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Abstract—Futuristic communication network formed by autonomously operated, unmanned aerial vehicles, has piqued researchers

interests in highly mobile wireless networks. Exchanging safety critical information, with low latency and high throughput, in such systems

is of paramount importance.We study the broadcast capacity andminimum delay scaling laws for such highly mobile wireless networks,

in which each node has to disseminate packets to all other nodes in the network. In particular, we consider a cell partitioned network

under an IIDmobility model, in which each node chooses a new position at random, every time slot.We derive scaling laws for broadcast

capacity andminimum delay as a function of the network size.We propose a simple first-come-first-serve flooding scheme, which nearly

achieve both capacity andminimum delay scaling. Thus, in contrast to what has been speculated in the literature, we show that there

is nearly no tradeoff between capacity and delay. Our results also show that highmobility does not improve broadcast capacity. Our

analysis makes use of the theory of Markov Evolving Graphs (MEGs), and develops two new bounds on flooding time inMEGs by

relaxing the previously required expander property assumption. Simulation results verify our analysis, and throw up interesting open

problems.

Index Terms—Wireless networks, broadcast, throughput-delay tradeoff, flooding time, scaling laws, Markov evolving graphs

Ç

1 INTRODUCTION

INTEREST in mobile wireless networks has increased in
recent years due to the emergence of unmanned aerial vehi-

cle (UAV) networks. Dense networks of small UAVs are being
used in a wide range of applications including product deliv-
ery, disaster management, environmental monitoring, sur-
veillance, and more [1], [2], [3], [4], [5], [6], [7]. We envision a
futuristic scenario, in which UAVs belonging tomultiple ven-
dors and users will share a common airspace. In which case,
the need for exchanging safety critical information, with low
latency and high throughput, becomes evenmore prominent.

For such non-cooperative network of UAVs, an impor-
tant communication operation that needs to be performed is
that of all-to-all broadcast, where in, each vehicle or node
broadcasts its current state or location information to all
other vehicles in its vicinity. We aim to analyze capacity
and delay, and propose policies, for all-to-all broadcast
operation in a network consisting of mobile UAVs.

Network of UAVs is different from othermobile networks
such as the traditional mobile ad-hoc network (MANET) and
vehicular network (VANET) [5]. Speed of vehicles in UAV
networks, for example, can be much larger: speeds in
MANET and VANETs are expected to be around 2 and 20-30
m/s, respectively, the speeds in UAV networks can be as
high as 100m/s [5]. So, if several UAVs are conducting sepa-
rate operations in a 500 m � 500 m region, then the UAVs
can get from one end of the region to the other in a matter of

a few seconds. As a result, the network topology changes
rapidly, and the communication network formed by UAVs
is much more likely to get partitioned frequently. The com-
munication and traffic sessions, in this case the broadcast ses-
sions, must run over such intermittently connected, rapidly
changing, network topology.

Various models have been considered in the literature to
model such mobile nodes. IID mobility model, is the simplest
one, in which, the node choose a new position in the region,
independently of other nodes, in each time-slot. In Markov
mobility model, the region is partitioned into cells, and nodes
choose tomove to neighboring cells, according to a given tran-
sition probability. In random waypoint model (RWP), a node
selects a new location, randomly in the region, and moves
towards it at a given speed. Mobility of a node has also been
modeled as a Brownianmotion and Levy processes [8].

Among all these models, the IIDmobility model results in
fastest mobility. This mobility model was used in [9], [10]
to capture the impact of high mobility, and the resulting
intermittent network connectivity, on throughput and delay.
Moreover, this model serves as a good, first approximation
model for UAV networkswhere rapidmobility and intermit-
tent connectivity are common. It also resembles the RWP and
Brownian Motion models at high speeds. We therefore con-
sider the IID mobility model in this work to study a highly
mobile wireless network.

We consider a cell partitioned network with N nodes,
shown in Fig. 1, in which a unit square is partitioned into C
cells. Due to interference, only a single packet transmission
can take place in the cell at a given time, and all other nodes
in the cell can correctly receive the packet. Different cells
can have simultaneous packet transmissions. This simple
model captures the essential features of interference and
helps obtain key insights into its impact on throughput and
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delay [9], [11], [12]. Nodes move according to the IID mobil-
ity model. At the end of every time slot, each node chooses
a new cell uniformly at random.

Analyzing capacity and delay for finite network is known
to be a hard problem, and in order to gain insights, we study
the network asN scales to1 [8]. We study all-to-all broadcast
capacity and delay scaling as a function of node density. Here,
capacity is defined as the maximum rate at which each node
can transmit packets to all other nodes in the systemanddelay
as the average time taken by a packet to reach every node in
the system. We say that a network is dense if the number of
vehicles or nodes per cell is increasingwithN , and sparse oth-
erwise. Thus, if the cell size grows as cN�a, for some c > 0,
then the network is dense for 0 < a < 1 and sparse for a � 1.

We show that as the network gets more dense the all-to-all
broadcast capacity increases to reach a maximum scaling of
1=N . Interestingly, delay decreases as the network gets denser.
In fact, both, capacity and delay attain their best scaling in N
when the cell size is just smaller than order 1=N, i.e., when
a ¼ 1� � for a small positive �. We further note that the best
per-node capacity scaling of 1=N is the same as that can be
achieved in a static wireless network, thus, mobility does not
improve network capacity. This is in contrast to the unicast
case where it was shown in [13] that mobility improves capac-
ity. Our scaling results are summarized in Table 1.

We propose a simple first-come-first-serve (FCFS) flooding
scheme, and its variant the threshold-based flooding scheme,
which achieve capacity scaling, up to a logN factor from the
optimal when the network is sparse, and up to a log logN fac-
tor from the optimal when the network is dense. Both the
schemes also achieve the minimum delay scaling when the
network is sparse, and up to a factor of log logN from mini-
mum delay when the network is dense. Thus, nearly optimal
throughput and delay scaling is achieved simultaneously.

The IID mobility model was analyzed for unicast and
multicast operations in [9] and [10], respectively, using stan-
dard probabilistic arguments. In contrast, we use the
abstraction of Markov evolving graphs (MEG), and flooding
time bounds for MEGs [14]. An MEG is a discrete time Mar-
kov chain with state space being a collection of graphs with
N nodes. An MEG of the IID mobility model can be con-
structed by drawing an edge between two nodes in the
same cell and viewing the network as a graph at each time
step. Flooding time, is then, the time it takes for a single
packet to reach all nodes from a single source node.

