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Minimizing the Age of Information in Wireless
Networks with Stochastic Arrivals

Igor Kadota and Eytan Modiano

Abstract—We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from
each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The
queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t,
which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations
fresh. Information freshness is captured by the Age of Information (AoI) metric.
In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing
discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a
Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing
discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results
show that the performance of the Max-Weight policy is close to the analytical lower bound.

Index Terms—Age of Information, Scheduling, Wireless Networks, Optimization
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1 INTRODUCTION

T RADITIONALLY, networks have been designed to max-
imize throughput and minimize packet latency. With

the emergence of new types of networks such as vehicular
networks, UAV networks and sensor networks, other perfor-
mance requirements are increasingly relevant. In particular,
the Age of Information (AoI) is a performance metric that
was recently proposed in [2], [3] and has been receiving
attention in the literature [2], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35] for its application in communication systems that carry
time-sensitive data. The AoI captures how fresh the information
is from the perspective of the destination.

Consider a system in which packets are time-stamped
upon arrival. Naturally, the higher the time-stamp of a
packet, the fresher its information. Let τD(t) be the time-
stamp of the freshest packet received by the destination by time
t. Then, the AoI is defined as h(t) := t − τD(t). The AoI
measures the time that elapsed since the generation of the
freshest packet received by the destination. The value of
h(t) increases linearly over time while no fresher packet is
received, representing the information getting older. At the
moment a fresher packet is received, the time-stamp at the
destination τD(t) is updated and the AoI is reduced.

In this paper, we study a wireless network with a Base
Station (BS) serving multiple traffic streams to different
destinations over unreliable channels, as illustrated in Fig. 1.
Packets from each stream arrive to the BS according to
a stochastic process and are enqueued in a separate (per
stream) queue. The queueing discipline controls which
packet within each queue is available for transmission. The
BS decides, at every time t, which stream to serve to the cor-
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responding destination. Our goal is to develop scheduling
policies that keep the information fresh at every destination,
i.e. that minimize the average AoI in the network.

In [16], it was shown that when the BS always has fresh
packets available for transmission, the optimal scheduling
policy serves the stream associated with the largest AoI.
This policy is optimal1 for it gives the largest reduction
in AoI over all streams. However, when packet arrivals
are random, the BS may not have a fresh packet available
for every stream. Thus, a scheduling policy must account
both for the AoI at the destinations and the time-stamps
of the packets available for transmission in each queue.
For example, consider a simple network with two streams
and two destinations. Assume that at time t, each stream
has a single packet in its queue. The packet from stream 1
was generated 30 msecs ago and the packet from stream
2 was generated 10 msecs ago. Assume that the current
AoI at destinations 1 and 2 are h1(t) = 50 msecs and
h2(t) = 40 msecs, respectively. A policy that serves the
stream associated with the largest AoI would select stream
1 and yield an AoI reduction of 50 − 30 = 20 msecs.
Alternatively, serving stream 2 would result in a reduction
of 40− 10 = 30 msecs. Hence, to minimize the average AoI,
it is optimal to schedule stream 2. In this simple example,
the optimal scheduling decision was easily determined. In
general, designing a transmission scheduling policy that
keeps information fresh over time is a challenging task
that needs to take into account the packet arrival process,
the queueing discipline, and the conditions of the wireless
channels.

In recent years, the problem of minimizing the AoI has
been addressed in a variety of contexts. Queueing Theory
is used in [2], [4], [5], [6], [7], [8], [9], [10] for finding the

1This policy was shown to minimize the average AoI of symmetric
networks, i.e. networks in which all destinations have identical features.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2020 at 00:09:48 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2959774, IEEE
Transactions on Mobile Computing

2 SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

optimal server utilization with respect to AoI. The authors
in [12], [13], [14], [15] consider the problem of optimizing
the times in which packets are generated at the source
in networks with energy-harvesting or maximum update
frequency constraints. Applications of AoI are studied in
[3], [36], [37], [38], [39]. Link scheduling optimization with
respect to AoI has been recently considered in [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [40], [41], [42]. Next, we describe the
mentioned related work on link scheduling optimization.

The authors in [20], [32], [42] studied multi-hop net-
works, while other works addressed single-hop networks.
Deterministic packet arrivals were considered in [16], [19],
[20], [22], [25], [26], [27], [30], [33], [41], [42], arbitrary
arrivals in [17], [18], [32], [34], [40] and stochastic arrivals in
[21], [22], [23], [24], [31], [35]. Networks with no queueing,
i.e. when packets are discarded if not scheduled imme-
diately upon arrival, were considered in [23], [24], First-
In First-Out (FIFO) queues were considered in [17], [18],
[21], [22] and other works considered Last-Generated First-
Served queues, which are often equivalent to the simpler
Last-In First-Out (LIFO) queues. Reliable links over which
transmissions are always successful are considered in [17],
[18], [20], [21], [23], [24], [25], [31], [32], [34], [40], [42] and
other works considered unreliable links.

Most relevant to this paper are [19], [21], [22], [23], [26],
[34]. In [22], the authors consider a network with stochastic
packet arrivals, FIFO queues and link scheduling following
a Stationary Randomized policy. An expression for the AoI
in a discrete time G/Ber/1 queue is derived and used to
develop a method of jointly tunning arrival and service rates
of all links in order to minimize AoI. In [34], the authors de-
velop scheduling policies for multi-server queueing systems
in which streams have synchronized packet arrivals. In [23],
the authors develop scheduling policies based on the Whit-
tle’s Index for networks with stochastic arrivals, no queues
and reliable broadcast channels. The authors in [21] utilize
an alternative definition of AoI to develop an Age-Based
Max-Weight policy for a network with stochastic arrivals,
FIFO queues and unreliable links. In [19], [26], the authors
consider a network with deterministic arrivals, LIFO queues
and unreliable broadcast channels, and develop three poli-
cies: Optimal Stationary Randomized, Whittle’s Index and
Age-Based Max-Weight.

In this paper, we develop a framework for addressing
link scheduling optimization in networks with stochastic
packet arrivals and unreliable links operating under three
common queueing disciplines. Our main contributions
include: i) deriving a lower bound on the AoI performance
achievable by any given network operating under any
queueing discipline; ii) developing both an Optimal Sta-
tionary Randomized policy and an Age-Based Max-Weight
policy under three common queueing disciplines; and iii)
evaluating the combined impact of the stochastic arrivals,
queueing discipline and scheduling policy on AoI. We show
that, contrary to intuition, the Optimal Stationary Random-
ized policy for LIFO queues is insensitive to packet arrival
rates. Simulation results show that the performance of the
Age-Based Max-Weight policy for LIFO queues is close to
the analytical lower bound.

This paper generalizes our earlier results in [19], [26].

