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Abstract—We propose an interdependent random ggraph (RGG) model for interdependent networks. Based on this model, we study

the robustness of two interdependent spatially embedded networks where interdependence exists between geographically nearby

nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node densities

increase, and define the percolation threshold as a pair of node densities above which the giant mutual component first appears. In

contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance, for two

interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may increase

the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds on the

percolation thresholds of two interdependent RGGs by discretization, and obtain 99 percent confidence intervals for the percolation

thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures

and geographical attacks.

Index Terms—Interdependent networks, percolation, random geometric graph (RGG), robustness

Ç

1 INTRODUCTION

CYBER-PHYSICAL systems such as smart power grids and
smart transportation networks are being deployed

towards the design of smart cities. The integration of com-
munication networks and physical networks facilitates net-
work operation and control. In these integrated networks,
one network depends on another for information, power, or
other supplies in order to properly operate, leading to inter-
dependence. For example, in smart grids, communication
networks rely on the electric power from power grids, and
simultaneously control power generators [1], [2]. Failures in
one network may cascade to another network, which poten-
tially make the interdependent networks vulnerable.

Cascading failures in interdependent networks have been
extensively studied in the statistical physics literature since
the seminal work in [3], where each of the two interdependent
networks is modeled as a random graph. A node is functional
if both itself and its interdependent node are in the giant com-
ponents of their respective random graphs. After initial node
failures in the first graph, their interdependent nodes in the
second graph fail. Thus, a connected component in the second
graph may become disconnected, and the failures of the dis-
connected nodes cascade back to (their interdependent) nodes

in the first graph. As a result of the cascading failures, remov-
ing a small fraction of nodes in the first random graph
destroys the giant components of both graphs.

To model spatially embedded networks, an interdepen-
dent lattice model was studied in [4]. Under this model,
geographical attacks may cause significantly more severe
cascading failures than random attacks. Removing nodes in
a finite region (i.e., a zero fraction of nodes) may destroy the
infinite clusters in both lattices [5].

If every node in one network is interdependentwithmulti-
ple nodes in the other network, and a node is content to have
at least one interdependent node, failures are less likely to cas-
cade [6], [7]. Although the one-to-multiple interdependence
exists in real-world spatially embedded interdependent net-
works (e.g., a control center can be supported by the electric
power generated by more than one power generator), it has
not been previously studied using spatial graphmodels.

We use a random geometric graph (RGG) to model each
of the two interdependent networks. RGG has been widely
used to model communication networks [8]. For example,
in a wireless network where the communication distance is
limited by the signal to noise ratio requirement, under fixed
transmission power, two users can communicate if and
only if they are within a given distance. Percolation theory
for RGG has been applied to study information flow in
wireless networks and the robustness of networks under
failures [9], [10]. In this paper, we extend percolation theory
to interdependent RGGs.

The two RGGs representing two interdependent net-
works are allowed to have different connection distances
and node densities, which can represent two networks that
have different average link lengths and scales. These net-
work properties were not captured by the lattice model in
the previous literature. Moreover, the interdependent RGG
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model is able to capture the one-to-multiple interdepen-
dence in spatially embedded networks, and provides a more
versatile framework for studying interdependent networks.

Robustness is a key design objective for interdependent
networks. We study the conditions under which a positive
fraction of nodes are functional in interdependent RGGs as
the number of nodes approaches infinity. In this case, the
interdependent RGGs percolate. Consistent with previous
research [3], [4], [6], the robustness of interdependent RGGs
under failures is measured by whether percolation exists
after failures. To the best of our knowledge, our paper is the
first to study the percolation of interdependent spatial net-
work models using a mathematically rigorous approach. A
preliminary version of the paper was presented in [22].

The main contributions of this paper are as follows.

1) We propose an interdependent RGG model for two
interdependent networks, which captures the differ-
ences in the scales of the two networks as well as the
one-to-multiple interdependence in spatially embed-
ded networks.

2) We derive the first analytical upper bounds on the per-
colation thresholds of the interdependent RGGs, above
which a positive fraction of nodes are functional.

3) We obtain 99 percent confidence intervals for the
percolation thresholds, by mapping the percolation
of interdependent RGGs to the percolation of a
square lattice where the probability that a bond in
the square lattice is open is evaluated by simulation.

4) We characterize sufficient conditions for the interde-
pendent RGGs to percolate under random failures and
geographical attacks. In particular, if the node densi-
ties are above any upper bound on the percolation
threshold obtained in this paper, the interdependent
RGGs remain percolated after a geographical attack.
This is in contrast with the cascading failures after a
geographical attack, observed in the interdependent
latticemodelwith one-to-one interdependence [5].

5) We extend our techniques to study models with
more general interdependence requirement (e.g., a
node in one network requires more than one supply
node from the other network).

The rest of the paper is organized as follows. We state the
model and preliminaries in Section 2. We derive analytical
upper bounds on percolation thresholds in Section 3, and
obtain confidence intervals for percolation thresholds in
Section 4. In Section 5, we study the robustness of interdepen-
dent RGGs under random failures and geographical attacks.
In Section 6, we extend the techniques to study graphs with
more general interdependence. Section 7 concludes the paper.

2 MODEL

2.1 Preliminaries on RGG and Percolation

An RGG in a two-dimensional square consists of nodes gen-
erated by a Poisson point process and links connecting nodes
within a given connection distance [11]. Let Gð�; d; a2Þ
denote an RGGwith node density � and connection distance
d in an a� a square. The studies on RGG focus on the regime
where the expected number of nodes n ¼ �a2 is large. We
first present some preliminaries which are useful for devel-
oping our model. The giant component of an RGG is a con-
nected component that containsQðnÞ nodes. A node belongs
to the giant component with a positive probability QðnÞ=n if
the giant component exists. For a given connection distance,
the percolation threshold is a node density above which a node
belongs to the giant component with a positive probability
(i.e., a giant component exists) and below which the proba-
bility is zero (i.e., no giant component exists). By scaling, if
the percolation threshold is �� under connection distance d,
then the percolation threshold is ��c2 under connection dis-
tance d=c. Therefore, without loss of generality, in this paper,
we study the percolation thresholds represented by node
densities, for given connection distances.

The RGG is closely related to the Poisson booleanmodel [12],
where nodes are generated by a Poisson point process on an
infinite plane. Let Gð�; dÞ denote a Poisson boolean model
with node density � and connection distance d. The differ-
ence between Gð�; dÞ and Gð�; d; a2Þ is that the number of
nodes in Gð�; dÞ is infinite while the expected number of
nodes in Gð�; d; a2Þ is large but finite. The Poisson boolean
model can be viewed as a limit of the RGG as the number of
nodes approaches infinity. The percolation threshold of
Gð�; dÞ under a given d is defined as the node density above
which a node belongs to the infinite componentwith a positive
probability and below which the probability is zero. It has
been shown that a node belongs to the infinite component
with a positive probability if and only if an infinite compo-
nent exists, and thus the percolation ofGð�; dÞ can be equiva-
lently defined as the existence of the infinite component [12].
Moreover, the percolation threshold of Gð�; dÞ is identical
with the percolation threshold ofGð�; d; a2Þ [11], [13].

2.2 Interdependent RGGs

Two interdependent networks are modeled by two RGGs
G1ð�1; d1; a

2Þ and G2ð�2; d2; a
2Þ on the same a� a square. A

node in one graph is interdependent with all the nodes in
the other graph within the interdependent distance ddep. See
Fig. 1 for an illustration. Nodes in one graph are supply
nodes for nodes in the other graph within ddep. The physical
interpretation of supply can be either electric power or
information that is essential for proper operation. A node
can receive supply from nearby nodes within the interde-
pendent distance. Larger interdependent distance leads to
more robust interdependent networks. The geographical
nature of interdependence is observed in physical net-
works [1], [4].

Most analysis in this paper is given in the context of two
interdependent Poisson boolean models GIntDep ¼ ðG1ð�1;
d1Þ; G2ð�2; d2Þ; ddepÞ, which is the limit of two interdepen-
dent RGGs as the numbers of nodes in both graphs
approach infinity.

Fig. 1. Two interdependent RGGs with interdependent distance ddep.
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We define a mutual component and an infinite mutual
component in GIntDep, in the same way as one defines a con-
nected component and an infinite component in Gð�; dÞ.
Definition 1. Let V 0

i denote nodes in a connected component in
Gið�i; diÞ, 8i 2 f1; 2g. If each node in Vi � V 0

i has at least one
supply node in Vj � V 0

j within ddep, 8i; j 2 f1; 2g; i 6¼ j, then
nodes V1 and V2 form amutual component of GIntDep.

