → +∞ on

both sides of (16), yields (17).

E. Proof of Theorem 1

Let π be a S-only policy such that π ∈ Π. Since, the chan-
nel process {S(t)}t≥0 is i.i.d. across time t, the process
{Ue(t)Se(t)}t≥0 is also i.i.d. across t for policy π, as U(t)
is entirely determined by S(t). Therefore, we have αe =
E [Ue(t)Se(t)] for all t ≥ 0 and e ∈ E. Using Lemma 1
and definition of peak age we have

A
p
e =

1

lim inft→∞ 1
t E

[∑t−1
τ=0 Ue(τ)Se(τ)

] ,

=

⎧⎨
⎩

1
αe

if αe > 0

+∞ if αe = 0,
(43)

for all e ∈ E. Thus, the problem of peak age minimization
over the space of all S-only policies is equivalent to

Minimize
α

∑
e∈E

we

αe
,

subject to α ∈ ΛS (γ) . (44)

The optimality of S-only policies in solving (18) follows from
Theorem 4.5 in [57]. This proves the result.

F. Proof of Theorem 2

Proof of Part A: Let L(t) = 1
2

∑
e∈E weQ

2
e(t) and

Δ(t) = L(t + 1) − L(t). Note that

Q2
e(t + 1) = [max{Qe(t) + αe(t) − Ue(t)Se(t), 1}]2 ,

≤ 1 + (Qe(t) + αe(t) − Ue(t)Se(t))
2 ,

= 1 + (αe(t) − Ue(t)Se(t))
2 + Q2

e(t)
+ 2Qe(t) (αe(t) − Ue(t)Se(t)) ,

≤ 1 + V + Q2
e(t) + 2Qe(t) (αe(t) − Ue(t)Se(t)) ,

(45)

where the last inequality follows from the fact that
αe(t) =

√
V

Qe(t) ≤ √
V because Qe(t) ≥ 1 for all t.

Using (45) we obtain

Δ(t) ≤ 1 + V

2

∑
e∈E

we+
∑
e∈E

weQe(t) (αe(t) − Ue(t)Se(t)) ,

(46)

for all t. We, therefore, have

V g(α(t)) + Δ(t)

≤ V
∑
e∈E

we

αe(t)
+

1 + V

2

∑
e∈E

we

+
∑
e∈E

weQe(t) [αe(t) − Ue(t)Se(t)] .

Substituting αe(t) =
√

V/Qe(t), which minimizes the right
hand side, gives

V g(α(t)) + Δ(t)

≤
∑
e∈E

2we

√
V Qe(t)

+
1 + V

2

∑
e∈E

we −
∑
e∈E

weUe(t)Se(t)Qe(t). (47)

Policy πQ minimizes the right hand side of (47) as it activates
set mt at t which maximizes

∑
e∈mt

weSe(t)Qe(t). Therefore,
we can upper bound the right-hand side of (47) by the S-only
policy πε in Theorem 1:

V g(α(t)) + Δ(t)

≤
∑
e∈E

2we

√
V Qe(t)

+
1 + V

2

∑
e∈E

we −
∑
e∈E

weU
πε

e (t)Se(t)Qe(t).

Since αε
e = E [U ε

e(t)Se(t)], taking conditional expectation in
the above equation we get

E [V g(α(t)) + Δ(t)|Q(t)]

≤
∑
e∈E

2we

√
V Qe(t)

+
1 + V

2

∑
e∈E

we −
∑
e∈E

weα
ε
eQe(t). (48)

From Theorem 1, note that A
p
(πε) =

∑
e∈E

we

αε
e
≤ A

p∗
+ ε.

Substituting this in (48), we can write it as

E [V g(α(t)) + Δ(t)|Q(t)]

≤ V A
p∗

+
1 + V

2

∑
e∈E

we + V ε

−
∑
e∈E

weα
ε
e

[√
Qe(t) −

√
V

αε
e

]2

. (49)

Ignoring the last term in (49), we get

E [V g(α(t))+Δ(t)|Q(t)] ≤ V A
p∗

+
1 + V

2

∑
e∈E

we + V ε.

(50)
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Note that no other term depends on πε, except the last term
V ε. Since we could have chosen any ε > 0 to arrive at (50),
we must have

E [V g(α(t)) + Δ(t)|Q(t)] ≤ V A
p∗

+
1+V

2

∑
e∈E

we. (51)

Now, summing both sides of (51) over the first t time slots
we obtain

E

[
V

t−1∑
τ=0

g(α(t))

]
+ E [L(t) − L(0)]

≤ t

[
V A

p∗
+

1 + V

2

∑
e∈E

we

]
.

Since L(t) ≥ 0, we have

E

[
V

t−1∑
τ=0

g(α(t))

]
≤ E

[
V

t−1∑
τ=0

g(α(t))

]
+ E [L(t)] ,

≤ t

[
V A

p∗
+

1 + V

2

∑
e∈E

we

]
+ E [L(0)] .