A flooding time bound for MEGs was derived in [14]. It
relied on an expander property which states that whenever
m nodes have the packet then in the next slot at least km new
nodes will receive the packet with high probability, for some
k > 0. However, this strong requirement does not always
hold. For example, when the IID mobility model is sparse,
this expander property cannot be guaranteed.We derive two
new bounds on flooding time inMEGs by relaxing the strong
expander property requirements imposed in [14]. These new
bounds are of independent theoretical interest. A part of this
work first appeared inMobiHoc 2017 [15].

1.1 Previous Work

In [7], we considered the impact of wireless interference con-
straints on the ability to exchange timely control information
in UAV networks. We showed that, in guaranteeing location
awareness of other vehicles in the networks, wireless inter-
ference constraints can limit mobility of aerial vehicles in
such networks. This result motivates us to study the delay
and capacity scalings of all-to-all broadcast in mobile wire-
less networks.

Broadcast has been studied before in the contexts of dis-
seminating data packets in wireless ad-hoc networks [16],
[17], sensor information in sensor networks, and in exchang-
ing intermediate variables in distributed computing [18]. Scal-
ing laws for capacity and delay in wireless networks have
received significant attention in the literature. Capacity scal-
ing for unicast traffic, in which each node sends packets to
only one other destination node, was analyzed in [19], [20]. It
was shown that the capacity scales as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p
with

increasing N . Minimum delay scaling for the static unicast
network was analyzed in [11], where it was also shown that it
is not possible to simultaneously achieveminimumdelay and
capacity. This implied a tradeoff between capacity and delay.
In [13], it was shown that if the nodesweremobile, then a con-
stant per node capacity that does not diminish with N can be
achieved. The seminal works of [19] and [13] led to the analy-
sis of capacity and delay scaling under variousmobility mod-
els including IID [9], Markov [11], Brownian motion [21], and
Random Waypoint [22]. Capacity-delay tradeoffs were
observed in each of these settings.

Broadcast has been studied in static wireless networks
in [16], [17], [23], [24]. It was shown that the per-node broad-
cast capacity scales as 1=N in static wireless networks [17].
However, to the best of our knowledge, optimal delay scal-
ings for static broadcast has not been analyzed. In [10], the

Fig. 1. Network partitioned into C ¼ 1
aN

cells. Each cell of area aN .

TABLE 1
Capacity and Average Delay

Capacity

Upper bound FCFS flooding
(Theorem 1) (Equation (62))

Sparse: a � 1 1
Na

1
Na

1
logN

Dense: 0 < a < 1 1
N

1
N

1
log logN

Average Delay

Lower bound FCFS flooding
(Theorem 2) (Equations (63) and (61))

Sparse: a � 1 Na�1logN Na�1logN

Dense: 0 < a < 1 1 log logN
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authors conjectured a capacity-delay tradeoff for multicast,
and by implication for broadcast as a special case, under IID
mobility. However, in this paper, we show that there is
nearly no capacity-delay tradeoff for broadcast. In particular,
we propose a scheme that (nearly) achieves both capacity
and minimum delay, which is up to a log logN factor when
the network is dense and up a logN factor when the network
is sparse. Moreover, we show that the capacity scaling does
not improvewithmobility, unlike in the unicast case [13].

Although, throughput and delay scalings have been
investigated under various communication operations and
mobility models for the past 15 years, the same problem
under broadcast has not been thoroughly analyzed even for
the simplest IID mobility model. In [10], delay bounds were
obtained for multicast, however, these bounds are very
weak when applied to the all-to-all broadcast operation. By
using and extending the theory of MEGs developed in [14]
we are able to obtain tight bounds on delay.

Flooding time bounds onMEGhave been used for various
network models in [14], [25], [26]. To the best of our knowl-
edge, this is the first time that these techniques are being
used in the mobility setting. Moreover, the new bounds
derived in Section 3 could be of independent interests and
can also be applied tomodels considered in [14], [25], [26].

1.2 Organization and Notations

The paper is organized as follows. In Section 2we describe the
system model, and derive bounds on capacity and minimum
delay. In Section 3, we summarize the flooding time upper
bound result of [14], and derive two new upper bounds on
flooding time forMEGs. In Section 4, we apply these results to
our setting and, in Section 5, we use it to propose and analyse
the FCFS flooding scheme. We propose a single-hop scheme
in Section 6 that achieves capacity for a sparse network. We
conclude and discuss open problems in Section 8.

In this paper we make extensive use of order notation.
For infinite sequences aNf g and bNf g, aN ¼ O bNð Þ implies
limN!1

aN
bN

� c1 for some c1 > 0 and aN ¼ Q bNð Þ implies

aN ¼ O bNð Þ and bN ¼ O aNð Þ. We write aN �N bN if there
exists a N0 � 1 such that for all N � N0 we have aN � bN .
Positive constants are denoted by c1; c2; . . ..

2 SYSTEM MODEL AND FUNDAMENTAL LIMITS

Consider the network of Fig. 1 with N nodes that are uni-
formly distributed over a unit square. The size of each cell
is aN ¼ 1

C ¼ cN�a, for some a > 0 and c > 0. We consider a
slotted time system, with the duration of each slot normal-
ized to unity. The duration of each slot is sufficient to com-
plete the transmission of a single packet. We use the IID
mobility model of [9] in which each node, at the end of
every slot, chooses a new cell/location uniformly at ran-
dom, and independent of other node’s locations.

Packets arrive at each node according to a Poisson pro-
cess, at rate �. Note that the arrivals happen over continu-
ous time, and therefore, two or more packets can arrive
during a slot. We use the Poisson arrival assumption as it
simplifies analysis, and can be relaxed in most of the paper.

We now obtain two fundamental limits on the system
performance, namely, an upper-bound on rate � and a
lower-bound on achievable delay.

2.1 Capacity

Each node receives an inflow of packets at rate �, and each
of these packets have to be broadcast to all other nodes in
the network. A communication scheme is said to achieve a
rate of � if at this arrival rate the average number of back-
logged packets in the network does not increase to infinity.
The capacity of the network is the maximum achievable
rate. We start with a simple upper-bound on the capacity.