The main difference is that in [19], [26] we assume that
when the BS selects a stream, a new packet with fresh
information is generated and then transmitted to the cor-
responding destination in the same time-slot. It follows
that in [19], [26] the packet delay is always 1 slot and
the AoI is reduced to h(t) = 1 slot after every packet
delivery. In contrast, in this paper, we consider a network
in which packets are generated according to a stochastic
process and are enqueued before being transmitted. This
seemingly modest distinction affects the packet delay and
the evolution of AoI over time, which in turn affects the
results and proofs throughout the paper significantly. To
illustrate the technical differences between [19], [26] and
this paper, we briefly compare the approaches taken for
analyzing Stationary Randomized policies and Max-Weight
policies.

• Under the assumptions in [19], [26], the AoI evo-
lution is stochastically renewed after every packet
delivery, since h(t) = 1, and thus the AoI can be an-
alyzed by directly applying the elementary renewal
theorem for renewal-reward processes. In contrast,
in this paper, the evolution of AoI may be dependent
across consecutive inter-delivery intervals and, thus,
the same approach is not applicable. To analyze the
AoI, we obtain the stationary distribution of a two-
dimensional Markov Chain with countably-infinite
state space in Proposition 4.

• The Max-Weight policy in [19], [26] makes schedul-
ing decisions based on AoI only. In contrast, in
this paper, the Max-Weight policy selects streams
based on the AoI reduction accrued from a successful
packet delivery, which is a function of both AoI and
packet delay.

Beyond the fact that [19], [26] represent a special case of
this paper, in particular a network with LIFO queues and
fresh packet arrivals at every decision time, the results
are different in themselves and required different proof
techniques due to the challenges imposed by the stochastic
arrivals, queueing disciplines and packet delay.

A preliminary version of this paper appeared in [1]. The
main differences between this paper and [1] are the addition
of complete proofs for Theorems and Propositions, and
the addition of substantial simulation results that highlight
the sensitivity of the AoI performance to changes in the
network parameters and the AoI degradation for large-scale
networks.

The remainder of this paper is organized as follows. In
Sec. 2, we describe the network model. In Sec. 3 we derive an
analytical lower bound on the AoI minimization problem.
In Sec. 4, we develop the Optimal Stationary Randomized
policy for each queueing discipline and characterize their
AoI performance. In Sec. 5, we develop the Max-Weight pol-
icy and obtain performance guarantees in terms of AoI. In
Sec. 6, we provide numerical results. The paper is concluded
in Sec. 7. Due to the space constraint, some of the technical
proofs are provided in the supplemental material.

2 SYSTEM MODEL
Consider a wireless network with a BS serving packets from
N streams to N destinations, as illustrated in Fig. 1. Time
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is slotted with slot index t ∈ {1, 2, · · · , T}, where T is the
time-horizon of this discrete-time system. At the beginning
of every slot t, a new packet from stream i ∈ {1, 2, · · · , N}
arrives to the system with probability λi ∈ (0, 1],∀i. Let
ai(t) ∈ {0, 1} be the indicator function that is equal to 1
when a packet from stream i arrives in slot t, and ai(t) = 0
otherwise. This Bernoulli arrival process is i.i.d. over time
and independent across different streams, with P(ai(t) =
1) = λi,∀i, t.

Fig. 1. Illustration of the wireless network.

Packets from stream i are enqueued in queue i. Denote
by Head-of-Line (HoL) packets the set of packets from all
queues that are available to the BS for transmission in a given
slot t. Depending on the queueing discipline employed by
the network, queues can be of three types:

(i) FIFO queues: packets are served in order of arrival. The
HoL packets in slot t are the oldest packets in each
queue. This is a standard queueing discipline, widely
deployed in communication systems. However, only
a few works on link scheduling optimization for AoI
[17], [18], [21], [22] consider this queueing discipline;

(ii) Single packet queues: when a new packet arrives, older
packets from the same stream are dropped from the
queue. The HoL packets in slot t are the freshest (i.e.
most recently generated) packets in each queue. This
queueing discipline is known to minimize the AoI in a
variety of contexts.

(iii) No queues: packets can be transmitted only duing the
slot in which they arrive. The HoL packets in slot t are
given by the set {i|ai(t) = 1}. This queueing discipline
is considered in [23], [24] for its ease of analysis.

Let zi(t) represent the system time of the HoL packet
in queue i at the beginning of slot t. By definition, we have
zi(t) := t−τAi (t), where τAi (t) is the arrival time of the HoL
packet in queue i. Naturally, the value of τAi (t) changes only
when the HoL packet changes, namely when the current
HoL packet is served or dropped and there is another packet
in the same queue; or when the queue is empty and a new
packet arrives. Notice that zi(t) is undefined when queue i
is empty.

We denote by zFi (t), zSi (t) and zNi (t), the system times
associated with FIFO queues, Single packet queues and No
queues, respectively. For all three cases, whenever the sys-
tem time is defined, it evolves according to the definition
zi(t) := t− τAi (t). Moreover, it follows from the description
of the queueing disciplines that the evolution of zSi (t) can
be written as

zSi (t) =

{
0 if ai(t) = 1;

zSi (t− 1) + 1 otherwise, (1)

and the evolution of zNi (t) is such that zNi (t) = 0 whenever
an arrival occurs, i.e. ai(t) = 1, and is undefined otherwise.
The evolution of zFi (t) is more involved. When a packet is
delivered, the value of zFi (t) is updated to the system time
of the next HoL packet in the queue. Hence, the evolution of
zFi (t) depends on both the arrival times and service times
of packets in the queue.

In each slot t, the BS either idles or selects a stream and
transmits its HoL packet to the corresponding destination
over the wireless channel. Let ui(t) ∈ {0, 1} be the indicator
function that is equal to 1 when the BS transmits the HoL
packet from stream i during slot t, and ui(t) = 0 otherwise.
The BS can transmit at most one packet at any given time-
slot t. Hence, we have

N∑
i=1

ui(t) ≤ 1,∀t . (2)

The transmission scheduling policy governs the sequence of
decisions {ui(t)}Ni=1 of the BS.

Let ci(t) ∈ {0, 1} represent the channel state associated
with destination i during slot t. When the channel is ON,
we have ci(t) = 1, and when the channel is OFF, we
have ci(t) = 0. The channel state process is i.i.d. over
time and independent across different destinations, with
P(ci(t) = 1) = pi,∀i, t. The probability pi is fixed in
time, but may differ across destinations, representing their
possibly different physical locations.

Let di(t) ∈ {0, 1} be the indicator function that is equal
to 1 when destination i successfully receives a packet during
slot t, and di(t) = 0 otherwise. A successful reception
occurs when the HoL packet is transmitted and the asso-
ciated channel is ON, implying that di(t) = ci(t)ui(t),∀i, t.
Moreover, since the BS does not know the channel states
prior to making scheduling decisions, ui(t) and ci(t) are
independent, and E[di(t)] = piE[ui(t)],∀i, t.