If, in addition, Vi contains an infinite number of nodes, 8i 2
f1; 2g, then V1 and V2 form an infinitemutual component.

A mutual component can be viewed as an autonomous
system in the sense that nodes in a mutual component have
supply nodes in the same mutual component, and in each
graph, nodes that belong to a mutual component are con-
nected regardless of the existence of nodes outside themutual
component. Note that a node can receive supply from any of
its supply nodes in the same mutual component, and thus is
content if it has at least one supply node. Nodes in an infinite
mutual component are functional, since they constitute two
large connected interdependent networks and can perform a
given network function (e.g., data communication or power
transmission to a large number of clients). This definition of
functional is consistentwith previous research on interdepen-
dent networks based on randomgraphmodels [3].

For a fixed ddep, if an infinite mutual component exists
in GIntDep ¼ ðG1ð�1; d1Þ; G2ð�2; d2Þ; ddepÞ, then an infinite
mutual component exists in G0IntDep ¼ ðG1ð�01; d1Þ; G2ð�2;
d2Þ; ddepÞ, where �01 > �1. This can be explained by coupling
G01 with G1 as follows. By removing each node in G01 inde-
pendently with probability 1� �1=�

0
1, the density of the

remaining nodes in G01 is �1, and an infinite mutual compo-
nent exists in the interdependent graphs that consist of G2

and the graph formed by the remaining nodes in G01. Since
adding nodes to a graph does not disconnect any mutual
component, an infinite mutual component exists in
G0IntDep ¼ ðG1ð�01; d1Þ; G2ð�2; d2Þ; ddepÞ. By the same analysis,
an infinite mutual component also exists in G00IntDep ¼
ðG1ð�1; d1Þ; G2ð�02; d2Þ; ddepÞ, if �02 > �2.

We define a percolation threshold of GIntDep as follows.

Definition 2. A pair of node densities ð��1; ��2Þ is a percolation
threshold of GIntDep, given connection distances d1; d2 and the
interdependent distance ddep, if an infinite mutual component
exists in GIntDep for �1 > ��1 and �2 > ��2, and no infinite
mutual component exists otherwise.

For fixed d1, d2 and ddep, there may exist multiple percola-
tion thresholds. We show that, in most cases, the larger the
node density is in one graph, the smaller the required node
density is in the other graph in order for the infinite mutual
component to exist. This is in contrast with the situation for
a single graph Gð�; dÞ where there is a unique percolation
threshold �� for a fixed d.

There is a non-trivial phase transition in GIntDep. If �i is
smaller than the percolation threshold of a single graph
Gið�i; diÞ, there is no infinite component in Gið�i; diÞ, and
therefore there is no infinite mutual component in GIntDep.
Thus, ��i > 0, 8i 2 f1; 2g. As we will see in the next section,
there exist percolation thresholds ��i < 1, 8i 2 f1; 2g,
which concludes the non-trivial phase transition.

Given that the conditions for the percolation of a random
geometric graph Gið�i; di; a

2Þ and a Poisson boolean model

Gið�i; diÞ are the same, the above definitions can be natu-
rally extended to interdependent RGGs. Consider nodes
V1 � G1ð�1; d1; a

2Þ and V2 � G2ð�2; d2; a
2Þ that form a mutual

component. If Vi contains QðniÞ nodes, where ni ¼ �ia
2,

8i 2 f1; 2g, then V1 and V2 form a giant mutual component in
interdependent RGGs. The percolation of interdependent
RGGs is defined as the existence of a giant mutual compo-
nent. In the rest of the paper, we sometimes useGi to denote
both Gið�i; di; a

2Þ and Gið�i; diÞ. The model that it refers to
will be clear from the context.

2.3 Related Work

In the interdependent networks literature, the model which
is closest to ours is the interdependent lattice model, first
proposed in [14] and further studied in [4], [5]. In the lattice
model, nodes in a network are represented by the open sites
(nodes) of a square lattice, where every site is open indepen-
dently with probability p. Network links are represented by
the bonds (edges) between adjacent open sites. Every node
in one lattice is interdependent with one randomly chosen
node within distance rd in the other lattice. The distance rd
indicates the geographical proximity of the interdepen-
dence. The percolation threshold of the interdependent lat-
tice model is characterized as a function of rd, assuming the
same p in both lattices [14]. Percolation of the model where
some nodes do not need to have supply nodes was studied
in [4]. The analysis relies on quantities estimated by simula-
tion and extrapolation, such as the fraction of nodes in the
infinite component of a lattice for any fixed p, which cannot
be computed rigorously. In contrast, we study the percola-
tion of the interdependent RGG model using a mathemati-
cally rigorous approach.

The percolation of a single RGG (or a Poisson boolean
model) has been studied in the previous literature [12], [15],
[16]. The techniques employed therein involves inferring
the percolation of the continuous model from the percola-
tion of a discrete lattice model. The key is obtaining a lattice
whose percolation condition is known and is related to the
percolation of the original model, by discretization. The
study of the percolation conditions of discrete lattice models
can be found in [17], [18]. We extend the previous techni-
ques to discretize GIntDep, and obtain bounds on the percola-
tion thresholds.

3 ANALYTICAL UPPER BOUNDS ON PERCOLATION

THRESHOLDS

In this section, we study sufficient conditions for the perco-
lation of GIntDep. We provide closed-form formulas for
ð�1; �2Þ, which depend on d1; d2; ddep, such that there exists
an infinite mutual component in GIntDep ¼ ðG1ð�1; d1Þ;
G2ð�2; d2Þ; ddepÞ. The formulas provide guidelines for node
densities in deploying physical interdependent networks, in
order for a large number of nodes to be connected.

In GIntDep, nodes in the infinite mutual component are
viewed as functional while all the other nodes are not.
Thus, a node is functional only if it is in the infinite compo-
nent of its own graph, and it depends on at least one node
in the infinite component of the other graph. For any node
b1 in G1, although the number of nodes in G2 within
the interdependent distance from b1 follows a Poisson
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distribution, the number of functional nodes is hard to cal-
culate, since the probability that a node in G2 is in the infi-
nite component is unknown. Moreover, the nodes in the
infinite component of G2 are clustered, and thus the thin-
ning of the nodes in G1 due to a lack of supply nodes in G2

is inhomogeneous. To overcome these difficulties, we con-
sider the percolation of two graphs jointly, instead of study-
ing the percolation of one graph with reduced node density
due to a lack of supply nodes.

We now give an overview of our approach. We develop
mapping techniques (discretizations) to characterize the per-
colation of GIntDep by the percolation of a discrete model.
Mappings from a model whose percolation threshold is
unknown to a model with known percolation threshold are
commonly employed in the study of continuum percolation.
For example, one can study the percolation threshold of the
Poisson boolean model Gð�; dÞ by mapping it to a triangle
lattice and relating the state of a site in the triangle lattice to
the point process ofGð�; dÞ. By the mapping, the percolation
of the triangle lattice implies the percolation of Gð�; dÞ. Con-
sequently, an upper bound on the percolation threshold of
Gð�; dÞ is given by � for which the triangle lattice percolates,
a known quantity [12], [15]. In general, more than one map-
ping can be applied, and the key is to find a mapping that
gives a good (smaller) upper bound. Following this idea, we
propose different mappings that fit different conditions to
obtain upper bounds on the percolation thresholds ofGIntDep.

In the rest of this section, we first study an example, in
which the connection distances of the two graphs are the
same, to understand the tradeoff between the two node den-
sities in order for GIntDep to percolate. We then develop two
upper bounds on the percolation thresholds. The first bound
is tighter when the ratio of the two connection distances is
small, and is obtained by mapping GIntDep to a square lattice
with independent bond open probabilities. The second
bound is tighter when the ratio of the two connection distan-
ces is large, and is obtained by mapping GIntDep to a square
lattice with correlated bond open probabilities.

3.1 A Motivating Example

To see the impact of varying the node density in one graph
on the minimum node density in the other graph in order
for GIntDep to percolate, consider an example where d1 ¼
d2 ¼ 2ddep. We apply a mapping similar to what is used to
obtain an upper bound on the percolation threshold of
Gð�; dÞ in [15], to obtain upper bounds on the percolation
thresholds of GIntDep.