Theorem 1. The achievable rate � is bounded by

� � 1

2ðN � 1Þ 1� 1� aNð ÞN�1
� �

(1)

¼ Q 1
Na

� �
if a � 1 ðsparseÞ

Q 1
N

� �
if 0 < a < 1 ðdenseÞ

(
: (2)

Proof: Let � be the rate achieved by a scheme. If XhðT Þ is
the number of packets delivered to the destination in
exactly h hops by time T then for an � > 0we have

1

T

X
h�1

XhðT Þ > NðN � 1Þ�� �; (3)

for all T > T�, for some T� > 0.
If Zk

i ðtÞ is a binary random variable which equals 1 if
there are k nodes in cell i in slot t then the total number
of packet receptions by time T is at most

PC
i¼1

PN
k¼2PT

t¼1ðk� 1ÞZk
i ðtÞ. Hence

X
h�1

hXhðT Þ �
XC
i¼1

XN
k¼2

XT
t¼1

ðk� 1ÞZk
i ðtÞ: (4)

Combining Equations (3) and (4) we obtain

XC
i¼1

XN
k¼2

1

T

XT
t¼1

ðk� 1ÞZk
i ðtÞ �

1

T

X
h�1

hXhðT Þ;

¼ 1

T
X1ðT Þ þ 1

T

X
h�2

hXhðT Þ;

� 1

T
X1ðT Þ þ 2

T

X
h�2

XhðT Þ:

Using Equation (3) we obtain

XC
i¼1

XN
k¼2

1

T

XT
t¼1

ðk� 1ÞZk
i ðtÞ �

1

T
X1ðT Þ

þ 2 NðN � 1Þ�� �� 1

T
X1ðT Þ

� �
:

Taking T ! þ1we have

XC
i¼1

XN
k¼2

ðk� 1ÞpðkÞ � Cpþ 2 NðN � 1Þ�� �� Cpð Þ;

¼ 2NðN � 1Þ � 2�� Cp;

(5)

where pðkÞ is the probability that there are k nodes in a
cell and p is the probability that there are at least two
nodes in a cell; we use the fact that limsupT!þ1

X1ðT Þ
T �

Cp. Taking � ! 0, we obtain
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2NðN � 1Þ� � Cpþ C
XN
k¼2

ðk� 1ÞpðkÞ: (6)

Substituting pðkÞ ¼ n
k

� �
akN 1� aNð ÞN�k and computing the

binomial sum we obtain

2NðN � 1Þ� � N 1� 1� aNð ÞN�1
� �

: (7)

Therefore

ðN � 1Þ� � 1

2
1� 1� aNð ÞN�1
� �

; (8)

¼ 1

2
1� 1� c

Na

� �N�1
� �

: (9)

When 0 < a < 1, we have N=Na ! 1. In which case

ðN � 1Þ� � 1

2
1� 1� c

Na

� �N�1
� �

¼ Qð1Þ: (10)

Hence, � ¼ O 1=Nð Þ. When a � 1, either N=Na ! 0 or
N=Na ! c1 for some c1 > 0. This implies

ðN � 1Þ� � 1

2
1� 1� c

Na

� �N�1
� �

¼ Q N=Nað Þ: (11)

Hence, � ¼ O 1=Nað Þ. tu
We first note that the proof does not use the assumption

that the packet arrival processes are Poisson. Thus, the
result holds for general arrival process of rate �. Second, the
obtained capacity bound, is in fact, achievable. As we shall
see, a single-hop scheme proposed in Section 6 achieves this
capacity when the network is sparse, and a FCFS flooding
scheme in Section 5 achieves capacity, up to a log logN fac-
tor, when the network is dense.

Typically, one expects to have larger broadcast capacity
with increasing cell sizes, i.e., with decreasing a. A larger cell
size implies more nodes in a given cell, and hence, more
receptions per slot can occur by exploiting the broadcast
nature of the wireless medium. Theorem 1, however, shows
that the capacity remains constant at Q 1

N

� �
for 0 < a < 1.

This is because, larger cell sizes also result in fewer transmis-
sion opportunities in every slot due to interference. As a
result, capacity remains constant when 0 < a < 1.

2.2 Minimum Delay

Another important performance measure is the delay. The
delay of a packet is defined as the time from the arrival of the
packet to the time the packet reaches all itsN � 1 destination
nodes. The delay of a communication scheme is the average
delay, averaged over all packets in the network. To obtain a
lower-bound on the network’s delay performance we define
a single packet flooding scheme that transmits a single packet
to all other nodes in the network. As we show later, this
lower-bound provides a fundamental limit on delay.

Single packet flooding scheme: At the beginning of the
first slot, only a single node has the packet.

1) In every cell, randomly select one packet carrying
node to be the transmitter in that slot. If no such

node exists in a cell no transmission occurs in that
particular cell.

2) In each cell, the transmitter node (if present) trans-
mits the packet to all other nodes in the cell.

3) If all nodes have the packet then terminate the pro-
cess, otherwise repeat from step 1.

The single packet flooding scheme is clearly the fastest
way to disseminate a packet to all nodes in the network.
Hence, a lower bound is given by the time it takes for a sin-
gle packet to reach all other nodes under the single packet
flooding scheme.

We now provide a lower-bound the the average delay, by
merely computing a lower-bound on the time it takes the
single packet flooding scheme to run its course.

Theorem 2. Any achievable average delay D is lower-bounded
by

D � Q Na�1 logNð Þ if a � 1 ðsparseÞ
Q 1ð Þ if 0 < a < 1 ðdenseÞ

	
: (12)

Proof. As a lower-bound we compute the time it takes for
the single packet flooding scheme to terminate. Let Kt

denote the number of nodes that have the packet after t
slots; where K1 ¼ 1. Let TN be the flooding time, i.e.,
the first time when Kt ¼ N . Let Ai, for 1 � i � Kt, be the
number of new nodes to which node i transmits the
packet in slot tþ 1. We then have

Ktþ1 ¼ Kt þ
XKt

i¼1

Ai: (13)

Since E AijKt½ � � ðN � 1ÞaN , we have

E Ktþ1jKt½ � ¼ E Kt þ
XKt

i¼1

AijKt

" #
; (14)

� Kt 1þ ðN � 1ÞaNð Þ; (15)

for all t � 1. Applying this recursively, we obtain

E Kt½ � � 1þ ðN � 1ÞaNð Þt: (16)

Now, using Markov inequality we have

E TN½ � � tP TN > t½ �: (17)

The event fTN > tg is same as fKt < Ng. Hence, we
have

E TN½ � � tP Kt < N½ �; (18)

¼ t 1� P Kt � N½ �ð Þ; (19)

� t 1� E Kt½ �
N

� �
; (20)

where the last inequality follows from Markov inequal-
ity. Using Equation (16), we obtain

E TN½ � � t 1� 1

N
1þ ðN � 1ÞaNð Þt

� �
; (21)
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for all t � 1. Since Equation (21) is a valid lower-bound
for all values of t � 1, setting t ¼ 1=2 logN

log 1þðN�1ÞaNð Þ for a � 1

and t ¼ 1=2 logNa

log 1þðN�1ÞaNð Þ for 0 < a < 1 yields the result. tu
We first note that the proof of Theorem 2 did not use any

property of the arrival process. It merely obtained a lower-
bound on the single packet flooding time. Thus, the result
in Theorem 2 does not depend on the assumption that the
arrival process is Poisson.