The transmission scheduling policies considered in this
paper are non-anticipative, i.e. policies that do not use
future information in making scheduling decisions. Let Π
be the class of non-anticipative policies and let π ∈ Π
be an arbitrary admissible policy. Our goal is to develop
scheduling policies π that minimize the average AoI in the
network. Next, we formulate the AoI minimization problem.

2.1 Age of Information

The AoI depicts how old the information is from the per-
spective of the destination. Let hi(t) be the AoI associated
with destination i at the beginning of slot t. By definition,
we have hi(t) := t−τDi (t), where τDi (t) is the arrival time of
the freshest packet delivered to destination i before slot t. If
during slot t destination i receives a packet with system time
zi(t) = t − τAi (t) such that τAi (t) > τDi (t), then in the next
slot we have hi(t + 1) = zi(t) + 1. Alternatively, if during
slot t destination i does not receive a fresher packet, then
the information gets one slot older, which is represented
by hi(t + 1) = hi(t) + 1. Notice that the three queueing
disciplines considered in this paper select HoL packets with
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increasing freshness, implying that τAi (t) > τDi (t) holds2 for
every received packet. Hence, the AoI evolves as follows:

hi(t+ 1) =

{
zi(t) + 1 if di(t) = 1;
hi(t) + 1 otherwise, (3)

for simplicity, and without loss of generality, we assume that
hi(1) = 1 and zi(0) = 0,∀i. Substituting zFi (t), zSi (t) and
zNi (t) into (3) we obtain the AoI associated with FIFO queues,
Single packet queues and No queues, respectively. In Fig. 2
we illustrate the evolution of hi(t) and zi(t) in a network
employing Single packet queues.

Fig. 2. The blue and orange rectangles represent a packet arrival to
queue i and a successful packet delivery to destination i, respectively.
The blue curve shows the evolution of zi(t) for the Single packet queue
and the orange curve shows the AoI associated with destination i.

The time-average AoI associated with destination i is
given by E

[∑T
t=1 hi(t)

]
/T . For capturing the freshness of

the information of a network employing scheduling policy
π ∈ Π, we define the Expected Weighted Sum AoI (EWSAoI)
in the limit as the time-horizon grows to infinity as

E [Jπ] = lim
T→∞

1

TN

T∑
t=1

N∑
i=1

wiE [hπi (t)] , (4)

where wi is a positive real number that represents the pri-
ority of stream i. We denote by AoI-optimal, the scheduling
policy π∗ ∈ Π that achieves minimum EWSAoI, namely

E[J∗] = min
π∈Π

E [Jπ] , (5)

where the expectation is with respect to the randomness
in the channel state ci(t), scheduling decisions ui(t) and
arrival process ai(t). Next, we introduce the long-term
throughput and discuss the stability of FIFO queues.

2.2 Long-term Throughput
Let Dπ

i (T ) =
∑T
t=1 d

π
i (t) be the total number of packets

delivered to destination i by the end of the time-horizon
T when the admissible policy π ∈ Π is employed. Then,

2One example of a queueing discipline that can violate τAi (t) >
τDi (t) is the Last-In First-Out (LIFO) queue. When an older packet with
τAi (t) ≤ τDi (t) is delivered, the associated AoI does not decrease and
the network runs as if no packet was delivered. It follows that, from the
perspective of the AoI, LIFO queues are equivalent to Single packet
queues.

the long-term throughput associated with destination i is
defined as

q̂πi := lim
T→∞

E [Dπ
i (T )]

T
. (6)

Throughout this paper, we assume that q̂πi > 0,∀i. Since
packets from stream i are generated at a rate λi, the long-
term throughput provided to destination i cannot be higher
than λi. Hence, the long-term throughput satisfies

q̂πi ≤ λi,∀i . (7)

The shared and unreliable wireless channel further re-
stricts the set of achievable values of long-term throughput
{q̂πi }Ni=1. By employing E[di(t)] = piE[ui(t)] and (2) into the
definition of long-term throughput in (6), we obtain

E [Dπ
i (T )]

T
=
pi
∑T
t=1 E[uπi (t)]

T
⇒

N∑
i=1

q̂πi
pi
≤ 1 . (8)

Inequalities (7) and (8) are necessary conditions3 for the
long-term throughput {q̂πi }Ni=1 of any admissible scheduling
policy π ∈ Π, regardless of the queueing discipline. Both
inequalities are used for deriving the lower bound in Sec. 3.
Next, we discuss the stability of FIFO queues and its impact
on the AoI minimization problem.

2.3 Queue Stability
Let Qπi (t) be the number of packets in queue i at the
beginning of slot t when policy π is employed. Then, we
say that queue i is stable if

lim
T→∞

E [Qπi (T )] <∞ . (9)

A network is stable under policy π when all of its queues
are stable. For networks with Single packet queues and No
queues, stability is trivial since the backlogs are such that
Qπi (t) ∈ {0, 1},∀t, regardless of the scheduling policy. The
discussion about queue stability that follows is meaningful
only for the case of FIFO queues.

Definition 1 (Stability Region). A set of arrival rates {λi}Ni=1

is within the stability region of a given wireless network if there
exists an admissible scheduling policy π ∈ Π that stabilizes all
queues.

When the network is unstable under a policy η ∈ Π, then
the expected backlog of at least one of its queues grows
indefinitely over time. An infinitely large backlog leads to
packets with infinitely large system times, i.e. zi(t)→∞. It
follows from the evolution of hi(t) in (3) that the AoI also in-
creases indefinitely and, as a result, the Expected Weighted
Sum AoI diverges, namely E[Jη] → ∞. Clearly, instability
is a critical disadvantage for networks with FIFO queues.
Hence, we are interested in scheduling policies that can
stabilize the network whenever the arrival rates {λi}Ni=1 are
within the stability region. Prior to introducing the policies,
we derive a lower bound to the AoI minimization problem.

3In [19], [35], the authors consider destinations with minimum
timely-throughput requirements. Notice that conditions (7) and (8) are
not throughput requirements enforced by the destinations. They are
necessary conditions that follow naturally from the stochastic arrivals
and interference constraints of the network.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 17,2020 at 00:09:48 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2959774, IEEE
Transactions on Mobile Computing

IGOR KADOTA AND EYTAN MODIANO: MINIMIZING THE AGE OF INFORMATION IN WIRELESS NETWORKS WITH STOCHASTIC ARRIVALS 5

3 LOWER BOUND
In this section, we derive an alternative (and more insight-
ful) expression for the AoI objective function Jπ in (4) in
terms of packet delay and inter-delivery times. Then, we
use this expression to obtain a lower bound to the AoI
minimization problem, namely LB ≤ E[J∗], for any given
network operating under an arbitrary queueing discipline.
Surprisingly, the lower bound LB depends only on the
network’s long-term throughput.