Consider a triangle lattice where each site is surrounded
by a cell. The lattice bond length is determined such that
any two points in adjacent cells have distance smaller than

2r, where 2r ¼ d1. The boundary of the cell consists of arcs
of radius r centered at the middle of the bonds in the trian-
gle lattice. See Fig. 2 for an illustration. The area of the cell is
A ¼ 0:8227r2. A site in the triangle lattice is either open or
closed . If the probability that a site is open is strictly larger
than 1=2, open sites form an infinite component, and the tri-
angle lattice percolates [15].

To study the percolation of GIntDep, we declare a site in
the triangle lattice to be open if there is at least one node in
its cell from G1 and at least one node in its cell from G2. If
the triangle lattice percolates, then GIntDep also percolates.
To see this, consider two adjacent open sites in the triangle
lattice. Nodes from Gi in the two adjacent cells that contain
the two open sites are connected, because they are within
distance di ¼ 2r (8i 2 f1; 2g). If the open sites in the triangle
lattice form an infinite component, then nodes from Gi in
the corresponding cells form an infinite component Vi

(8i 2 f1; 2g). Moreover, given that any pair of nodes in a cell
are within distance r � ddep, each node in Vi has at least one
supply node in Vj within the same cell (8i; j 2 f1; 2g; i 6¼ j).

Since 1� e��iA is the probability that there is at least one
node in the cell from Gi and the point processes in G1 and
G2 are independent, an upper bound on the percolation
thresholds of GIntDep is given by ð�1; �2Þ satisfying

ð1� e��1AÞð1� e��2AÞ ¼ 1=2:

If �i is large, the percolation threshold ��j approaches the
threshold of a single graph Gj. Intuitively, if �j is above the
percolation threshold of Gj, disks of radius dj=2 centered at
nodes in Gj form a connected infinite-size region. Since �i is
large, nodes in Gi in this region are connected and form an
infinite component. Moreover, since ddep ¼ dj=2, all the
nodes in this region have supply nodes, and they form an
infinite mutual component.

The above upper bounds on percolation thresholds are
still valid if ddep > di=2, because each node can depend on a
larger set of nodes by increasing ddep and it is easier for
GIntDep to percolate under the same node densities and con-
nection distances. However, if ddep < di=2, the bond length
of the triangle lattice should be adjusted to r ¼ ddep in order
for any pair of nodes in a cell to be within ddep. The percola-
tion threshold curve ð�1; �2Þwould shift upward. Intuitively,
if ddep decreases, the node density in one network should
increase to provide enough supply for the other network.

3.2 Small Ratio d2=d1
Given GIntDep ¼ ðG1ð�1; d1Þ; G2ð�2; d2Þ; ddepÞ, without loss of
generality we assume that d1 � d2. Moreover, we assume
that ddep � maxðd1=2; d2=2Þ ¼ d2=2 (see the remark at the
end of the section for comments on this assumption). Let
c ¼ bd2=d1c ¼ maxfc : d2=d1 � c; c 2 Ng. For small c, we
study the percolation of GIntDep by mapping it to an inde-
pendent bond percolation of a square lattice, and prove the
following result.

Theorem 1. If ð�1; �2Þ satisfies

ð1� e��1d
2
1
=8Þcð1� e��2c

2d2
1
=8Þ > 1=2;

then GIntDep ¼ ðG1ð�1; d1Þ; G2ð�2; d2Þ; ddepÞ percolates, where
c ¼ bd2=d1c, d1 � d2, and ddep � d2=2.

Fig. 2. A cell that contains a site in a triangle lattice.
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Theorem 1 provides a sufficient condition for the percola-
tion of GIntDep. For node densities that satisfy the inequality,
an infinite mutual component exists in GIntDep. For the
deployment of interdependent networks, if the node densi-
ties in the two networks are sufficiently large (characterized
by Theorem 1), then a large number of nodes in the interde-
pendent networks are functional.

Proof of Theorem 1. We first construct a square lattice as
follows. Partition the plane into small squares of side
length s ¼ d1=2

ffiffiffi
2
p

. A large square consists of c� c small
squares and has side length cs. The diagonals of the large
squares form the bonds of a square lattice L, illustrated
by the thick line segments in Fig. 3.

The state of a bond in L is determined by the point
process of GIntDep in the large square that contains the
bond. A bond ðv1; v2Þ is open if the following conditions
are both satisfied.

1) There is at least one node from G1 in each of the
two small squares that contain the ends (v1 and v2)
of the bond, and they are connected through nodes
fromG1,all within the large square of side length cs.

2) There is at least one node from G2 in the large
square that contains the bond.

The first condition is satisfied if there exists a sequence
of adjacent small squares, each of which contains at least
one node in G1, from the small square that contains v1 to
the small square that contains v2. (Each small square is
adjacent to its eight immediate neighbors.) In the example
of Fig. 3, these sequences include 3-5-7, 3-2-4-7, and 3-6-8-7.

To obtain a closed-form formula, instead of comput-
ing the exact probability, we compute a lower bound on
the probability that the first condition is satisfied. The
probability is lower bounded by the probability that the c
small squares that intersect the bond each contain at least
one node from G1, given by

p1 � ð1� e��1d
2
1
=8Þc:

The probability that the second condition is satisfied is

p2 ¼ 1� e��2c
2d2

1
=8:

Given that the two Poisson point processes inG1 andG2

are independent, the probability that a bond is open is p1p2.

It remains to prove that the percolation of L implies the
percolation of GIntDep. Consider two adjacent open bonds
ðv1; v2Þ; ðv2; v3Þ in L. Let S1 and S2 denote the two adjacent
large squares of side length cs that contain the two open
bonds. Let S01 and S02 denote two adjacent small squares of
side length s that contains v2, within S1 and S2, respec-
tively. See Fig. 3 for an illustration. Since ðv1; v2Þ; ðv2; v3Þ
are open, under the second condition, nodes ofG2 exist in
S1 and S2 and they are connected, because they are within
distance 2

ffiffiffi
2
p

cs � d2. Under the first condition, nodes of
G1 form a connected path from the small square (within
S1, marked as 7 in Fig. 3) containing v1 to S01, and another
path from the small square (within S2) containing v3 to S02.
Moreover, the two paths are joined, because any pair of
nodes in S01 and S02 are within distance 2

ffiffiffi
2
p

s ¼ d1. Given
that any pair of nodes within a large square have distance
at most

ffiffiffi
2
p

cs � d2=2 � ddep, all the nodes have at least one
supply node inside the large square that contains an open
bond. To conclude, if the open bonds in L form an infinite
component, then the nodes in GIntDep form an infinite
mutual component.

The event that a bond is open depends on the point
processes in the large square that contains the bond, and
is independent of whether any other bonds are open. As
long as the probability that a bond is open, p1p2, is larger
than 1=2, which is the threshold for independent bond
percolation in a square lattice [18], GIntDep percolates. tu
The bound can be made tighter for any given c ¼ bd2=d1c,

by computing more precisely the probability that the first
condition is satisfied. We provide an example to illustrate
the computation of an improved upper bound.

Example. Consider an example where d1 ¼ 1; d2 ¼ 2ddep ¼
3. The probability that there is at least one node from G2 in
the large square of side length 3=2

ffiffiffi
2
p

is p2 ¼ 1� e�9�2=8:
The probability that a small square of side length 1=2

ffiffiffi
2
p

contains at least one node from G1 is ps ¼ 1� e��1=8: The
probability that the first condition is satisfied is

p1 ¼ p3s þ ð1� psÞp4s þ ð1� psÞp4s � ð1� psÞp6s; (1)

obtained by considering all the sequences of adjacent small
squares. For node densities ð�1; �2Þ that satisfy p1p2 > 1=2,
GIntDep percolates. Since p1 computed by Eq. (1) is larger than
p3s for any fixed ps, the bound on �2 is smaller for any fixed �1.

3.3 Large Ratio d2=d1
In themapping fromGIntDep to the square latticeL, the condi-
tion for a bond to be open becomes overly restrictive as d2=d1
increases. A path crossing the two large squares that contain
two adjacent bonds does not have to cross the small squares
that contain the common end of the two bonds. In the follow-
ing theorem, we give another upper bound on the percola-
tion threshold of GIntDep. This result provides an alternative
sufficient condition for the existence of an infinite mutual
component in GIntDep. This upper bound is tighter than the
bound in Theorem 1 for larger values of d2=d1.