In Fig. 2, we plot the lower-bound on average delay D as
a function of a. We observe that as the network gets sparser
the number of nodes receiving the flooded packet per cell
decreases, thereby, increasing the broadcast delay. Thus,
the lower-bound is a non-decreasing function of a. How-
ever, for 0 < a < 1 the delay bound is a constant Oð1Þ, and
remains unchanged. Clearly, if C ¼ 1, i.e., if the entire net-
work is a single cell, then the broadcast delay will be 1 as
the packet can reach all other nodes in a single transmission.

In the next two sections we show that this lower-bound
on average delay is in fact achievable, up to log logN factor.

3 FLOODING TIME IN MARKOV EVOLVING GRAPHS

In order to gain further insights into the flooding time of the
packet flooding scheme we use the theory of Markov evolv-
ing graphs (MEG), to help us derive the necessary upper
bound on the flooding time. We start with a brief introduc-
tion to MEG and a review of pertinent results.

Let G be a family of graphs with node set ½N � ¼ 1; 2;f
. . .Ng. The Markov chain M ¼ Gtð Þt2N, where Gt 2 G, with
state space G is called a MEG. Note that G is a finite set. For
our network model of Fig. 1, if we draw edge between i and
jwhenever both nodes i and j lie in the same cell, the result-
ing time evolving graph is an MEG. When the MEG has a
unique stationary distribution we call it a stationary MEG.1

In this work, we assume that a stationary MEG starts from
its stationary distribution. The IID mobility model results in
one such stationary MEG, as every graph formation can fol-
low any other in G. We now describe the single packet flood-
ing scheme in MEG.

Single packet flooding for a MEG: In the first slot only a
single node s has the packet, i.e. I1 ¼ fsg. Here, It � ½N�
denotes the set of nodes that have the packet at time t. In
every slot t � 1:

1) Identify the neighbors of It that are not in It

NðItÞ ¼ neighbours of It in GtnItf g: (22)

2) Transmit the packet to each node in NðItÞ. We, thus,
have

Itþ1 ¼ It
[

NðItÞ: (23)

3) If It ¼ ½N� then stop, else start again from Step 1.

Let TN be the flooding time, i.e., the time it takes for this
process to terminate. Note that, this scheme reduces to the
single packet flooding scheme of Section 2 for our network
model. An upper bound on flooding time was derived
in [14]. This bound depended on the MEG satisfying certain
expander properties.We summarize this result in Theorem 3,
and provide two newbounds on flooding time in Theorems 4
and 5.

The expander property of MEG is defined in terms of the
expander property of a static graph [14].

Definition 1. A graph G ¼ ½N�; Eð Þ is said to be ð½h0; h1�;
kÞ-expander if for every I � ½N � such that h0 < jIj � h1 we
have

jNðIÞj � kjIj; (24)

where NðIÞ is the set of all neighbours of nodes in I that are
not already in I.
We now use this to define the expander property of

MEG.

Definition 2. Stationary MEG M ¼ Gtð Þt2N is ½h0; h1�;ð
kÞ-expander with probability p if

P G0 is ½h0; h1�; kð Þ�expander½ � � p: (25)

If the graph is ð½h� 1; h�; kÞ-expander then for notational
simplicity we say that it is ðh; kÞ-expander. To show that a
stationary MEG is ðh; kÞ-expander we have to evaluate the
probability

P
\
jIj¼h

jNðIÞj � kjIjf g
2
4

3
5: (26)

Recall that for two sequences faNgN�1 and fbNgN�1, we

write aN �N bN if there exists a N0 � 1 such that for all

N � N0 we have aN � bN . The following upper bound on

flooding time was derived in [14].

Theorem 3. [14] For a stationary MEG, if

P
\s
i¼1

G0 isan ½hi�1; hi�; kið Þ�expanderf g
" #

�N 1� c1
N2

; (27)

for some c1 > 0, 1 ¼ h0 � h1 < h2 < 	 	 	 < hs ¼ N
2 , a non-

increasing sequence k1 � k2 � 	 	 	 � ks > 0, and s 2 f2; 3;
. . .N2g then the flooding time

TN ¼ O
Xs
i¼1

log hi=hi�1ð Þ
log ð1þ kiÞ

 !
; (28)

with probability at least 1� c2
N for some c2 > 0.

Fig. 2. Lower bound on achievable average delayD as a function of a.

1. Since the state space G is finite, it always has at least one stationary
distribution.
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A stationary MEG may not always satisfy the expander
property required by Equation (27). In such a case, we pro-
vide the following two bounds for flooding time for a sta-
tionary MEG.

Theorem 4. If for every h 2 1; 2; . . .N � 1 and for all I � ½N�
with jIj ¼ h, there exists a function pðhÞ such that P NðIÞ �½
1� �N pðhÞ > 0 then the flooding time

TN ¼ O
XN�1

h¼1

1

pðhÞ

 !
; (29)

with probability at least 1� e�c1N for some c1 > 0.

Proof. We denote X 
 GeoðpÞ when X is a geometrically
distributed random variable with parameter p, that is,
P X ¼ k½ � ¼ p 1� pð Þk�1 for all k � 1. tu
Note that if only a single packet transmission was to take

place at the occurrences of the events fNðhÞ � 1g, the flood-
ing time would be much larger. We now write this mathe-
matically. For all h 2 f1; 2; . . .N � 1g, define Xh as follows:
LetXh be the time it takes for the event fNðhÞ � 1g to occur.
If for no time t, did we have jItj ¼ h, let Xh 
 Geo P NðhÞ �½ð
1�Þ. We have

TN �
XN�1

h¼1

Xh: (30)

Since P NðhÞ � 1½ � �N pðhÞ we can construct random varia-
bles Zh, on the same probability space, such that Zh 

Geo pðhÞð Þ andXh �N Zh a.s., for all h. This implies

TN �
XN�1

h¼1

Xh �N

XN�1

h¼1

Zh: (31)

Now, we use the following concentration bound:

Lemma 1. Let X1; X2; . . .Xn be independent geometrically dis-
tributed random variables with parameters 0 < p1 � p2 � 	 	 	
� pn, i.e., P Xi ¼ t½ � ¼ pið1� piÞt�1 for all t � 1. Let Sn ¼Pn

i¼1 Xi and

m ¼ E Sn½ � ¼ 1

p1
þ 1

p2
þ 	 	 	 þ 1

pn
: (32)

Then, for some c � 2,

P Sn > cðmþ tÞ½ � � ð1� p1Þtexp �ð2c� 3Þn=4f g: (33)