Diving by t and taking the limit we get

lim sup
t→∞

1
t
E

[
t−1∑
τ=0

g(α(t))

]
≤ A

p∗
+

1
2

∑
e∈E

we +
1

2V

∑
e∈E

we.

(52)

Since g is convex, we have g(α(t)) ≤ 1
t

∑t−1
τ=0 g(α(t)) from

Jensen’s inequality [58]. Substituting this in (52) yields the
result.

Proof of Part B: Since V g(α(t)) ≥ 0, from (51) we obtain

E [Δ(t)] ≤ V

[
A

p∗
+

1
2

∑
e∈E

we

]
+

1
2

∑
e∈E

we. (53)

Summing this over t time slots we get

1
t
E [L(t)] ≤ 1

t
E [L(0)] + V

[
A

p∗
+

1
2

∑
e∈E

we

]
+

1
2

∑
e∈E

we.

(54)

This implies,

lim sup
t→∞

1
t
E [L(t)] ≤ B, (55)

where B = V
[
A

p∗
+ 1

2

∑
e∈E we

]
+ 1

2

∑
e∈E we. Now, since

L(t) = 1
2

∑
e∈E weQ

2
e(t), (55) implies

lim sup
t→∞

1
t
E
[
Q2

e(t)
] ≤ B, (56)

and as a consequence lim supt→∞
1√
t
E [Qe(t)] ≤ B, for all

e ∈ E, since E [Qe(t)]
2 ≤ E

[
Q2

e(t)
]
. This implies

lim sup
t→∞

1
t
E [Qe(t)] = 0, (57)

for all e ∈ E.
Proof of Part C: The queue evolution equation implies

Qe(τ + 1) ≥ Qe(τ) + αe(τ) − Ue(τ)Se(τ), (58)

for any τ ≥ 0. Summing this over t times slots yields

αe(t) +
1
t
Qe(0) ≤ 1

t

t−1∑
τ=0

Ue(τ)Se(τ) +
1
t
Qe(t), (59)

for all t ≥ 0. Since Qe(t) is mean rate stable, taking expected
value of (59) and liminf as t → ∞ we obtain

lim inf
t→∞ E [αe(t)] ≤ lim inf

t→∞
1
t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)

]
. (60)

Since g is a continuous, decreasing function in each αe we
have

A
p
(πQ) =

∑
e∈E

we

lim inft→∞ E

[
1
t

∑t−1
τ=0 Ue(t)Se(t)

] ,
≤
∑
e∈E

we

lim inft→∞ E [αe(t)]
,

= lim sup
t→∞

∑
e∈E

we

E [αe(t)]
,

≤ lim sup
t→∞

E

[∑
e∈E

we

αe(t)

]
= lim sup

t→∞
E [g (α(t))] ,

(61)

where the first equality follows from Lemma 1 and (3), the sec-
ond inequality follows from (60), while the last inequality
follows from Jensen’s inequality [59] and definition of g(α).

G. Proof of Theorem 3

Define L(t) = 1
2

∑
e∈E weA

2
e(t), Δ(t) = L(t + 1) − L(t),

and

f(t) =
(

1 − β
(1 − V )

2

)∑
e∈E

weUe(t)Se(t)Ae(t)

+
V

2

∑
e∈E

weUe(t)Se(t)A2
e(t), (62)

for 0 < V < 1, β ∈ R, and all t ≥ 0. Using age evolution
equation Ae(t+1) = 1+Ae(t)−Ue(t)Se(t)Ae(t), we obtain

Δ(t) =
1
2

∑
e∈E

we +
∑
e∈E

weAe(t)

−
∑
e∈E

weUe(t)Se(t)Ae(t)

− 1
2

∑
e∈E

weUe(t)Se(t)A2
e(t). (63)

Summing (62) and (63) we get

f(t) + Δ(t)

=
1
2

∑
e∈E

we +
∑
e∈E

weAe(t)

− (1 − V )
2

∑
e∈E

weUe(t)Se(t)
[
A2

e(t) +βAe(t)
]
. (64)

Policy πA chooses U(t) that maximizes∑
e∈E

weUe(t)Se(t)
[
A2

e(t) + βAe(t)
]
, (65)
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and thus, it minimizes the right-hand side in (64). Therefore,
for any other policy π we must have

f(t) + Δ(t)

≤ 1
2

∑
e∈E

we +
∑
e∈E

weAe(t)

− (1 − V )
2

∑
e∈E

weU
π
e (t)Se(t)

[
A2

e(t) + βAe(t)
]
, (66)

where Uπ(t) denotes the action of policy π at time t. Take
an ε > 0 and substitute the nearly peak age optimal S-only
policy πε from Theorem 1 for π in (66). This gives the bound

E
[
f(t) + Δ(t)

∣∣A(t)
]

≤ 1
2

∑
e∈E

we +
∑
e∈E

weAe(t)