Theorem 2. If ð�1; �2Þ satisfies

1� 4

3
ðmþ 1Þem log 3ð1�pÞ

� �
1� 4

3
ð2mþ 1Þem log 3ð1�pÞ

� �
p0 > 0:8639;

Fig. 3. Mapping to a square lattice for c ¼ 3.
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then GIntDep ¼ ðG1ð�1; d1Þ; G2ð�2; d2Þ; ddepÞ percolates, where
p ¼ 1� e��1d

2
1
=8, p0 ¼ 1� e�2D

2�2 , D ¼ minðd2=
ffiffiffiffiffi
10
p

; ddep=ffiffiffi
5
p Þ;m ¼ b2D=d1c, d1 � d2, and ddep � d2=2.

This upper bound is obtained by mapping GIntDep to a
dependent bond percolation model LD. The mapping from
the Poisson boolean model Gð�; dÞ to LD was first proposed
in [16] to study the percolation threshold of Gð�; dÞ, and
later applied to the study of a random geometric graph
under non-uniform node removals [10]. We briefly describe
the method in the previous literature that uses LD to study
the percolation of Gð�; dÞ, and then prove Theorem 2 based
on a similar method.

3.3.1 1-Dependent Bond Percolation Model LD

In the standard bond percolation model on a square lattice L,
the event that a bond is open is independent of the event that
any other bond is open. If in a square latticeLD, the event that
a bond is open may depend on the event that its adjacent
bond is open, but is independent of the event that any non-
adjacent bond is open, then LD is a 1-dependent bond percola-
tion model on a square lattice. With the additional restriction
that each bond is openwith an identical probability, an upper
bound on the percolation threshold ofLD is 0.8639 [16].

The 1-dependent bond percolation model LD can be used
to study the percolation ofG0 where the points are generated
by homogeneous Poisson point processes. To construct a
mapping from G0 to LD, consider two adjacent D�D
squares S1 and S2 and let R be the rectangle formed by the
two squares. A bond ðv1; v2Þ that connects the centers of S1

and S2 is associatedwithR. Fig. 4 illustrates the square lattice
formed by the bonds, represented by thick line segments.

Lemma 3. Let the state of a bond ðv1; v2Þ be determined by the
homogeneous Poisson point processes of G0 inside R, and the
conditions for a bond to be open be identical for all bonds. Then
the bonds form a 1-dependent bond percolation model LD with
identical bond open probabilities.

Proof. The event that a bond is open is not independent of
the event that its adjacent bond is open, since the two
events both depend on the point process in an overlap-
ping square. However, the event that a bond is open is
independent of the event that any non-adjacent bond is
open, since their associated rectangles do not overlap and
the point processes in the two rectangles are independent.

Moreover, a Poisson point process is invariant under
translation and rotation. Given that the points in G0 are
generated by homogeneous Poisson point processes and

the conditions for a bond to be open are identical, the
probability that a bond is open is identical for all bonds.tu
By properly setting the conditions for a bond to be open,

the percolation of LD can imply the percolation of G0. We
first look at an example in [18] that studies the percolation
of Gð�; dÞ, and then extend the technique to study GIntDep.

Example [18]. Let a bond be open if a path in Gð�; dÞ
crosses1 R0 horizontally and another path in Gð�; dÞ crosses
S01 vertically, where R0 is a ð2D� 2dÞ � ðD� 2dÞ rectangle
that has the same center as R, and S01 is a ðD� 2dÞ � ðD�
2dÞ square that has the same center as S1. The reason for
considering R0 and S01 is that the existence of the two cross-
ing paths over R0 and S01 is determined by the point process
within R, while the existence of links within distance d from
the boundaries (and thus the crossings over R) may depend
on nodes outside R.

If two adjacent bonds are open, the paths in Gð�; dÞ in the
two rectangles are joined. To see this, note that in Fig. 5, if the
black and blue bonds (same direction) are both open, the
crossings 1 and 2 intersect. If the black and red bonds (per-
pendicular) are both open, the crossings 1 and 3 intersect.

If the square lattice LD percolates, open bonds form an
infinite component. Paths in Gð�; dÞ across the rectangles
associated with the open bonds are connected and form an
infinite component. Therefore, a node density above which
LD percolates is an upper bound on the percolation thresh-
old of Gð�; dÞ.

3.3.2 Proof of Theorem 2

We map GIntDep to LD by letting a bond in LD be open if the
following three conditions are satisfied in its associated rect-
angle R ¼ S1 [ S2. The size of the rectangle satisfies D ¼
minðd2=

ffiffiffiffiffi
10
p

; ddep=
ffiffiffi
5
p Þ � d2=2

ffiffiffi
5
p

.

1) A path from G1 crosses R
0 horizontally, where R0 is a

ð2D� 2d1Þ � ðD� 2d1Þ rectangle that has the same
center as R.

2) A path from G1 crosses S01 vertically, where S01 is a
ðD� 2d1Þ � ðD� 2d1Þ square that has the same cen-
ter as S1.

Fig. 4. Square lattice LD formed by the bonds ðvi; vjÞ.
Fig. 5. Crossings over rectangles associated with two adjacent open
bonds are joined.

1. A path crosses a rectangle R0 ¼ ½x1; x2	 � ½y1; y2	 horizontally if the
path consists of a sequence of connected nodes v1; v2; ; vn�1; vn, and
v2; ; vn�1 are in R0, xðv1Þ � x1; xðvnÞ � x2, y1 � yðv1Þ; yðvnÞ � y2, where
xðviÞ is the x-coordinate of vi and yðviÞ is the y-coordinate of vi. A path
crosses a rectangle vertically is defined analogously.
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3) There is at least one node from G2 in R.
To see that the percolation of LD implies the percolation

of GIntDep, consider any two adjacent open bonds in LD. In
the two rectangles associated with the bonds, 1) paths from
G1 that cross one rectangle are joined with paths from G1

that cross the other rectangle; 2) at least two nodes from G2,
one in each rectangle, are connected by a link in G2, because
any two nodes in adjacent rectangles are within distanceffiffiffiffiffi
10
p

D � d2; 3) every node in Gi has at least one supply node
in Gj inside the rectangle (8i; j 2 f1; 2g; i 6¼ j), in which the
distance between two nodes is no larger than

ffiffiffi
5
p

D � ddep.
If the probability p123 that a bond is open is above 0.8639,

then LD percolates and GIntDep also percolates. An upper
bound on the percolation threshold of GIntDep is a pair of
node densities ð�1; �2Þ that yields p123 � 0:8639. In the
remainder of the proof, we compute p123 as a function of
ð�1; �2Þ.

To determine the probability that the first and the second
conditions are satisfied, we consider a discrete square lattice
represented by Fig. 6. Bonds of length d1=2 form a square lat-
tice L0 in a finite md1 �md1=2 region, where m ¼ b2D=d1c.
Let a bond in L0 be open if there is at least one node from G1

in the d1=2
ffiffiffi
2
p � d1=2

ffiffiffi
2
p

square that contains the bond (the
small square that has dashed boundaries in the figure),

which occurs with probability p ¼ 1� e��1d
2
1
=8. It is clear that

if the open bonds form a horizontal crossing2 over L0, then
nodes inG1 form a horizontal crossing path overR0.

Let pxðkm;m; pÞ denote the probability that there exists a
horizontal crossing over the km�m square lattice L0 given
that each bond is open independently with probability p. A
lower bound on pxðkm;m; pÞ, Eq. (2), can be derived by a
standard technique in percolation theory (e.g., an extension
of Proposition 2 in [9]).

pxðkm;m; pÞ � 1� 4

3
ðkmþ 1Þem log 3ð1�pÞ: (2)

The probability that the crossing exists is close to 1 if m is
large and p > 2=3.

Finally, the probability that the first condition is satisfied
is p1 � pxð2m;m; pÞ. The probability that the second condi-
tion is satisfied is p2 � pxðm;m; pÞ. Given that the existence
of the two crossings are positively correlated, by the FKG
inequality [18], the probability that both conditions are satis-
fied is lower bounded by

p12 � p1p2 � pxð2m;m; pÞpxðm;m; pÞ:
The probability that there is at least one node fromG2 inR

(i.e., the third condition is satisfied) is p3 ¼ 1� e�2D
2�2 . Given

that the point processes in G1 and G2 are independent, the
probability that a bond is open is p123 ¼ p12p3. As long as
p123 > 0:8639,GIntDep percolates. This completes the proof.