Proof. The proof is given in [27]. tu
Using this concentration bound on fZ1; . . .ZN�1g and

substituting t ¼ m ¼PN�1
h¼1

1
pðhÞ we obtain

P
XN�1

h¼1

Zh > 2c1m

" #
� 1� p�ð Þmexp � 2c1 � 3

4
ðN � 1Þ

	 

;

(34)

for some c1 � 2, where p� ¼ minh2f1;2;...N�1gpðhÞ. Note that
1� p�ð Þm� 1. We, thus, have

P
XN�1

h¼1

Zh > 2c1m

" #
� exp � 2c1 � 3

4
ðN � 1Þ

	 

(35)

¼ Q expf�c2Ngð Þ; (36)

for some positive constant c2. From Equations (31) and (36)
we have

P TN � 2c1
XN�1

h¼1

1

pðhÞ

" #
�N 1� expf�c2Ng: (37)

Notice that instead of P NðIÞ � 1½ � �N pðhÞ > 0 if we
have the condition P NðIÞ ¼ 1½ � �N pðhÞ > 0 the same result
holds, as a mere corollary, since P NðIÞ � 1½ � � P NðIÞ ¼ 1½ �.

Theorem 4, does not use any expander properties of the
MEG. It can happen that a stationary MEG satisfies the
expander property for some subsets I � ½N � but not all. In
this case Theorem 4may not give a very tight bound.We can
combine the ideas of Theorems 3 and 4 to establish the fol-
lowing result.

Theorem 5. For a stationary MEG if

1) there exists a s 2 f2; 3; . . .N2g, strictly increasing
sequence 1 < h1 < h2 < 	 	 	 < hs ¼ N

2 , and a non-
increasing sequence k2 � k3 � 	 	 	 � ks > 0 such that

P
\s
i¼2

G0 is ½hi�1; hi�; kið Þ�expanderf g
" #

� N 1� c1
N2

;

(38)

for some c1 > 0,
2) for 1 � h � h1, for all I � ½N� such that jIj ¼ h we

have

P NðIÞ ¼ 1½ � � N pðhÞ > 0; (39)

and
3) h1 � c2 logN is such that

lim
N!1

h1

logN
¼ 1; (40)

then

TN ¼ O
Xh1
h¼1

1

pðhÞ þ
Xs
i¼2

log hi=hi�1ð Þ
log 1þ kið Þ

 !
; (41)

with probability at least 1� c2=N for some c2 > 0.

Proof. It � ½N � denotes the number of nodes that have the
packet at time t � 1. Let T1 be the first time at which at
least h1 nodes get the packet, i.e.,

T1 ¼ min t � 1jjItj � h1 and jI1j ¼ 1f g; (42)

and T2:N ¼ TN � T1. Clearly, T2:N will be less than the time
it takes for the packet to reach all nodes if the systemwere
to start with exactly h1 nodes carrying the packet, i.e.,

T2:N � T
0
2:N ¼ min t � 1jjItj ¼ N and jI1j ¼ h1f g: (43)
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Following the same arguments listed in [14] for the
proof of Theorem 3, while using the expander property
Equation(38), we have

T
0
2:N ¼ O

Xs
i¼2

log hi=hi�1ð Þ
log 1þ kið Þ

 !
; (44)

with probability at least 1� c1=N for some c1 > 0.
Following the same arguments in the proof of

Theorem 4, while using Equation (39), yields

T1 ¼ O
Xh1
h¼1

1

pðhÞ

 !
; (45)

with probability at least 1� exp �c2h1f g for some c2 > 0.
From Equation (40), it is clear that h1 > g logN for any
g > 0. This implies

1� exp �c2h1f g � 1� exp �c2g logNf g; (46)

� 1� 1

Nc2g
; (47)

for any g > 0. Choosing any g � 1=c2 yields

T1 ¼ O
Xh1
h¼1

1

pðhÞ

 !
; (48)

with probability at least 1� c3=N for some c3 > 0. We
know that TN � T1 þ T

0
2:N . Using Equations (44) and (48)

we obtain the desired result. tu
The results also hold if we replace the condition P NðIÞ ¼½

1� �N pðhÞ > 0with

P NðIÞ � 1½ � �N pðhÞ > 0: (49)

Theorems 3, 4, and 5 give a high probability upper bound
on flooding time, and not an upper bound on average flood-
ing time. In the next section we apply these results to obtain
a high probability upper bound on flooding time for our
network model, and show that it nearly scales as the lower
bound on average flooding time obtained in Theorem 2 of
Section 2. In Section 5, we use this fact to propose a FCFS
flooding scheme that achieves the high probability upper
bound as its average delay.

4 FLOODING TIME FOR THE IID MOBILITY MODEL

We now apply the high probability upper bounds on flood-
ing time from Theorems 3, 4, and 5 of Section 3 to our net-
workmodel. As to which of the three results we use depends
on whether the network is sparse or dense. LetM denote the
stationary MEG for our network model of Fig. 1, and let G0

be its stationary distribution.
To apply these theorems, we first make the following

observation about the single packet flooding scheme: if h
nodes have the packet at a given time slot then the number
of nodes that will receive the packet in the next slot, NðhÞ, is
a binomial random variable BinðN � h; 1� 1� aNð ÞhÞ.

To see this, let H ¼ f1; 2; . . .hg and H ¼ fhþ 1; hþ 2; . . .
Ng denote the set of nodes that have and do not have the
packet at a given time slot, respectively. For the node i that

has not received the packet, i.e., i 2 H, letXi be a binary val-
ued random variable that is 1 if node i receives the packet in
the next slot and 0 otherwise. The probability that the node
i does not receive the packet in the next slot is the probabil-
ity that no node of H lies in the same cell as node i. This
happens with probability 1� aNð Þh as locations of node’s
are independent and identically distributed (i.i.d.). Hence,
P Xi ¼ 0½ � ¼ 1� aNð Þh. Also, the Xis are independent across
i 2 H as, again, the node locations are i.i.d. and uniform.
SinceNðhÞ ¼Pi2H Xi the result follows.

Using this, we prove a scaling bound on the flooding
time.

Theorem 6. The flooding time is

TN ¼ O Na�1 logNð Þ if a � 1 ðsparseÞ
O log logNð Þ if 0 < a < 1 ðdenseÞ

	
; (50)

with probability at least 1� c1
N for some c1 > 0.

Proof. We derive this by showing the expander properties
of the networkM. We use the following lemma. tu

Lemma 2. If X1; X2; . . .XgðnÞ are binomial random variables
such that

c1fðnÞ �N E Xh½ � �N c2fðnÞ; (51)

for some positive constants c1 and c2, where gðnÞ and fðnÞ are
increasing functions of n. Then there exists an h 2 ð0; 1Þ and a
positive constant c3 such that

P Xh < hc1fðnÞ½ � �N e�c3fðnÞ; (52)

for all h 2 f1; 2; . . . gðnÞg.
Proof. SeeAppendixD,which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2019.2923733. tu
We split the proof into three cases: 0 < a < 1, 1 � a <

2, and a � 2.