3.1 AoI in terms of packet delay and inter-delivery
times
Consider a network employing policy π during the time-
horizon T . Let Ω be the sample space associated with this
network and let ω ∈ Ω be a sample path. For a given sample
path ω, let ti[m] be the index of the time-slot in which the
mth (fresher4) packet was delivered to destination i, ∀m ∈
{1, · · · , Di(T )}, where Di(T ) is the total number of packets
delivered. Then, we define Ii[m] := ti[m]− ti[m− 1] as the
inter-delivery time, with Ii[1] = ti[1] and ti[0] = 0.

The packet delay associated with the mth packet delivery
to destination i is given by zi(ti[m]). Notice that zi(ti[m]) is
the system time of the HoL packet at the time it is delivered
to the destination, which is the definition of packet delay. To
simplify notation, we use zi[m] instead of zi(ti[m]).

Define the operator M̄[x] that calculates the sample mean
of a set of values x. Using this operator, the sample mean of
Ii[m] for a fixed destination i is given by

M̄[Ii] =
1

Di(T )

Di(T )∑
m=1

Ii[m] . (10)

For simplicity of notation, the time-horizon T is omitted in
the sample mean operator M̄.

Proposition 2. The infinite-horizon AoI objective function Jπ

can be expressed as follows

Jπ = lim
T→∞

N∑
i=1

wi
2N

[
M̄[I2

i ]

M̄[Ii]
+

2M̄[ziIi]

M̄[Ii]
+ 1

]
w.p.1 , (11)

where Ii[m] is the inter-delivery time, zi[m] is the packet delay
and

M̄[ziIi] =
1

Di(T )

Di(T )∑
m=1

zi[m− 1]Ii[m] . (12)

Proof. The evolution of hi(t) is well-defined in each of
the time intervals Ii[m]. According to (3), during the in-
terval Ii[m], the parameter hi(t) evolves as {zi[m − 1] +
1, zi[m − 1] + 2, · · · , zi[m − 1] + Ii[m]}. This pattern is
repeated throughout the entire time-horizon, for m ∈
{1, 2, · · · , Di(T )}. We use this pattern to derive an expres-
sion for the time-average AoI associated with destination i
in the limit as T → ∞. Substituting this expression into (4)
without the expectation gives (11). The complete proof is
provided in Appendix A of the supplemental material. �

Equation (11) is valid for networks operating under an
arbitrary queueing discipline and employing any scheduling

4Recall that the delivery of an older packet with τAi (t) ≤ τDi (t)
does not change the associated AoI and, thus, should not be counted.

policy π ∈ Π. A similar result for the case of a single stream,
N = 1, was derived in [11]. This equation provides useful
insights into the AoI minimization. The first term on the
RHS of (11), namely M̄[I2

i ]/2M̄[Ii], depends only on the
service regularity provided by the scheduling policy. The
second term on the RHS of (11) depends on both the packet
delay zi[m− 1] and the inter-delivery time Ii[m], as follows

M̄[ziIi]

M̄[Ii]
=

Di(T )∑
m=1

Ii[m]∑Di(T )
j=1 Ii[j]

zi[m− 1] . (13)

Notice that (13) is a weighted sample mean of the packet
delays. Intuitively, for minimizing this term, both the queue-
ing discipline and the scheduling policy should attempt to
deliver packets with low delay zi[m − 1] and, when the
delay is high, they should deliver the next packet as soon as
possible in order to reduce the weight Ii[m] on the weighted
mean (13).

The expression in (11) provides intuition on how the
scheduling policy should manage the packet delays zi[m]
and the inter-delivery times Ii[m] in order to minimize
AoI. Moreover, it shows that by utilizing the simplifying
assumption of queues always having fresh packets available
for transmission, the scheduling policy disregards zi[m] and
fails to address the term in (13). Next, we use (11) to obtain
a lower bound to the AoI minimization problem and, in
upcoming sections, we consider scheduling policies that
take into account both Ii[m] and zi[m].

3.2 Lower Bound
A lower bound on AoI is obtained from the expression
in Proposition 2. By applying Jensen’s inequality M̄[I2

i ] ≥
(M̄[Ii])

2 to (11), manipulating the resulting expression and
then employing a minimization over policies in Π, we obtain

Lower Bound

LB = min
π∈Π

{
1

2N

N∑
i=1

wi

(
1

q̂πi
+ 1

)}
(14a)

s.t.
∑N
i=1 q̂

π
i /pi ≤ 1 ; (14b)

q̂πi ≤ λi,∀i , (14c)

where (14b) and (14c) are the necessary conditions for the
long-term throughput in (8) and (7), respectively. Notice
that the optimization problem in (14a)-(14c) depends only
on the network’s long-term throughput {q̂πi }Ni=1 and that the
condition q̂πi ≤ λi limits the throughput to the packet arrival
rate of the respective stream. To find the unique solution to
(14a)-(14c), we analyze the associated KKT Conditions.

Theorem 3 (Lower bound). For any given network with
parameters (N, pi, λi, wi) and an arbitrary queueing discipline,
the optimization problem in (14a)-(14c) provides a lower bound on
the AoI minimization problem, namely LB ≤ E[J∗]. The unique
solution to (14a)-(14c) is given by

q̂LB
i = min

{
λi,

√
wipi

2Nγ∗

}
,∀i , (15)

where γ∗ yields from Algorithm 1. The lower bound is given by

LB =
1

2N

N∑
i=1

wi

(
1

q̂LB
i

+ 1

)
. (16)
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Algorithm 1 Solution to the Lower Bound

1: γ̃ ← (
∑N
i=1

√
wi/pi)

2/(2N) and γi ← wipi/2Nλ
2
i ,∀i

2: γ ← max{γ̃; γi}
3: qi ← λi min{1;

√
γi/γ},∀i

4: S ←
∑N
i=1 qi/pi

5: while S < 1 and γ > 0 do
6: decrease γ slightly
7: repeat steps 4 and 5 to update qi and S
8: end while
9: return γ∗ = γ and q̂LB

i = qi,∀i

Proof. Provided in Appendix B of the supplemental mate-
rial. �

Next, we develop the Optimal Stationary Randomized
policy for different queueing disciplines and derive the
closed-form expression for their AoI performance.

4 STATIONARY RANDOMIZED POLICIES
Denote by ΠR the class of Stationary Randomized policies.
LetR ∈ ΠR be a scheduling policy that, in each slot t, selects
stream i with probability µi ∈ (0, 1] or selects no stream
with probability µ0. If the selected stream i has a non-empty
queue, then ui(t) = 1 and the HoL packet is transmitted by
the BS to destination i. Alternatively, if the selected stream
i has an empty queue or policy R selected no stream, then
ui(t) = 0,∀i and the BS idles. The scheduling probabilities
µi are fixed over time and satisfy

∑N
i=1 µi = 1− µ0.