3.3.3 An Example of Two RGGs with Large d2=d1
We study two interdependent RGGs G1 and G2, which have
a finite number of nodes, in order to quantify d2=d1 as a
function of the number of nodes in the graph. If d2 ¼
Vðd1 logn1Þ, and ddep � d2=2, then m ¼ Vðlogn1Þ, where n1

is the expected number of nodes in G1. As n1 approaches
infinity, the probability pxðkm;m; pÞ approaches 1 if p >
2=3, by Eq. (2).

Applying Theorem 2, by solving p ¼ ð1� e��1d
2
1
=8Þ ¼ 2=3,

and p3 ¼ 1� e�2D
2�2 ¼ 0:8639; we obtain an upper bound

on percolation threshold �1 ¼ 8:789=d21, �2 ¼ 19:94=d22. The
bounds suggest that if the ratio between the connection dis-
tances of two RGGs is very large, the node density in one
RGG may not affect the minimum node density in the other
RGG in order for the giant mutual component to exist in the
interdependent RGGs.

We conjecture that as long as the node density of each
individual RGG is above the percolation threshold of the
single graph, then the interdependent RGGs percolate, if
d1 
 d2 and ddep ¼ ð1þ �Þd2=2 for � > 0. This can be intui-
tively explained as below. Let V 0

2 denote the nodes in the
giant component of a single graph G2 without considering
the interdependence. Disks of radius d2=2 centered at nodes
in V 0

2 are connected. Disks of radius ddep > d2=2 centered at
nodes in V 0

2 are also connected, and this region contains
nodes in G1 that have functional supply nodes. Each disk of
radius ddep is so large compared with d1, that the probability
that there is a crossing formed by connected nodes in G1

along any direction across the disk approaches one3. More-
over, the disks of radius ddep have overlaps with width and
height at least �d2 � d1, which are sufficiently large to join
the paths in G1 across two overlapping disks. Thus, a giant
component of G1 exists near the giant component of G2.
Nodes in the two components are interdependent and form
a giant mutual component.

3.4 Numerical Results

We verify the bounds in Theorem 1 by simulating GIntDep in
a 10� 10 square. Table 1 illustrates the fraction of nodes
from Gi that belong to the largest mutual component,
denoted by fi, (8i 2 f1; 2g). The fractions are averaged
over 5 instances of simulations for each combination of
ð�1; �2; d1; d2; ddepÞ that satisfies the condition in Theorem 1.
To verify the bounds in Theorem 2, we simulate GIntDep in a
30� 30 square (to simulate a sufficiently large G2 under
small node densities). Table 2 illustrates the average fraction
of nodes in the largest mutual component, for ð�1; �2; d1;
d2; ddepÞ given by Theorem 2. We observe that most nodes in

Fig. 6. Mapping the crossing in G1 to the crossing in a square lattice L0.

2. A horizontal crossing of open bonds over a rectangle
R0 ¼ ½x1; x2	 � ½y1; y2	 consists of a sequence of adjacent open bonds in
the rectangle such that at least one bond has an endpoint with x-coordi-
nate x1 and at least one bond has an endpoint with x-coordinate x2. A
vertical crossing of open bonds is defined analogously.

3. If nodes are generated by a Poisson point process with density
above the percolation threshold, the probability that there is a horizon-
tal path across a kl� l rectangle approaches one for any k as l!1 [12].
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G1 and G2 belong to the largest mutual component, which
implies that GIntDep percolates.

Remark. We have assumed that ddep � maxðd1=2; d2=2Þ ¼
d2=2 throughout this section. To see that this is a reasonable
assumption, note that nodes in G1 that have at least one
functional supply node are restricted in the region Rdep,
where Rdep is the union of disks with radius ddep centered at
nodes in the infinite component of G2. If Rdep is fragmented,
it is not likely for disks of radius d1=2 < d2=2 centered at
random locations within Rdep to overlap, and it is not likely
that a functional infinite component will exist in G1, unless
the node density in G1 is large. Therefore, the interdepen-
dent distance ddep should be large enough so that Rdep is a
connected region, to avoid a large minimum node density
in G1. The region Rdep can be made larger by increasing
either �2 or ddep. Setting ddep � d2=2 avoids increasing �2

high above the percolation threshold of G2, in order for Rdep

to be connected. In Section 4, we develop a more general
approach that does not require this assumption.

4 CONFIDENCE INTERVALS FOR PERCOLATION

THRESHOLDS

In this section, we compute confidence intervals for percola-
tion thresholds. The confidence intervals provide interval
estimates for the percolation thresholds. If the node densi-
ties in GIntDep are below the lower confidence bounds, then
there does not exist an infinite mutual component in GIntDep

with high confidence. On the other hand, if the node densi-
ties are above the upper confidence bounds, then there
exists an infinite mutual component in GIntDep with high
confidence. Compared with the analytical upper bounds in
Section 3, the numerical upper confidence bounds are much
tighter. Moreover, the techniques in this section apply to
GIntDep with general d1; d2; ddep.

The mapping to compute confidence intervals is related
to the mapping from GIntDep to the 1-dependent bond

percolation model LD in Section 3.3. Both mappings satisfy
the following properties: 1) the percolation of LD implies
the percolation of GIntDep; 2) the event that determines the
state of a bond depends only on the point process within its
associated rectangle, thus preserving the 1-dependent prop-
erty. The probability that the event occurs can be computed
or bounded analytically in the previous section. In contrast,
in this section, we consider events whose probabilities are
larger under the same point processes but can only be eval-
uated by simulation. Since the events that we consider in
this section are more likely to occur under the same point
processes, the mappings yield tighter bounds.

Our mappings from GIntDep to LD extend the mappings
from Gð�; dÞ to LD proposed in [16]. For completeness, we
first briefly summarize the mappings in [16] that compute
upper and lower bounds on the percolation threshold of
Gð�; dÞ.

Upper Bound forGð�; dÞ [16]. Recall Fig. 4. The event that a
bond ðv1; v2Þ 2 LD is open is determined by the point pro-
cess of Gð�; dÞ in the rectangle R ¼ S1 [ S2, where S1 and S2

are squares. Let Vi denote the largest component formed by
the points of Gð�; dÞ in Si. If Vi is the unique largest compo-
nent in Si (8i 2 f1; 2g) and V1 and V2 are connected, then the
bond is open. Otherwise, the bond is closed.

If LD percolates, open bonds form an infinite component.
As a result, the largest components in the squares that inter-
sect the open bonds are connected inGð�; dÞ and they form an
infinite component. Therefore, a node density �, above which
the probability that a bond is open is larger than 0.8639, is an
upper bound on the percolation threshold ofGð�; dÞ.

Lower Bound for Gð�; dÞ [16]. Let the connection process
of Gð�; dÞ be the union of nodes and links in Gð�; dÞ. Let
the complement of the connection process be the union of
the empty space that does not intersect nodes or links. If the
complement of the connection process form a connected
infinite region, then all the connected components in Gð�; dÞ
have finite sizes and Gð�; dÞ does not percolate [16], [19].
Consider the complement of the connection process in rect-
angle R. Let a bond (in LD) associated with rectangle R be
open if the complement process forms a horizontal cross-
ing4 over the rectangle R0 and a vertical crossing over the
square S01. Recall that rectangle R

0 is the ð2D� 2dÞ � ðD� 2dÞ

TABLE 1
Fraction of Nodes in the Largest Mutual Component

Under the Condition of Theorem 1

�1 �2 d1 d2 ddep f1 f2

15 1.54 1 3 1.5 1.00 1.00
20 0.92 1 3 1.5 0.99 1.00
25 0.75 1 3 1.5 0.98 1.00
15 2.39 1 2 1 0.99 1.00
20 1.80 1 2 1 1.00 1.00
25 1.58 1 2 1 0.97 1.00

TABLE 2
Fraction of Nodes in the Largest Mutual Component

Under the Condition of Theorem 2

�1 �2 d1 d2 ddep f1 f2

16 0.190 1 10 7.07 1.00 1.00
17 0.123 1 10 7.07 1.00 1.00
25 0.100 1 10 7.07 1.00 1.00
17 0.385 1 8 5.66 1.00 1.00
18 0.207 1 8 5.66 1.00 1.00
25 0.156 1 8 5.66 0.99 1.00

Fig. 7. The horizontal and vertical crossings from the complement of the
connection process over the rectangle.

4. The complement of a connection process forms a horizontal cross-
ing over a rectangle if a curve in the rectangle touches the left and right
boundaries of the rectangle and the curve does not intersect any nodes
or links. The vertical crossing of the complement process is defined
analogously.
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rectangle that has the same center as R, and square S01 is the
ðD� 2dÞ � ðD� 2dÞ square that has the same center as S1,
the left square in R. For example, in Fig. 7, the two crossings
that do not intersect any nodes or links are plotted.