1) 0 < a < 1: In this case, the expander properties of
Theorem 3 hold. Note that

E NðhÞ½ � ¼ ðN � hÞ 1� 1� c=Nað Þh
h i

: (53)

It is also easy to see that 1� 1� c=Nað Þh¼ Q h=Nað Þ
if h=Na ! 0, and 1� 1� c=Nað Þh¼ Qð1Þ if h=Na !
1. When h=Na ¼ Qð1Þ, both are true. We, therefore,
have

E NðhÞ½ � ¼ Q Nh=Nað Þ for 1 � h � Na

QðNÞ for Na þ 1 � h � N=2

	
: (54)

Since, in both cases we have E NðhÞ½ � ! 1, we can
use Lemma 2, the concentration bound on the
binomial distribution, to show that the event
fNðhÞ � c1E NðhÞ½ �g occurs with high probability for
some 0 < c1 < 1. This proves that the graph is
ðh; kðhÞÞ-expander where kðhÞ ¼ c1

E NðhÞ½ �
h , i.e.,

P
\N=2

h¼2

G0 is ðh; kðhÞÞ�expanderf g
" #

�N 1� c2
N2

; (55)
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for some c2 > 0where

kðhÞ ¼ c3N
1�a for 1 � h � Na

c4
N
h for Na þ 1 � h � N=2

	
; (56)

for some c3; c4 > 0. See Appendix A, available in the
online supplemental material, for a detailed proof.
This satisfies the expander property requirements of
Theorem 3. Applying Theorem 3, we obtain

TN ¼ O log logNð Þ; (57)

with probability at least 1� c5
N for some c5 > 0. We

prove this in Appendix A, available in the online
supplemental material.

2) 1 � a < 2: In this case, the expander properties of
Theorem 5 hold. Note that h

Na ! 0 for all 1 � h �
N=2. We, thus, have ð1� 1� c=Nað ÞhÞ ¼ Q h=Nað Þ.
Using the expression for E NðhÞ½ � in Equation (53) we
haveNðhÞ ¼ Q Nh=Nað Þ ¼ Q h=Na�1ð Þ.

Here, E NðhÞ½ � does not always go infinity in N .
However, we observe that, for all bNa�1logN þ 1 �
h � N=2 and for any b > 0,E NðhÞ½ � ! 1 asN ! 1.
We can then use Lemma 2, the concentration bounds
for binomial distribution, to derive the following
expander property for bNa�1logN þ 1 � h � N=2:

P
\N=2

h> bNa�1logN

G0 is h;
c1

Na�1

� �
�expander

n o2
4

3
5

�N 1� c2
N2

;

(58)

for some c1; c2 > 0 and provided b > c3 for some
c3 > 0.

For 1 � h � bNa�1logN , E NðhÞ½ � need not always
go to infinity, and can in fact go to zero. Due to this,
the network M does not satisfy any expander prop-
erty for all 1 � h � bNa�1logN . Therefore, we derive
a lower-bound on the probability P NðhÞ � 1½ �. In
particular, there exists c3 > 0 such that

P NðhÞ � 1½ � �N c3 1� exp �h=Na�1
� �� �

; (59)

for all h 2 f1; 2; . . .bNa�1logNg. See Appendix B,
available in the online supplemental material, for a
detailed proof. This satisfies the conditions of Theo-
rem 5. From this, one can obtain

TN ¼ O Na�1logN
� �

;

with probability at least 1� c4
N for some c4 > 0. We

prove this in Appendix B, available in the online
supplemental material.

3) a � 2: In this case, the conditions of Theorem 4 hold.
Since a � 2, we have h=Na ! 0 for all 1 � h � N=2.
This implies 1� 1� c=Nað Þh¼ Q h=Nað Þ. Thus,
using Equation (53), we have E NðhÞ½ � ¼ Q Nh=Nað Þ
! 0 for all 1 � h � N=2. This shows that the network
M does not satisfy any expander property. We,
therefore, derive a lower-bound on P NðhÞ ¼ 1½ �.
There exists a c1 > 0 such that

P NðhÞ ¼ 1½ � �N c1
ðN � hÞh

Na
; (60)

for all 1 � h � N � 1. See Appendix C, available
in the online supplemental material, for a detailed
proof. This satisfies the condition of Theorem 4, using
which one can obtain

TN ¼ O Na�1logN
� �

;

with probability at least 1� c2
N for some c2 > 0. We

prove this in Appendix C, available in the online
supplemental material.

Fig. 3 compares the high probability upper bound with
the average lower-bound on flooding time TN from Theo-
rem 2. We observe a gap of at most O log logNð Þ when
0 < a < 1. For all other values of a the upper and lower-
bounds are of the same order. The lower-bound on flooding
time was derived in Theorem 2, which was also the lower-
bound on the achievable average delay. In the next section,
we show that a simple FCFS flooding scheme achieves the
high probability upper bound on flooding time as its achiev-
able average delay.

5 FCFS FLOODING SCHEME

We propose a scheme that is based on the idea of single
packet flooding described in Section 2. In this scheme, only a
single packet is transmitted over the entire network at any
given time. Packets are served sequentially by the network
on a FCFS basis. Each packet gets served for a fixed duration
of t. The packet is dropped if within this duration it is not
received by all the other ðN � 1Þ nodes.We call this the FCFS
packet flooding scheme.

FCFS Packet Flooding: Packets arrive at each of the N
nodes at rate �.

1) Among all the packets that have arrived, select the
one that had arrived the earliest. At this time only
one node, i.e. the source node, has this packet.

2) In every cell, randomly select one packet carrying
node (if it exists) as a transmitter.

3) Selected nodes transmit in each cell during the slot
while all other nodes in the corresponding cells
receive the packet.

4) Repeat Steps 2 and 3 for t time slots.
5) After t slots, remove the current packet from the

transmission queue and go to Step 1.

Fig. 3. High probability upper bound and the average lower-bound on
flooding time TN as a function of a.
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Note that in the FCFS flooding scheme, as described, if a
cell does not contain a node carrying the earliest packet, no
transmission occurs in that cell, during that time slot. This
is an inefficiency in the algorithm, which we will fix in
Section 5.1.