Randomized policies R ∈ ΠR are as simple as possible.
Each policy in ΠR is fully characterized by the set {µi}Ni=1.
They select streams at random, without taking into account
hi(t), zi(t) or queue backlogs Qi(t). Notice that policies in
ΠR are not work-conserving, since they allow the BS to
idle during slots in which HoL packets are available for
transmission.

Despite their simplicity, we show that by properly tun-
ing the scheduling probabilities µi according to the network
parameters (N, pi, λi, wi), policies in ΠR can achieve per-
formances within a factor of 4 from the AoI-optimal. On the
other hand, we also show that naive choices of µi can lead
to poor AoI performances. Next, we develop and analyze
scheduling policies for different queueing disciplines which
are optimal over the class ΠR. In Secs. 4.1, 4.2 and 4.3 we
consider networks employing Single packet queues, No queues
and FIFO queues, respectively. Then, in Sec. 4.4 we compare
their AoI performances.

4.1 Randomized Policy for Single packet queue

Consider a network employing the Single packet queue disci-
pline on N streams with packet arrival rates λi, priorities wi
and channel reliabilities pi. Recall that for the Single packet
queue, when a new packet arrives, older packets from the
same stream are dropped. The BS selects streams according
to R ∈ ΠR with scheduling probabilities µi. Following a
successful packet transmission from stream i, its queue re-
mains empty or a new packet arrives. The expected number
of (consecutive) slots that queue i remains empty is 1/λi−1.
When a new packet arrives, the BS transmits this packet

with probability µi. The expected number of slots necessary
to successfully deliver this packet is 1/piµi. Under policy
R ∈ ΠR and for the case of Single packet queues, the sequence
of packet deliveries is a renewal process. It follows from the
elementary renewal theorem [43] that

lim
T→∞

1

T

T∑
t=1

E[di(t)] =
1

1/piµi + 1/λi − 1
,∀i, t . (17)

For the particular case of λi = 1, the AoI process hi(t) is
also stochastically renewed after every packet delivery and
the long-term time-average E[hi(t)] can be easily obtained
using the elementary renewal theorem for renewal-reward
processes. In contrast, for the general case of λi ∈ (0, 1],
the evolution of hi(t) may be dependent across consecutive
inter-delivery intervals due to its relationship with the sys-
tem time zSi (t) given in (3). To find an expression for the
long-term time-average E[hi(t)] we formulate the problem
as a two-dimensional Markov Chain with countably-infinite
state space represented by (hi(t), zi(t)) and obtain its sta-
tionary distribution. Proposition 4 follows from substituting
the expression for E[hi(t)] into the objective function in (5).

Proposition 4. The optimal EWSAoI achieved by a network with
Single packet queues over the class ΠR is given by

Optimal Randomized policy for Single packet queues

E
[
JR

S
]

= min
R∈ΠR

{
1

N

N∑
i=1

wi

(
1

λi
− 1 +

1

piµi

)}
(18a)

s.t.
∑N
i=1 µi ≤ 1 ; (18b)

where RS denotes the Optimal Stationary Randomized Policy for
the Single packet queue discipline.

Proof. Provided in Appendix C of the supplemental mate-
rial. �

Next, we solve the optimization problem in (18a)-(18b)
and obtain the optimal scheduling probabilities {µSi }Ni=1.

Theorem 5. Consider a network with parameters (N, pi, λi, wi)
operating under the Single packet queues discipline. The optimal
scheduling probabilities are given by

µSi =

√
wi/pi∑N

j=1

√
wj/pj

,∀i , (19)

and the performance of the Optimal Stationary Randomized policy
RS is

E
[
JR

S
]

=
1

N

N∑
i=1

wi

(
1

λi
− 1

)
+

1

N

(
N∑
i=1

√
wi
pi

)2

. (20)

Then, it follows that

E [J∗] ≤ E
[
JR

S
]
< 4E [J∗] , (21)

where E [J∗] = minπ∈Π E [Jπ] is the minimum AoI over the
class of all admissible policies Π.

Proof. The scheduling probabilities {µSi }Ni=1 that minimize
(18a)-(18b) also minimize this equivalent problem

min
R∈ΠR

{
1

N

N∑
i=1

wi
piµi

}
s.t.

N∑
i=1

µi ≤ 1 . (22)
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Consider the Cauchy–Schwarz inequality(
N∑
i=1

√
wi
pi

)2

≤
(

N∑
i=1

µi

)(
N∑
i=1

wi
piµi

)
. (23)

The LHS is a lower bound on the objective function in
(22). Notice that Cauchy-Schwarz holds with equality when
{µSi }Ni=1 is given by (19), implying that (19) is a solution to
both (22) and (18a)-(18b). Substituting the solution5 {µSi }Ni=1

into the objective function in (18a) gives (20).
For deriving the upper bound in (21), consider the Ran-

domized policy R̃ with µ̃i = q̂LB
i /pi,∀i. Substitute µ̃i into

the RHS of (18a) and denote the result as E[J R̃]. Comparing
LB in (16) with E[J R̃] and noting from (15) that q̂LB

i ≤ λi,
gives that

E
[
J R̃
]
≤ 1

N

N∑
i=1

wi

(
2

piµ̃i
− 1

)
< 4LB . (24)

By definition, we know that

LB ≤ E[J∗] ≤ E[JR
S

] ≤ E[J R̃] . (25)

Inequality (21) follows directly from (24) and (25). �

Intuitively, the optimal probabilities {µi}Ni=1 should
vary with the packet arrival rates {λi}Ni=1. For example,
consider a Single packet queue with low arrival rate. Choosing
a high scheduling probability leads to a queue that is often
offered service while empty, thus wasting resources. On the
other hand, the high scheduling probability is beneficial
for it reduces the time packets have to wait before service.
These opposing factors affect the dependence of the optimal
{µi}Ni=1 on the arrival rates {λi}Ni=1. In Secs. 4.2 and 4.3, we
show that the optimal scheduling probabilities for No queues
and FIFO queues, respectively, depend on {λi, wi, pi}Ni=1. In
contrast, Theorem 5 shows that the optimal scheduling
probabilities for Single packet queues are independent
of arrival rates. Intuitively, this means that for Single
packet queues both opposing factors balance themselves
out, making the optimal µi independent of λi. This result is
important for it simplifies the design of networked systems
that attempt to minimize AoI, as discussed in Sec. 4.4.