If LD percolates, the complement process forms an infi-
nite region and Gð�; dÞ does not percolate. To conclude, a
node density, under which the probability that the comple-
ment process forms the two crossings is above 0.8639, is a
lower bound on the percolation threshold for Gð�; dÞ.
4.1 Upper Bounds for GIntDep

In Gð�; dÞ, the largest connected component that contains a
node b can be computed efficiently by contracting the links
(or using a breadth-first-search) starting from b. Two com-
ponents are connected and form one component if there
exists two nodes within distance d, one in each component.
We next extend these notions to GIntDep.

Let G1 and G2 denote the two graphs in GIntDep. Let
b1 2 G1 and b2 2 G2 denote two nodeswithin the interdepen-
dent distance ddep. Algorithm 1 computes the largest mutual
component Mðb1; b2Þ that contains b1 and b2. The correctness
follows from the definition of mutual component.

Algorithm 1. Computing the Largest Mutual Compo-
nent that Contains Two Specified Nodes bi 2 Gi within
ddep (8i 2 f1; 2g)
1) Find all the nodes V 0

i ðbiÞ that are connected to bi (either
directly or through a sequence of links) in Gi (8i 2 f1; 2g).

2) Remove nodes in V 0
i ðbiÞ that do not have any supply nodes

in V 0
j ðbjÞ (8i; j 2 f1; 2g; i 6¼ j). Among the remaining nodes,

find the nodes V 1
i ðbiÞ � V 0

i ðbiÞ that are connected to bi
(8i 2 f1; 2g).

3) Repeat step 2 until V kþ1
i ðbiÞ ¼ V k

i ðbiÞ (8i 2 f1; 2g). Let
Mðb1; b2Þ ¼ V k

1 ðb1Þ [ V k
2 ðb2Þ.

Two mutual components M ¼ V1 [ V2 and M̂ ¼ V̂1 [ V̂2

form one mutual component if and only if Vi and V̂i are con-
nected in Gi (8i 2 f1; 2g). The necessity of the condition is
obvious. To see that this condition is sufficient, note that
every node in the connected component formed by Vi and
V̂i has at least one supply node that belongs to the connected
component formed by Vj and V̂j (8i; j 2 f1; 2g; i 6¼ j). The
condition can be generalized naturally for more than two
mutual components to form one mutual component.

The method of obtaining an upper bound on the percola-
tion threshold of Gð�; dÞ can be modified to obtain an upper
bound on the percolation threshold of GIntDep, by declaring a
bond to be open if the unique largest mutual components in
the two adjacent D�D squares S1 and S2 are connected.
However, computing the largest mutual component of
GIntDep in Si is not as straightforward as computing the larg-
est component of Gð�; dÞ in Si. In Gð�; dÞ, a node belongs to
exactly one (maximal) connected component. All the compo-
nents can be obtained by contracting the links, and the larg-
est component can be obtained by comparing the sizes of the
components. However, inGIntDep, a nodemay belong tomul-
tiple mutual components. For example, let b1 and b2 be two
isolated nodes in G1, and let b3 and b4 be two connected
nodes in G2. If both b1 and b2 are within the interdependent
distance from b3 and b4, fb1; b3; b4g and fb2; b3; b4g are two
mutual components. An algorithm that computes the largest

mutual component of GIntDep in a square 1) selects a pair of
nodes, one from each graph, and computes the largest
mutual component that contains the two nodes byAlgorithm
1, and then 2) chooses the largest mutual component over all
pairs of nodes in the square within the interdependent dis-
tance. Thus, it requiresmuchmore computation than finding
the largest component ofGð�; dÞ in a square.

Instead of optimizing the algorithm and obtaining the
largest mutual component in square S, a mutual component
MgreedyðSÞ can be computed by Algorithm 2. This algorithm
has good performance in finding a large mutual component
when the square size is large. In particular, if the square
had infinite size, this algorithm would find an infinite
mutual component if one exists.

Algorithm 2. An Algorithm that Greedily Computes a
Mutual ComponentMgreedyðSÞ in Region S

1) Find the largest connected component V 0
i ðSÞ inGiðSÞ, where

GiðSÞ consists of the nodes and links of Gi in region S. If
there is more than one largest connected component, apply
any deterministic tie-breaking rule (e.g., choose the compo-
nent that contains a nodes with the smallest x-coordinate).

2) Remove nodes in V 0
i ðSÞ that do not have supply nodes in

V 0
j ðSÞ (8i; j 2 f1; 2g; i 6¼ j). Find the largest connected com-

ponent V 1
i ðSÞ formed by the remaining nodes in V 0

i ðSÞ
(8i 2 f1; 2g), and apply the same tie-breaking rule.

3) Repeat step 2 until V kþ1
i ðSÞ ¼ V k

i ðSÞ (8i 2 f1; 2g). Let
MgreedyðSÞ ¼ V k

1 ðSÞ [ V k
2 ðSÞ.

Let a bond ðv1; v2Þ in LD be open if the two components
MgreedyðS1Þ and MgreedyðS2Þ form one mutual component.
Since MgreedyðSiÞ is unique in any square Si, a connected
component in LD implies that fMgreedyðSiÞg form one
mutual component in GIntDep, where Si are the squares that
intersect the open bonds in the connected component in LD.
If the probability that a bond is open is larger than 0.8639,
LD percolates and GIntDep also percolates.

An alternative condition for a bond to be open is that
nodes inMgreedyðRÞ form a horizontal crossing over rectangle
R0 and a vertical crossing over square S01 in both graphs
(recall Fig. 5 and the condition for two mutual components
to form one mutual component). In order for the existence of
the two crossings to only depend on the point processes inR,
in the definition of the ð2D� 2dÞ � ðD� 2dÞ rectangleR0 and
the ðD� 2dÞ � ðD� 2dÞ square S01, d ¼ maxðd1; d2Þ þ ddep.

An upper bound on the percolation threshold can be
obtained by either approach. The smaller bound obtained
by the two approaches is a better upper bound on the perco-
lation threshold for GIntDep.

4.2 Lower Bounds for GIntDep

InGIntDep, the connection process consists of nodes and links
in mutual components. To avoid the heavy computation of
mutual components, we study another model in which the
connection process ~Pi of Gi in the new model dominates 5 the
connection process Pi of Gi in GIntDep (8i 2 f1; 2g). As a con-
sequence, the complement of the connection process ~Pc

i ofGi

5. One connection process dominates another if the nodes and links
in the first process form a superset of the nodes and links in the second
process, for any realization of Gi.
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in the new model is dominated by Pc
i (8i 2 f1; 2g). If ~Pc

i per-
colates, then Pc

i percolates and Pi does not percolate (i.e., all
the components in Pi have finite sizes). If either P1 or P2 does
not percolate, then GIntDep does not percolate. Thus, node
densities under which at least one of ~Pc

1 and ~Pc
2 percolates

are lower bounds on the percolation thresholds ofGIntDep.
The new model can be viewed to have a relaxed supply

requirement. In this model, every node (as opposed to
nodes in the same mutual component) is viewed as a valid
supply node for nodes in the other graph. A node bi in Gi is
removed if and only if there is no node in Gj within the
interdependent distance ddep from bi (8i; j 2 f1; 2g; i 6¼ j).
After all such nodes are removed, the remaining nodes in
Gi are connected if their distances are within the connection
distance di. The computation of the connection process ~Pi is
efficient and avoids the computation of mutual components
in GIntDep through multiple iterations.

The connection process ~Pi in the new model dominates
Pi in the original model GIntDep. On the one hand, for any
realization, all the links in Pi are present in ~Pi, because all
the nodes in a mutual component have supply nodes, and
links between these nodes are present in the new model as
well. On the other hand, in the new model, nodes in a con-
nected component ~Vi in Gi may depend on nodes in multi-
ple components in Gj. In contrast, in GIntDep, the nodes in ~Vi

may be divided into several mutual components, and links
do not exist between two disjoint mutual components.

An algorithm that computes a lower bound on the perco-
lation threshold of GIntDep is as follows. First, compute the
connection process ~Pi in the newmodel. Next, in the 2D�D
rectangle R, consider the complement of the connection pro-
cess ~Pc

i . Let pi denote the probability that there is a horizontal
crossing over R0 and a vertical crossing over S01 in the com-
plement process ~Pc

i , where R0 and S01 are the same as before.
A lower bound on the percolation threshold of GIntDep is
given by node densities underwhichmaxðp1; p2Þ � 0:8639.