We refer to t in the FCFS flooding scheme as the flooding-
time threshold. The choice of the flooding-time threshold t is
critical as a small value twill imply that an arriving packet is
dropped before it reaches all the nodes much too often,
whereas a large value of t will imply that the packet remains
in the system for too long a duration, thereby causing conges-
tion, and affecting network throughput. To ensure a better
tradeoff between this packet drop probability and network
throughput, we set t ¼ UN , which is given by

UN ¼ c1N
a�1logN if a � 1 ðsparseÞ

c2log logN if 0 < a < 1 ðdenseÞ
	

; (61)

for some positive constants c1 and c2 such that TN < UN

with probability 1� 1
N. Such constants exists by Theorem 6.

This leads to a vanishingly small packet drop probability.
We now obtain the capacity and delay performance of this
FCFS packet flooding scheme.

Theorem 7. The FCFS packet flooding scheme achieves a capacity
of

� ¼
Q 1

NalogN

� �
if a � 1 ðsparseÞ

Q 1
N log logN

� �
if 0 < a < 1 ðdenseÞ

8<
: : (62)

Furthermore, the delay achieved at this rate isD ¼ Q UNð Þ.
Proof. The packets arrive at each node according to a Poisson

process, at rate �. Thus, the sum packets arrivals in the net-
works is also a Poisson process of rateN�. The service time
for each packet under the FCFS packet flooding scheme is
nothing butUN . Thus, the system can be thought of as aM/
D/1 queue, with an arrival rate of N� and service time of
UN . Thewaiting time for such a system is given by [28]

~W ¼ UN þ UN
r

2ð1� rÞ ; (63)

for any arrival rate N� < 1
UN

, where r ¼ NUN� < 1 is

the queue utilization. Selecting any r < 1, we obtain
~W ¼ QðUNÞ and � ¼ Qð 1

NUN
Þ. Substituting UN from

Equation (61), we obtain the result. tu

The obtained delay bound in Theorem 7 uses the fact that
the arrival process at each node is Poisson. In the proof, we
make use of the property that superposition of N Poisson
arrival processes is also Poisson. In relaxing the Poisson
arrival assumption, we will need to analyze a queueing sys-
tem in which the arrivals is a sum of independent renewal
processes. This is an interesting problem in itself as, to the best
of our knowledge, tight bounds for such systems are not
known.

Theorem 7 implies that the delay lower-bound of
Theorem 2 is achieved, up to a gap of O log logNð Þ, when the
network is dense, i.e. 0 < a < 1. We also see that the
achieved throughput � is less than the capacity upper bound
of Theorem 1 by a factor of log logN when 0 < a < 1, and

by a factor of logN , when a � 1. The log logN gap appears
due to the exact same gap between the flooding time upper
and lower bounds when 0 < a < 1. The logN factor gap for
a � 1 occurs even though the flooding time upper and lower
bounds are asymptotically tight. This, we conjuncture, is
because the FCFS flooding scheme does not allow simulta-
neous transmissions of different packets, which leads to inef-
ficient utilization of available transmission opportunities.

We summarize these results in Table 1. Unlike the unicast
case, where a capacity-delay tradeoff has been observed [9],
[11], [22], nearly no such tradeoff exists for the broadcast
problem, and both capacity and minimum delay can be
nearly achieved simultaneously.

1) Implementing FCFS Flooding Scheme. The FCFS flooding
scheme, as stated, is hard to implement in a real system, as
it requires the earliest packet arrived, among all packets in
the network, to be serviced at any given time. We now
present a slightly modified version of the FCFS flooding
scheme, which overcomes this difficulty by a slight modifi-
cation. Instead of choosing the earliest arrived packet
among all packets in the network, it picks the earliest
arrived packet in each cell. This selection of the earliest
packet among nodes in a single cell can be ensured in short
time span by using contention based conflict resolution
mechanisms [29], [30]. We describe the resulting thresh-
old-based flooding scheme.

Threshold-Based Flooding Scheme. In each time slot and in
each cell, we select a node, which has the earliest arrived
packet, across all packets in that cell. The selected nodes
broadcast the earliest arrived packet to all other nodes in
the cell. We fix a flooding time threshold t, and like in the
FCFS flooding scheme, a packet is dropped after it spends t
time slots in the system.

Comparing this schemewith the FCFS flooding scheme, it
is clear that the threshold-based flooding scheme is easier to
implement. Furthermore, unlike the FCFS flooding scheme,
the threshold-based flooding scheme does not let a cell with
more than two nodes remain idle with no transmissions.
Using stochastic dominance arguments, it can be shown that
the expected queue length (total number of packets waiting
to be served in the network) for the threshold-based flooding
scheme is upper-bounded by the queue length for the FCFS
flooding scheme. This implies that Theorem 7 also holds for
the threshold-based flooding scheme.

6 SINGLE HOP SCHEME

We now propose a single-hop scheme that achieves the
capacity upper-bound of Theorem 1 when the network is
sparse, i.e. a � 1. In this scheme, a packet reaches its desti-
nation from a source in a single hop, i.e. by direct source to
destination transmission. This scheme only allows for a sin-
gle receiver in each cell, thus, ignores the broadcast nature
of the wireless medium. The scheme still achieves the
upper-bound capacity as the number of nodes in a cell tends
to be very small in the sparse case.

Single-Hop Scheme: Each node makes ðN � 1Þ copies of
an arrival packet, one for each receiving node. Fig. 4 illus-
trates this for node 1, where a copy of an arriving packet at
node 1 is transferred to each of the queues Q1;j for all
2 � j � N .
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1) In each cell, select a pair of nodes at random. If a cell
contains fewer than 2 nodes no transmissions occur
in that cell.

2) For the selected pair in every cell, assign, uniformly
and randomly, one node as a transmitter and the
other as receiver.

3) For each transmitter-receiver pair, if the transmitter
node has a packet for the receiver node, transmit it,
else remain idle.

4) Wait for the next slot to begin, and restart the process
from Step 1.

The scheme is opaque to which node pairs are chosen as
the source-destination pairs. Thus, every queue Qi;j is acti-
vated at the same rate. This implies that all the queues Qi;j

have identical service rates. Hence

X
i6¼j

ri;j ¼ NðN � 1Þr1;2: (64)

The left hand side of Equation (64) corresponds to the total
rate of service opportunities across the network, which is
given by Cp, where p is the probability that there are at least
two nodes in a cell: p ¼ 1� 1� aNð ÞN�NaN 1� aNð ÞN�1.
Thus,NðN � 1Þr1;2 ¼ Cp, which gives

r1;2 ¼ Cp

NðN � 1Þ : (65)

Hence, any arrival rate � < r1;2 will yield a stable network
under the single-hop scheme. The delay achieved by this
scheme is lower-bounded by the delay in the single queue.
Since each queue is Poisson arrival and geometric service
times, the waiting time in each queue can be computed using
the Pollaczek-Khinchine formula (see [28])

�W ¼ �E S2½ �
2ð1� �=r1;2Þ ; (66)

where S is geometrically distributed random variable, with
rate r1;2. Substituting E S2½ � ¼ 2�r1;2

r2
1;2

and setting � ¼ 1
2 r1;2, we

obtain �W ¼ Q 1=r1;2
� �

. We summarize this in the following

result.