4.2 Randomized Policy for No queue
Consider a network with parameters (N, pi, λi, wi) employ-
ing the No queue discipline and a Stationary Randomized
policy R ∈ ΠR with scheduling probabilities µi. Recall
that R is oblivious to packet arrivals and that, under the
No queue discipline, packets are available for transmission
only during the slot in which they arrive to the system.
Hence, if R selects stream i during slot t, a successful packet
delivery occurs only if a packet from stream i arrived at the
beginning of slot t, i.e. ai(t) = 1, and the channel is ON,
i.e. ci(t) = 1. Therefore, for the No queue discipline, we have
that di(t) = ai(t)ci(t)ui(t),∀i, t. This is equivalent to a net-
work with a virtual channel that is ON with probability piλi

5The expression in (19) was obtained in previous work [26] under
the simplifying assumption of all streams always having fresh packets
available for transmission. In Theorem 5 we show that (19) is in fact
optimal for streams with stochastic packet arrivals and for any set of
arrival rates {λi}Ni=1.

and OFF with probability 1− piλi. We use this equivalence
to derive the results that follow.

Proposition 6. The optimal EWSAoI achieved by a network with
No queues over the class ΠR is given by

Optimal Randomized policy for No queues

E
[
JR

N
]

= min
R∈ΠR

{
1

N

N∑
i=1

wi
piµiλi

}
(26a)

s.t.
∑N
i=1 µi ≤ 1 ; (26b)

where RN denotes the Optimal Stationary Randomized policy
for the No queues discipline.

Proof. Under the No queues discipline, all packets are deliv-
ered with system time zNi (t) = 0 and the AoI process hi(t)
is renewed after every packet delivery. Hence, it follows
from the elementary renewal theorem for renewal-reward
processes that

lim
T→∞

1

T

T∑
t=1

E[hi(t)] =
1

piµiλi
. (27)

Substituting (27) into (5) gives (26a). �

Theorem 7. Consider a network with parameters (N, pi, λi, wi)
operating under the No queues discipline. The optimal scheduling
probabilities are given by

µNi =

√
wi/piλi∑N

j=1

√
wj/pjλj

,∀i , (28)

and the performance of the Optimal Stationary Randomized policy
RN is

E
[
JR

N
]

=
1

N

(
N∑
i=1

√
wi
piλi

)2

. (29)

Proof. The proof is similar to Theorem 5. �

As expected, the similarities between the Optimal Sta-
tionary Randomized policies for the No queue and Single
packet queue disciplines increase as the packet arrival rates
{λi}Ni=1 increase. In particular, notice from (19) and (28) that
µNi = µSi ,∀i, when λi = 1,∀i, and, as a result, their AoI
performance is also identical, namely E

[
JR

N
]

= E
[
JR

S
]

when λi = 1,∀i. Recall that µSi does not change with λi.

4.3 Randomized Policy for FIFO queue

Consider a network with parameters (N, pi, λi, wi) em-
ploying FIFO queues and a Stationary Randomized policy
R ∈ ΠR with scheduling probabilities µi. In this setting,
each FIFO queue behaves as a discrete-time Ber/Ber/1 queue
with arrival rate λi and service rate piµi. From [44, Sec. 8.10],
we know that the FIFO queue is stable when piµi > λi and
that its steady-state expected backlog is given by

lim
T→∞

E [Qi(T )] =
λi(1− piµi)
piµi − λi

. (30)
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From [22, Theorem 5]6, we know that the AoI associated
with a stable FIFO queue is given by

lim
T→∞

1

T

T∑
t=1

E[hi(t)] =
1

piµi
+

1

λi
+

[
λi
piµi

]2 1− piµi
piµi − λi

. (31)

Notice the similarities between (31), the expected backlog
in (30) and the AoI associated with a Single packet queue in
(18a). Under light load, i.e. when λi << piµi, the third term
on the RHS of (31) is small when compared to the other
terms. Hence, the AoI of the FIFO queue in (31) is similar to
the AoI of the Single packet queue in (18a). On the other hand,
under heavy load, as λi → piµi, the third term on the RHS
of (31) dominates. Both the backlog and the AoI of the FIFO
queue, in (30) and (31), respectively, increase sharply. Recall
that when the backlog is large, packets have to wait for a
long time in the queue before being served, what makes
their information stale and, as a result, the AoI large. The
Single packet queue discipline avoids this issue by keeping
only the freshest packet in the queue.

Denote by RF the Optimal Stationary Randomized pol-
icy for the case of FIFO queues and let {µFi }Ni=1 be the
associated scheduling probabilities. Substituting (31) into
the expression for the EWSAoI in (5) gives

Optimal Randomized policy for FIFO queues

E
[
JR

F
]

= min
R∈ΠR

{
N∑
i=1

wi
N

[
1

piµi
+

1

λi
+

+

[
λi
piµi

]2 1− piµi
piµi − λi

]}
(32a)

s.t.
∑N
i=1 µi ≤ 1 ; (32b)

piµi > λi,∀i . (32c)

where (32b) is the constraint on scheduling decisions and
(32c) is the condition for network stability.

Remark 8. A sufficient condition for {λi}Ni=1 to be within the
stability region of the network is given by

∑N
i=1 λi/pi < 1.

Theorem 9. The optimal scheduling probabilities for the case of
FIFO queues µFi are given by Algorithm 2 when δ → 0.

Proof. The auxiliary parameter δ > 0 is used to enforce
a closed feasible set to the optimization problem in (32a)-
(32c). We exchange (32c) by piµi ≥ λi + δ, ∀i, to ensure
that Algorithm 2 always finds a unique solution to the KKT
Conditions associated with (32a)-(32c) for any fixed (and
arbitrarily small) value of δ. Recall that when piµi ≈ λi the
AoI performance is poor. Hence, in most cases, the optimal
scheduling probabilities {µFi }Ni=1 are such that piµFi and λi
are not close, meaning that small changes in δ should not
affect the solution. Algorithm 2 finds the unique solution
to the KKT Conditions and is developed using a similar
method as in Theorem 3. �

6The authors in [22] obtain the minimum value of (32a) by jointly
optimizing over scheduling probabilities {µFi }Ni=1 and packet arrival
rates {λi}Ni=1. Theorem 9 generalizes this result, by providing the
optimal {µFi }Ni=1 for any given {λi}Ni=1.