4.3 Confidence Intervals

The probability that a bond is open can be represented by an
integral that depends on the point processes in the rectangle
R. However, direct calculation of the integral is intractable; so
instead the integral is evaluated by simulation. In every trial
of the simulation, nodes inG1 andG2 are randomly generated
by the Poisson point processes with densities �1 and �2,
respectively. The events that a bond is open are independent

in different trials. Let the probability that a bond is open be p
given ð�1; �2Þ. The probability that a bond is closed in k out
of N trials follows a binomial distribution. The interval
½0:8639; 1	 is a 99.5 percent confidence interval [20] for p, given
thatN ¼ 100 and k ¼ 5. If k < 5, p 2 ½0:8639; 1	with a higher
confidence. This suggests that if k � 5, with 99.5 percent confi-
dence, p � 0:8639 and the 1-dependent bond percolation
modelLD percolates given ð�1; �2Þ.

Based on this method, with 99.5 percent confidence, an
upper bound on the percolation threshold of GIntDep can be
obtained by declaring a bond to be open using the method
in Section 4.1, and a lower bound can be obtained by declar-
ing a bond to be open using the method in Section 4.2. For a
fixed ��2, a 99 percent confidence interval for ��1 is given by
the interval between the upper and lower bounds. Confi-
dence intervals for different percolation thresholds can be
obtained by changing the value of ��2 and repeating the com-
putation. We make a similar remark as in [16]. The confi-
dence intervals are rigorous, and the only uncertainty is
caused by the stochastic point processes in the 2D�D rect-
angle. This is in contrast with the confidence intervals
obtained by estimating whether GIntDep percolates based on
extrapolating the observations of simulations in a finite
region (which is usually not very large because of limited
computational power).

4.4 Numerical Results

The simulation-based confidence intervals are much tighter
than the analytical bounds. Given that d1 ¼ d2 ¼ 2ddep ¼ 1,
and ��2 ¼ 2, the upper and lower bounds on ��1 are 2.25 and
1.80, respectively, both with 99.5 percent confidence. In con-
trast, even if ��2 !1, the analytical upper bound on ��1 is
no less than 3.372, which is the best available analytical
upper bound for a single G1 [15]. Confidence intervals for
the percolation thresholds are plotted in Fig. 8, where the
intervals between bars are 99 percent confidence intervals.

To verify the confidence intervals, we simulate GIntDep

within a 20� 20 square, for d1 ¼ d2 ¼ 2ddep ¼ 1. Nodes in
the largest mutual component are colored black, while the
remaining nodes are colored blue. In Fig. 9, the node densi-
ties are at the upper confidence bound (�1 ¼ 2:25; �2 ¼
2:00), and there exists a mutual component that consists of a
large fraction of nodes. In Fig. 10, the node densities are at
the lower confidence bound (�1 ¼ 1:80; �2 ¼ 2:00), and the
size of the largest mutual component is small.

We next study the impact of interdependent distance ddep
on the percolation thresholds. Given d1; d2; �

�
2, a smaller ddep

leads to a higher ��1, since the probability that a node in G1

has at least one supply nodes from G2 decreases for a

Fig. 8. The 99 percent confidence intervals for percolation thresholds of
GIntDep with different connection distances.

Fig. 9. The largest mutual component for �1 ¼ 2:25; �2 ¼ 2:00; d1 ¼ d2 ¼
2ddep ¼ 1.
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smaller ddep. The effect is more significant when the number
of nodes inG2 is small. This is consistent with Fig. 11, where
the increase of ��1 is more significant as ddep decreases when
��2 is small.

The confidence intervals confirm that the reduced node
density due to a lack of supply nodes is not sufficient to
characterize the percolation of one of the interdependent
graphs. The average density of nodes in G1 that have at

least one node within ddep in G2 is ~�1 ¼ �1ð1� e
��2pd2depÞ,

given that e
��2pd2dep is the probability that there is no node in

G2 within a disk area pd2dep. If �
�
2 ¼ 1:8, with 99 percent con-

fidence, ��1 2 ½2:03; 2:72	 when ddep ¼ 0:5, and ��1 2 ½7:50;
11:20	 when ddep ¼ 0:25. We observe that the ranges of ~��1
are different: ~��1 2 ½1:54; 2:06	 when ddep ¼ 0:5, and ~��1 2
½2:23; 3:33	 when ddep ¼ 0:25. Intuitively, nodes in G1 that
have at least one supply nodes are clustered around
the nodes in G2, smaller ddep leads to a more clustered
point process. The critical node density of a clustered point
process is not the same as the critical node density of the
homogeneous Poisson point process for percolation. More
detailed study on the percolation of a clustered point pro-
cess can be found in [21].

5 ROBUSTNESS OF INTERDEPENDENT RGGS

UNDER RANDOM AND GEOGRAPHICAL FAILURES

Removing nodes independently at random with the same
probability in one graph is equivalent to reducing the node
density of the Poisson point process. To study the robustness
ofGIntDep under random failures, the first step is to obtain the
upper and lower bounds on percolation thresholds. With the
bounds, we can determine which graph is able to resist more

random node removals, by comparing the gap between the
node density �i and the percolation threshold ��i given �j

(i; j 2 f1; 2g; i 6¼ j). The graph that can resist a smaller frac-
tion of node removals is the bottleneck for the robustness of
GIntDep. Moreover, we are able to compute the maximum
fraction of nodes that can be randomly removed from two
graphswhile guaranteeingGIntDep to be percolated.

We next show that GIntDep still percolates after a geo-
graphical attack that removes nodes in a finite connected
region, if the node densities of the two graphs before the
attack are above any upper bound on the percolation thresh-
olds obtained in this paper (either analytical or simulation-
based). Recall that we obtained upper bounds on the perco-
lation thresholds of GIntDep by mapping the percolation
of GIntDep to either the independent bond percolation on
a square lattice L or the 1-dependent bond percolation on
a square lattice LD. Under both mappings, the event that a
bond e is open is entirely determined by the point processes
in a finite region Re that contains the bond. After removing
nodes of GIntDep in a connected finite geographical region,
the state of a bond emay change from open to closed only if
Re intersects the attack region. Let Rf be the union of Re

that intersects the attack region. The region Rf is also a con-
nected finite region. As long as L or LD still percolates after
setting bonds in Rf to be closed, GIntDep percolates.

Results from the percolation theory indeed indicate that
setting all the bonds in a finite region Rf to be closed does
not affect the percolation of L or LD. For any percolated L,
the probability that there exists a horizontal crossing of
open bonds over a kl� l rectangle approaches 1 for any inte-
ger k > 1, as l!1 (Lemma 8 on Page 64 of [18]). The per-
colation of L (after setting all bonds in Rf to be closed) is
justified by the fact that the connected open bonds across
rectangles form a square annulus that does not intersect Rf

(shown in Fig. 12), which is a standard approach to prove
the percolation of L [18]. Moreover, the percolation of LD

after all bonds in Rf are set closed can be proved in the
same approach, by noting that the probability that open
bonds of LD form a horizontal crossing over a rectangle
approaches 1 as the rectangle size increases to infinity [16].

If the kl� l rectangle is large but finite, the probability
that a horizontal crossing formed by open bonds exists is
close to 1 if L or LD percolates. Therefore, the same analysis
demonstrates the robustness of two finite interdependent
RGGs under a geographical attack that removes the nodes
in a disk region of size ba2, where 0 < b < 1.

The robustness of interdependent RGGs under geo-
graphical failures is illustrated in Fig. 13. Nodes and links in

Fig. 10. The largest mutual component for �1 ¼ 1:80; �2 ¼ 2:00; d1 ¼
d2 ¼ 2ddep ¼ 1.

Fig. 11. The 99 percent Confidence intervals for percolation thresholds
of twoGIntDep with different interdependence distances.

Fig. 12. Open bonds form a connected path across rectangles around
Rf .
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the giant mutual component are colored black. The interde-
pendent RGGs still percolate after all the nodes in a disk
region are removed. This is in contrast with the cascading
failures observed in [5] in the interdependent lattice model
after an initial disk attack. One reason may be that every
node can have more than one supply node in our model,
while every node has only one supply node in [5]. The mul-
tiple localized interdependence helps the interdependent
RGGs to resist geographical attacks.