Theorem 8. The single hop scheme achieves a capacity of

�SH ¼
Q 1

Na

� �
if a � 1 ðsparseÞ

Q 1
N2�a

� �
if 0 < a < 1 ðdenseÞ

8<
: : (67)

Furthermore, the delay achieved at this rate is

DSH � Q Nað Þ if a � 1 ðsparseÞ
Q N2�að Þ if 0 < a < 1 ðdenseÞ

	
: (68)

Hence, the single hop scheme achieves the capacity upper-
bound fora � 1. Thus, the capacityupper bound inTheorem1
is indeed achievable. In the derivation of the result we have
used the Poisson arrival assumption only in Equation (66),
which applies the Pollaczek-Khinchine formula. The Poisson
arrival assumption here can be relaxed by using the waiting
time upper-bound formula for G/G/1 queues (see [28]).
Doing so will add a constant term, namely the inter-arrival
time variance, to the waiting time in Equation (66), and not
change the scaling obtained in the theorem.

7 SIMULATION RESULTS

In this section,we first validate our flooding time results using
Monte Carlo simulations. We consider a network with N
nodes andC ¼ Nab c cells. In Fig. 5, we plot the average flood-
ing time E TN½ �, for the single packet flooding scheme, as a
function of a 2 ð0; 2Þ for various values ofN . We observe that
the flooding time increases as a increases, i.e., as the network
gets sparser. Also note that Fig. 5 matches with our asymp-
totic illustration of flooding-time bounds in Fig. 3, which plots
the average single-packet flooding time lower-bound derived
in Theorem 2, and the high probability upper-bound on TN

derived in Theorem 6.
In Fig. 5, for a < 1, we observe a very small increase in the

average flooding time E TN½ �, as a function ofN , akin to either
a logN or log logN . However, for a > 1, we see a polynomial
increase of the average flooding time E TN½ � in N . A compari-
son with Fig. 3 implies the correctness of the derived results.
In Fig. 6, we plot the average flooding timeE TN½ �, in log-scale,
as a function of N , for various values of a. From Theorems 6
and 2, loosely speaking, we have TN 
 Na�1logN for a > 1
and TN 
 log logN for a < 1. Plotting on log-scale, this
implies logTN 
 ða� 1Þ logN þ log logN for a > 1 and
TN 
 log log logN � constant, for a < 1. We observe exactly
this scaling behavior in Fig. 6. For higher values of a, namely
a ¼ 2 and a ¼ 3, we see that the log-scale plot ofE TN½ � has the
form of logN with scaling determined by a, whereas for
a < 1, the log-scale plot ofE TN½ � is prettymuch a constant.

We next implement the FCFS flooding scheme. In imple-
menting the FCFS flooding scheme, one has to compute the
flooding time threshold t. As we saw in Section 5, setting a

Fig. 4. Node 1 makes ðN � 1Þ copies of every arriving packet, one for
each queue Q1;j for 2 � j � N. Service rate ofQ1;j is denoted by r1;j.

Fig. 5. Plot of average flooding time E TN½ � as a function of a.
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threshold t results in a packet drop probability. In Fig. 7, we
plot the packet drop probability and average delay attained
by a FCFS flooding scheme, as a function of the flooding
time threshold t. The plot is for a network of N ¼ 10 nodes,
C ¼ 100 cells, and an arrival rate � ¼ 0:001 packets/s.

In Section 5, we shows that there exists a threshold that
scales as UN in Equation (61), for some constants c1 and c2,
such that the capacity and delay given by Theorem 7 is
achieved. The proof of this result involved proving that the
packet drop probability tends to zero, for this selection of
flooding time threshold t, as N ! þ1. In practice, for finite
N , we have to decide on a tradeoff between the packet drop
probability and the average delay. In particular, we can set
a required packet drop probability pdrop, and then compute
the minimum flooding time threshold t that achieves it.

In Fig. 8, we plot the optimal flooding time threshold (in
log-scale), obtained numerically for a packet drop probabil-
ity of pdrop ¼ 0:01, as a function ofN and two values of a. We
assume the arrival rate � to be half the capacity upper-bound
derived in Theorem 1. Also plotted is the average flooding
time E TN½ � and the average delay �D attained by the corre-
sponding FCFS flooding scheme. We see that the optimal
flooding time threshold t is very close to the expected flood-
ing time. More specifically, we observe that the t ¼ hE TN½ �,
for h 2 ð1; 1:8Þ is generally the optimal choice. This figure
illustrates the importance of studying flooding times for
mobile networks, as it helps us design the broadcast algo-
rithms such as FCFS packet flooding and threshold-based
flooding scheme, which could be implemented in practice.

8 CONCLUSION AND OPEN PROBLEMS

We considered the problem of all-to-all broadcast transmis-
sions, in a networks of highly mobile nodes. We derived the

broadcast capacity and minimum delay scaling, in the
number of vehicles N , and showed that the capacity cannot
scale better than 1=N . This, in conjunction with earlier
known results for static network [17], proves that the broad-
cast capacity does not improve with high mobility. This is
in contrast with the unicast case for which mobility
improves network capacity [13].

We further showed that both, the capacity and minimum
delay scalings, can be nearly achieved, simultaneously. We
proposed a simple FCFS flooding scheme, and its variant
threshold-based flooding scheme, which nearly achieve
both the capacity and minimum delay scaling. The flooding
time bound for Markov evolving graphs (MEG), proposed
in [14], was used to analyze the proposed schemes. We also
derived two new bounds on flooding time for MEG, which
may be of independent theoretical interest.

In the Simulation Results section, we saw that the opti-
mal flooding time threshold is closely related to the average
flooding time for the mobile network model. Therefore,
obtaining tight flooding time bounds formore generalmobil-
ity models such as the random waypoint model, Brownian
motion model, and Levy process models, would be of con-
siderable interest. It will also help us analyze the delay of the
FCFS packet flooding and the threshold-based flooding
scheme, under such general mobilitymodels.

The flooding time bounds derived here, and in [14],
would be useful, considering that the Brownian Motion and
Levy processes are Markovian in character. It would be
interesting to see whether the result obtained here, namely
that of (nearly) no capacity-delay tradeoff, holds when the
speeds of motion are much slower.
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