As part of Algorithm 2, we use the partial derivative of
(31) with respect to µi multiplied bywi/N , which is denoted
as

gi(x) =
wi
N

{
λi
piµ2

i

[
2

piµi
− 1

]
− pi(1− λi)

(piµi − λi)2

}
x=µi

(33)

Algorithm 2 Randomized policy for FIFO queue
1: γi ← (λi + δ)/pi ,∀i ∈ {1, 2, · · · , N}
2: γ ← maxi{−gi(γi)} . where gi(.) is given in (33)
3: µi ← max{ γi ; g−1

i (−γ) }
4: S ← µ1 + µ2 + · · ·+ µN
5: while S < 1 do
6: decrease γ slightly
7: repeat steps 3 and 4 to update µi and S
8: end while
9: return µFi = µi,∀i

4.4 Comparison of Queueing Disciplines

Next, we compare the performance of four different Station-
ary Randomized Policies: 1) Optimal Policy for Single packet
queues, RS ; 2) Optimal Policy for No queues, RN ; 3) Optimal
Policy for FIFO queues, RF ; and 4) Naive Policy for FIFO
queues. The EWSAoI of the first three policies is computed
using (20), (29) and the solution to (32a)-(32c), respectively.
The Naive Policy shares resources evenly between streams
by assigning µi = 1/N,∀i. The EWSAoI of the Naive Policy
is computed using the expression inside the minimization
in (32a).

We consider a network with two streams, w1 = w2 = 1,
p1 = 1/3, p2 = 1, λ1 = λ, λ2 = λ/3 and varying arrival
rates λ ∈ {0.01, 0.02, · · · , 1}. In Fig. 3, we show the EWSAoI
of Randomized Policies under different queueing disciplines
and display the Lower Bound LB for comparison. The
policy with Single packet queues outperforms the policies
with other queueing disciplines for every arrival rate λ, as
expected.

Fig. 3. Comparison of Stationary Randomized Policies.

The Optimal Policy for FIFO queues leverages its knowl-
edge of pi and λi to stabilize the network whenever {λi}Ni=1

is within the stability region. In contrast, the Naive Policy
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shares channel resources evenly between streams, disre-
garding queue stability. From Remark 8, we know that the
network can be stabilized for λ < 3/10. However, in Fig. 3,
we observe that the Naive Policy is unable to stabilize
the network when λ ∈ (1/6, 3/10). By comparing their
performances, it becomes evident that stability is critical for
networks employing FIFO queues.

Both the Single packet queue and the No queue disciplines
present a natural relationship between the rate at which
fresh information is generated at the source λi and the
resulting AoI at the destination, namely a higher arrival
rate (always) leads to a lower AoI. Furthermore, Theorem 5
shows that the optimal scheduling probabilities µSi for Single
packet queues are independent of λi. This result allows us to
isolate the design of the arrival rate λi from the design of
the scheduling probability µi. In particular, to minimize the
EWSAoI in the network, the arrival rates {λi}Ni=1 should be
set as high as possible, while the scheduling probabilities
{µSi }Ni=1 should be proportional to

√
wi/pi according to

(19). Since arrival rates and scheduling policies are often
defined by different layers of the network stack, this
isolation simplifies the design of networked systems. It
is important to emphasize that this isolation only holds
for networks employing Single packet queues. For FIFO
queues and No queues the optimal value of µi changes for
different values of λi. Next, we develop Age-Based Max-
Weight Policies that use the knowledge of hi(t) and zi(t) for
making scheduling decisions in an adaptive manner.

5 AGE-BASED MAX-WEIGHT POLICIES
In this section, we use Lyapunov Optimization [45], [46], [47]
to develop Age-Based Max-Weight policies for each of the
queueing disciplines. The Max-Weight policy is designed
to reduce the expected drift of the Lyapunov Function at
every slot t. In [45], [46], [47], a Lyapunov Function based on
queue lengths Qπi (t) is employed to develop a Max-Weight
policy that stabilizes queueing networks whenever possible.
Here, we define a Lyapunov Function based on AoI to
develop a Max-Weight policy that attempts to minimize
the AoI in the network. A similar approach was used in
[19], [26] for the special case of all queues always having
fresh packets available for transmission and in [21] for an
alternative definition of AoI.

We use the following linear Lyapunov Function

L
(
{hi(t)}Ni=1

)
= L(t) =

1

N

N∑
i=1

βihi(t) , (34)

where βi is a positive hyperparameter that can be used to
tune the Max-Weight policy to different network config-
urations and queueing disciplines. The Lyapunov Drift is
defined as

∆(S(t)) := E [L(t+ 1)− L(t)| S(t)] , (35)

where S(t) = ({hi(t)}Ni=1, {zi(t)}Ni=1) is the network state at
the beginning of time slot t. The Lyapunov Function L(t)
increases with the AoI of the network and the Lyapunov
Drift ∆(S(t)) represents the expected increase of L(t) in one
slot. Hence, by minimizing the drift in (35) at every slot t,
the Max-Weight policy is attempting to keep both L(t) and
the network’s AoI small.

To develop the Max-Weight policy, we analyze the ex-
pression for the drift in (35). Substituting the evolution
of hi(t + 1) from (3) into (35) and then manipulating the
resulting expression, we obtain

∆(S(t)) =
1

N

N∑
i=1

βi+

− 1

N

N∑
i=1

βipi (hi(t)− zi(t))E [ui(t)| S(t)] . (36)

The scheduling decision in slot t affects only the second term
on the RHS of (36). For minimizing ∆(S(t)), the Max-Weight
policy selects, in each slot t, the stream i with a HoL packet and
the highest value of βipi (hi(t)− zi(t)), with ties being broken
arbitrarily. The Max-Weight policy is work-conserving since
it idles only when all queues are empty.

Substituting the system times zSi (t), zNi (t) and zFi (t) into
βipi (hi(t)− zi(t)) gives the Max-Weight policy associated
with the Single packet queue, MWS , the No queue, MWN ,
and the FIFO queue, MWF , respectively. Notice that the
difference hi(t) − zi(t) represents the AoI reduction ac-
crued from a successful packet delivery to destination i.
Hence, it makes sense that the Max-Weight policy prioritizes
queues with high potential reward hi(t)− zi(t). Despite the
apparent similarities, the Max-Weight policies for different
queueing disciplines differ significantly due to the evolution
of the system times zSi (t), zNi (t) and zFi (t) described in
Sec. 2.

Theorem 10 (Performance Bounds for MWS). Consider a
network employing Single packet queues. The performance of the
Max-Weight policy with βi = wi/piµ

S
i ,∀i, is such that

E
[
JMWS

]
≤ E

[
JR

S
]
, (37)

where µSi and E[JR
S

] are the optimal scheduling probability
for the case of Single packet queues and the associated EWSAoI
attained by RS , respectively.

Theorem 11 (Performance Bounds for MWN ). Consider a
network employing the No queues discipline. The performance of
the Max-Weight Policy with βi = wi/piµ

N
i ,∀i, is such that

E
[
JMWN

]
≤ E

[
JR

N
]
, (38)

where µNi and E[JR
N

] are the optimal scheduling probability for
the case of No queues and the associated EWSAoI attained byRN ,
respectively.

The proofs of Theorems 10 and 11 are provided in Ap-
pendices D and E of the supplemental material, respectively.
Both proofs rely on the construction of equivalent systems
that facilitate the analysis of the expression of the drift in
(36). The key idea in both proofs is to compare the drift
of the Age-Based Max-Weight policy with the drift of the
Optimal Stationary Randomized policy. The performance of
MWF is evaluated next using simulations.