− (1 − V )
2

∑
e∈E

weα
ε
e

[
A2

e(t) + βAe(t)
]
, (67)

since αε
e = E

[
Uπε

e (t)Se(t)
]

and Uπε

e (t), Se(t) are
independent of Ae(t) as πε is a S-only policy. We can further
re-write (67) as

E
[
f(t) + Δ(t)

∣∣A(t)
] ≤ 1

2

∑
e∈E

we

+
1 − V

2

∑
e∈E

weα
ε
e

[
β2

4
+

(1 − V )−2

(αε
e)2

− 1
1 − V

β

αε
e

]

− (1 − V )
2

∑
e∈E

weα
ε
e

[
Ae(t) +

β

2
− (1 − V )−1

αε
e

]2
. (68)

Ignoring the last term, since it is negative, and using the fact
that αε

e ≤ 1 we have

E [f(t) + Δ(t)] ≤ (1 − V )−1

2

∑
e∈E

we

αε
e

+ θ
∑
e∈E

we, (69)

where θ = 1−β
2 + (1−V )

2
β2

4 . Summing this over t time slots
we obtain

E

[
t−1∑
τ=0

f(τ)

]
+ E [L(t) − L(0)]

≤ t

[
(1 − V )−1

2

∑
e∈E

we

αε
e

+ θ
∑
e∈E

we

]
. (70)

Since L(t) ≥ 0 for all t, we have

E

[
t−1∑
τ=0

f(τ)

]
≤ E

[
t−1∑
τ=0

f(τ)

]
+ E [L(t)] ,

≤ t

[
(1 − V )−1

2

∑
e∈E

we

αε
e

+ θ
∑
e∈E

we

]
+ E [L(0)] .

Dividing this by t and taking the limit we obtain

lim sup
t→∞

1
t
E

[
t−1∑
τ=0

f(τ)

]
≤ (1 − V )−1

2

∑
e∈E

we

αε
e

+ θ
∑
e∈E

we.

(71)

Note that A
p
(πε) =

∑
e∈E

we

αε
e

≤ A
p∗

+ ε, by Theorem 1.
Substituting this in (71) we get

lim sup
t→∞

1
t
E

[
t−1∑
τ=0

f(τ)

]
≤ (1 − V )−1

2
A

p∗
+ θ

∑
e∈E

we

+
(1 − V )−1

2
ε. (72)

Note that in (72), only the last term (1−V )−1

2 ε depends on
πε. Since we could have chosen any ε > 0 to arrive at (72),
we have

lim sup
t→∞

1
t
E

[
t−1∑
τ=0

f(τ)

]
≤ (1 − V )−1

2
A

p∗
+θ
∑
e∈E

we. (73)

Now, from Lemma 3, we know that A
p∗ ≤ 2A

ave∗ −∑
e∈E we. Substituting this in (73) we get

lim sup
t→∞

E

[
1
t

t−1∑
τ=0

f(τ)

]
≤ 1

(1 − V )
A

ave∗

+
(

θ − 1
2(1 − V )

)∑
e∈E

we. (74)

Assuming that E
[
A2

e(t)
]

is uniformly bounded for all
t, we can make use of Lemma 1 and 2 to compute
lim supt→∞ E

[
1
t

∑t−1
τ=0 f(τ)

]
. This gives us

lim sup
t→∞

E

[
1
t

t−1∑
τ=0

f(τ)

]

=
∑
e∈E

we + V A
ave

(πA)

− β(1 − V ) + V (1 − β)
2

∑
e∈E

we. (75)

Substituting this in (74) we get

A
ave

(πA) ≤ 1
V (1 − V )

A
ave∗ − κ

∑
e∈E

we, (76)

where κ is given by

κ =
1
V

+
1

2V (1 − V )
− β(1 − V )+V (1 − β)

2V
− θ

V
. (77)

Substituting V = 1/2 gives (30).
In order to obtain (31), first substitute A

p
(πA) ≤

2A
ave

(πA) −∑e∈E we from Lemma 3 in (75) to get

lim sup
t→∞

1
t
E

[
t−1∑
τ=0

f(τ)

]
≥
∑
e∈E

we +
V

2
A

p
(πA)

− β(1 − 2V )
2

∑
e∈E

we. (78)

Combining (78) and (73), and setting V = 1/2, we get the
result in (31).

It suffices to argue that the mean E
[
A2

e(t)
]

is uni-
formly bounded for all t. Define a Lyapunov function
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L̃(t) = 1
2

∑
e∈E we (Ae(t) + β/2 − 1)2, and the correspond-

ing drift Δ̃(t) = L̃(t + 1) − L̃(t). Then using the same
arguments as in (68) we can obtain

E

[
˜Δ(t)|A(t)

]
≤ B1 −

∑
e∈E

B2,e (Ae(t) + ce)
2
, (79)

for constants B1, B2,e, and ce. Foster-Lyapunov theorem [60,
Chap. 6] then implies that the process {A2(t)}t is positive
recurrent, and that E

[
A2

e(t)
]

is uniformly bounded.
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