6 EXTENSIONS TO MORE GENERAL

INTERDEPENDENCE

In the previous sections, we studied a model where every
node inGi is content to have at least one supply node inGj in
the samemutual component (8i; j 2 f1; 2g; i 6¼ j). The techni-
ques can be extended to study models where every node in
Gi must have at least Kj supply nodes from Gj to receive
enough supply, where Kj can be either a constant or a ran-
dom variable (8i; j 2 f1; 2g; i 6¼ j). We briefly discuss the
extensions to models with more general supply requirement
using the example in Section 3.1, where d1 ¼ d2 ¼ 2ddep.

6.1 Deterministic Supply Requirement

The extension is straightforward if Ki is a constant,
8i 2 f1; 2g. By the same discretization technique, the state of
a site in the triangle lattice is determined by the point pro-
cesses in a cell of area A (recall Fig. 2). Declare a site to be
open if there are at leastKi nodes fromGi in the cell that con-
tains the site (8i; j 2 f1; 2g; i 6¼ j). For each open site, every
node fromGi in the cell has at leastKj supply nodes fromGj

in the same cell, satisfying the supply requirement. Follow-
ing the same analysis as that in Section 3.1, the percolation of
the triangle lattice implies the percolation ofGIntDep.

For a Poisson point process of density �j, the probability
that there are at least Kj nodes in a cell of area A is 1�PKj�1

l¼0 ð�jAÞle��jA=l!. An upper bound on the percolation
thresholds is given by ð�1; �2Þ that satisfies

1�
XK1�1

l¼0

ð�1AÞle��1A
l!

" #
1�

XK2�1

l¼0

ð�2AÞle��2A
l!

" #
¼ 1

2
:

6.2 Random Supply Requirement

Some extra work is necessary if Ki is a random variable,
9i 2 f1; 2g. For simplicity, we first consider the case where
K1 � 1 is a constant and K2 is a discrete random variable
with a cumulative distribution function FK2

ðxÞ, x 2 N. Fur-
thermore, we assume that the number of supply nodes

needed by every node inG1 is independent. After the discreti-
zation, a site in the triangle lattice is open if the following two
conditions are satisfied for at least one integer-valued k2 � 1.

1) There are exactly k2 nodes from G2 in the cell.
2) There are at least K1 nodes from G1 in the cell, each

of which needs no more than k2 supply nodes.
If both conditions are satisfied, at least K1 nodes from G1

and the k2 nodes from G2 each have enough supply. It is
easy to see that the percolation of the triangle lattice still
implies the percolation of GIntDep.

Next we compute the probability that the two conditions
are satisfied. The probability that there are k2 nodes from G2

in the cell is

PrðN2 ¼ k2Þ ¼ ð�2AÞk2e��2A=k2!:
The probability that there are l nodes from G1 in the cell is

PrðN1 ¼ lÞ ¼ ð�1AÞle��1A=l!:
The probability that a node in G1 needs no more than k2
supply nodes is FK2

ðk2Þ. Since the number of supply nodes
needed by every node in G1 is independent, the probability
that at least K1 out of the l nodes in G1 each need no more
than k2 supply nodes is

PrðKðK1Þ
2 � k2jN1 ¼ lÞ

¼
Xl

t¼K1

l

t

� �
½FK2
ðk2Þ	t½1� FK2

ðk2Þ	l�t;

for K1 � l, and PrðKðK1Þ
2 � k2jN1 ¼ lÞ ¼ 0 for K1 > l. By the

law of total probability, for a given k2, the probability that
there exist at least K1 nodes from G1 in the cell that each
need no more than k2 supply nodes is

PrðKðK1Þ
2 � k2Þ ¼

X
l�K1

PrðN1 ¼ lÞPrðKðK1Þ
2 � k2jN1 ¼ lÞ:

Since the events that there are exactly k2 nodes from G2 in
the cell are mutually exclusive for distinct values of k2, by
the law of total probability, the probability that both condi-
tions are satisfied is

p12 ¼
X
k2�1

PrðN2 ¼ k2ÞPrðKðK1Þ
2 � k2Þ:

Any ð�1; �2Þ that satisfies p12 � 1=2 is an upper bound on the
percolation threshold of GIntDep.

Finally, we consider the case where both K1 and K2 are
discrete random variables. Suppose that Ni nodes from Gi

are in the cell of area A. If there exist integers k�i � Ni, such
that at least k�i nodes from Gi each need no more than k�j
supply nodes, then the k�i nodes from Gi all have enough
supply (8i; j 2 f1; 2g; i 6¼ j). However, it is difficult to obtain
a clean formula of the probability that ðk�1; k�2Þ exists (to sat-
isfy the condition). The events that ðk�1; k�2Þ exists are not
mutually exclusive for distinct values of k�1 and k�2. While it
is possible to compute this probability using the inclusion-
exclusion formula, the computation is expensive, since the
number of choices of ðk�1; k�2Þ can be large and each term in
the inclusion-exclusion formula requires the computation of
order statistics.

Fig. 13. Interdependent RGGs with the same connection distance
d1 ¼ d2 ¼ 1 and ddep ¼ 0:5.
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Apractical approach to estimate the probability that nodes
have enough supply is by simulation. In each trial of the sim-
ulation, Ni nodes are randomly generated in area A, where
Ni follows a Poisson distribution of rate �iA (8i 2 f1; 2g).
Then, each of the Ni nodes is tagged with a realization of the
random variableKj, which indicates the number of required
supply nodes (8i; j 2 f1; 2g; i 6¼ j). Let I indicate whether
there exist ðk�1; k�2Þ such that at least k�i nodes among the Ni

nodes all have tags no more than k�j (8i; j 2 f1; 2g; i 6¼ j). The
value of I can be computed byAlgorithm 3.

Algorithm 3. An Algorithm that Determines Whether
Nodes Have Enough Supply

Initialization:
Sort the Ni realizations of the random variable Kj in the
ascending order. Let K

ðtÞ
j ; t ¼ 1; ; Ni be the sorted list (8i; j 2

f1; 2g; i 6¼ j). Let t1 ¼ t2 ¼ 1.
Main loop:
while I is not determined do

t01  K
ðt2Þ
1 , t02  K

ðt1Þ
2 .

if t01 � t1 and t02 � t2 then
I  1:

end if
if t01 > N1 or t

0
2 > N2 then

I  0:
end if
t1  maxðt1; t01Þ, t2  maxðt2; t02Þ.

end while

We now prove the correctness of Algorithm 3. For easy
presentation, the Ni nodes are referred to as nodes in Gi

(8i 2 f1; 2g). Initially, among the nodes in Gi, the algorithm
chooses one node that needs the smallest number of supply
nodes. To support this node, at least t0j ¼ K

ð1Þ
j nodes need to

be in Gj. If t01 � 1 and t02 � 1, one node from G1 and one
node from G2 suffice to support each other. Otherwise, if
t0j > 1, at least t0j nodes need to be in Gj. The t0j nodes must

be supported by K
ðt0
j
Þ

i nodes from Gi. If K
ðt0
j
Þ

i is larger than
the total number of nodes in Gi, then there are not enough

supporting nodes in Gi and I ¼ 0. If K
ðt02Þ
1 � t01 and K

ðt01Þ
2 �

t02, then t01 nodes from G1 support t02 nodes from G2, and
vise versa. Note that t01 and t02 never decrease in the itera-
tions, and at least one of them strictly increases in an itera-
tion where I is not determined. If there exists at least one
pair ðk�1; k�2Þ, the algorithm terminates with I ¼ 1 at the
smallest pair for both coordinates, which can be shown by
contradiction. If no such pair ðk�1; k�2Þ exists, the algorithm
terminates with I ¼ 0.

Given ð�1; �2Þ, by repeating a sufficiently large number of
trials, the probability that I ¼ 1 can be estimated within a
small multiplicative error with high confidence using Monte
Carlo simulation. As long as this probability is at least 1=2,
GIntDep percolates with high confidence.

7 CONCLUSION

We developed an interdependent RGG model for interde-
pendent spatially embedded networks. We obtained analyt-
ical upper bounds and confidence intervals for the
percolation thresholds. The percolation thresholds of two

interdependent RGGs form a curve, which shows the trade-
off between the two node densities in order for the interde-
pendent RGGs to percolate. The curve can be used to study
the robustness of interdependent RGGs to random failures.
Moreover, if the node densities are above any upper bound
on the percolation thresholds obtained in this paper, then
the interdependent RGGs remain percolated after a geo-
graphical attack. Finally, we extended the techniques to
models with more general interdependence. The study of
percolation thresholds can be used to design robust interde-
pendent networks.
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