Stationary Randomized policies select streams randomly,
according to a fixed set of scheduling probabilities {µi}Ni=1.
In contrast, Max-Weight policies leverage the knowledge of
hi(t) and zi(t) to select which stream to serve. Therefore,
it is not surprising that Max-Weight policies outperform
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Randomized policies. However, establishing a performance
guarantee as in (37) and (38) is challenging for it depends
on finding a tight upper bound for the performance of
Max-Weight policies, which often do not have properties
such as renewal intervals that simplify the analysis. Next, we
provide numerical results that further validate the superior
performance of the Max-Weight policies.

6 NUMERICAL RESULTS
In this section, we evaluate the performance of scheduling
policies in terms of the EWSAoI. We compare: i) the Optimal
Stationary Randomized Policy for the case of Single packet
queues RS , No queues RN and FIFO queues RF ; ii) the Max-
Weight Policy7 for the case of Single packet queues MWS , No
queues MWN and FIFO queues MWF ; and iii) the Whittle’s
Index Policy under the No queues discipline. The first two
policies were developed in Secs. 4 and 5, respectively, and
the last policy was proposed in [23]. The Lower Bound LB
derived in Sec. 3 is displayed for comparison.

In Figs. 4 and 5 we simulate networks with increasing
arrival rates, in Figs. 6 and 7 we simulate networks with
increasing channel reliability, and in Figs. 8, 9, 10 and 11
we simulate networks with increasing number of source-
destination pairs. The performance of the Randomized poli-
cies is computed using the closed-form expressions derived
in Sec. 4 while the performance of the Max-Weight and
Whittle’s Index policies are averages over 10 simulation
runs. The results in Figs. 4, 5, 6 and 7 are for networks with
N = 4 traffic streams and time-horizon of T = 2×106 slots.
The results in Figs. 8, 9, 10 and 11 are for networks with
increasing value of N and time-horizon of T = N × 5× 105

slots.
In Figs. 4 and 5, the four streams have weights w1 =

w2 = 4 and w3 = w4 = 1, channel reliabilities pi = i/N,∀i,
and arrival rates λi = (N−i+1)/N×λ,∀i, for an increasing
value of λ ∈ {0.01, 0.02, · · · , 0.35}. The simulation results
are separated into Figs. 4 and 5 for clarity. The results in
Figs. 4 and 5 suggest that the Max-Weight policy outper-
forms the corresponding Randomized and Whittle’s Index
policies with the same queueing discipline for every value
of λ. The results also show that under the same class of
scheduling policies, Single packet queues outperforms other
queueing disciplines for every value of λ, as expected. It is
evident from Fig. 4 that network instability, which occurs
when λ > 12/77, is a major disadvantage of employing
FIFO queues.

In Figs. 6 and 7, the four streams have priorities w1 =
w2 = w3 = 1 and w4 = 4, arrival rates λ1 = λ2 = λ3 =
λ4 = 1/10, and channel reliabilities p1 = 4/5, p2 = 3/5,
p3 = 2/5 with increasing p4 ∈ {0.05, 0.10, · · · , 1.00}.
This variation in p4 can represent a scenario in which the
destination is moving. The results in Figs. 6 and 7 suggest
that the performance of FIFO queues are the most sensitive
to network changes, while Single packet queues are the least
sensitive. Intuitively, this effect is explained by the accumu-
lation of stale packets in the FIFO queues when the channel
reliability p4 decreases.

7For the Max-Weight Policies MWS , MWN and MWF , we em-
ploy βi = wi/piµ

X
i ,∀i, where µXi is the optimal scheduling probability

for the associated queueing discipline.

Fig. 4. Simulation of networks with an increasing λ.

Fig. 5. Simulation of networks with an increasing λ.

Fig. 6. Simulation of networks with an increasing p4.

In Figures 8, 9, 10 and 11 we simulate networks
with increasing number of streams N ∈ {5, 8, 10, 13, 15,
18, · · · , 25, 28, 30}. In Figs. 8 and 9, streams have iden-
tical priorities wi = 1, ∀i ∈ {1, 2, · · · , N}, arrival rates
λi = 0.05, ∀i, and channel reliabilities pi = 0.8, ∀i. In
Figs. 10 and 11, we have a heterogeneous network in which
streams i ∈ {1, 2, · · · , dN/2e} have priorities wi = 1, arrival
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Fig. 7. Simulation of networks with an increasing p4.

rates λi = 0.05 and channel reliabilities pi = 1, while
streams i ∈ {dN/2e + 1, · · · , N} have priorities wi = 4,
arrival rates λi = 0.05 and channel reliabilities pi = 0.6. The
results in Figs. 8, 9, 10 and 11 show that the AoI performance
of scheduling policies under FIFO queues degrades sharply
as the number of source-destination pairs N increase. In
contrast, the performance of the Age-Based Max-Weight
policy for Single packet queues degrades gracefully as the
network grows.

This comparison is important, especially when we
consider that FIFO queues are the standard queueing
discipline in most communication systems while LIFO
queues (which are equivalent to Single packet queues from
the perspective of AoI) are commonly not implemented.

Fig. 8. Simulation of networks with an increasing N .

7 CONCLUDING REMARKS
This paper considers a wireless network with a base station
serving multiple traffic streams to different destinations.
Packets from each stream arrive to the base station accord-
ing to a Bernoulli process and are enqueued in separate (per
stream) queues that could be of three types, namely FIFO
queues, Single packet queues or No queues, depending on the
queueing discipline. FIFO is a standard queueing discipline

Fig. 9. Simulation of networks with an increasing N .

Fig. 10. Simulation of networks with an increasing N .

Fig. 11. Simulation of networks with an increasing N .

widely deployed in communication systems, Single packet
(which is equivalent to LIFO) is well-known to minimize
AoI in a variety of contexts, and No queue is a simplification
of the Single packet queue.

We studied the problem of optimizing scheduling deci-
sions with respect to the Expected Weighted Sum AoI of
the network. Our main contributions include i) deriving a
lower bound on the AoI performance achievable by any
given network operating under any queueing discipline; ii)
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developing both an Optimal Stationary Randomized policy
and a Max-Weight policy under each queueing discipline;
and iii) evaluating the combined impact of the stochastic
arrivals, queueing discipline and scheduling policy on the
AoI using analytical and numerical results. We show that,
contrary to intuition, the Optimal Stationary Randomized
policy for Single packet queues is insensitive to packet arrival
rates. Simulation results show that the performance of the
Age-Based Max-Weight policy for Single packet queues is
close to the analytical lower bound. Interesting extensions
of this work include consideration of multi-hop networks
and channels with unknown or time-varying statistics.
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