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Abstract— Age of Information (Aol) is a performance met-
ric that captures the freshness of the information from the
perspective of the destination. The Aol measures the time
that elapsed since the generation of the packet that was most
recently delivered to the destination. In this paper, we consider a
single-hop wireless network with a number of nodes transmitting
time-sensitive information to a base station and address the
problem of minimizing the expected weighted sum Aol of
the network while simultaneously satisfying timely-throughput
constraints from the nodes. We develop four low-complexity
transmission scheduling policies that attempt to minimize Aol
subject to minimum throughput requirements and evaluate
their performance against the optimal policy. In particular,
we develop a randomized policy, a Max-Weight policy, a Drift-
Plus-Penalty policy, and a Whittle’s Index policy, and show that
they are guaranteed to be within a factor of two, four, two,
and eight, respectively, away from the minimum Aol possible.
The simulation results show that Max-Weight and Drift-Plus-
Penalty outperform the other policies, both in terms of Aol
and throughput, in every network configuration simulated, and
achieve near-optimal performance.

Index Terms—Age of information, throughput, scheduling,
optimization, quality of service, wireless networks.

I. INTRODUCTION

HE Age of Information (Aol) is a performance metric that

measures the time that elapsed since the generation of
the packet that was most recently delivered to the destination.
This metric captures the freshness of the information from
the perspective of the destination. Consider a cyber-physical
system such as an automated industrial plant, a smart house or
a modern car, where a number of sensors are transmitting time-
sensitive information to a monitor over unreliable wireless
channels. Each sensor samples information from a physical
phenomena (e.g. pressure of the tire, quantity of fuel, prox-
imity to obstacles and engine rotational speed) and transmits
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this data to the monitor. Ideally, the monitor receives fresh
information about every physical phenomena continuously.
However, due to limitations of the wireless channel, this is
often impractical. In such cases, the system has to manage
the use of the available channel resources in order to keep
the monitor updated. In this paper, we develop four low-
complexity transmission scheduling policies and analyze their
performance in terms of the freshness of the information at
the monitor, namely the Age of Information.

Let every packet be time-stamped with the time it was
generated. Denote by 7;[m]| the time-stamp of the mth packet
delivered by sensor 7 to the monitor. Assume that at time £,
the mth packet delivered by sensor 7 is the most recent.
Then, the Age of Information associated with sensor 7 at
time ¢ is given by h;(t) = t — 7;[m]. While the monitor
does not receive new packets from sensor ¢, the value of
h;(t) increases linearly with ¢, representing the information
getting older. As soon as the monitor receives a new packet
from sensor 7, the corresponding time-stamp is instantaneously
updated from 7;[m] to 7;[m~+1], reducing the value of h;(t) by
7;[m + 1] — 7;|m]. Notice that at the moment packet (m + 1)
is delivered to the monitor, the value of h;(t) matches the
delay of the packet. This makes sense because, at that moment,
the information at the monitor is as old as the information
contained in packet (m + 1). It follows naturally that a good
Aol performance is achieved when packets with low delay are
delivered regularly.

In order to provide good Aol performance, the scheduling
policy must control how the channel resources are allocated
to the different sensors in the network. Depending on the
channel conditions and network configuration, this can mean
that some sensors get to transmit repeatedly, while other
sensors less often. The frequency at which information is
delivered to the monitor is of particular importance in sen-
sor networks. Clearly, a sensor that measures the quantity
of fuel requires a lower update frequency (i.e. throughput)
than a sensor that is measuring the proximity to obstacles
in order to avoid collisions. For capturing this attribute,
we associate a minimum timely-throughput requirement with
each sensor in the network. Hence, in addition to provid-
ing good Aol performance, the scheduling policies should
also fulfill timely-throughput constraints from the individual
Sensors.

A framework for modeling wireless networks with timely-
throughput requirements was proposed in [2] together with
two debt-based scheduling policies that fulfill any feasible
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requirements. Generalizations of this model to different net-
work configurations were proposed in [3]-[5]. Scheduling
policies that maximize throughput and also provide service
regularity in wireless networks were studied in [6]-[8].
The problem of minimizing Aol was introduced in [9]-[11].
In [11]-[18], different queueing systems are analyzed and
the optimal server utilization with respect to Aol is found.
In [19]-[22], the authors optimize the process of generating
information updates in order to minimize Aol. The design of
scheduling policies based on Aol is considered in [23]-[35].

Most relevant to our paper are [6], [25], [27], [31]-[34].
In [6], the Time-Since-Last-Delivery' (TSLD) is introduced as
a measure of service regularity and a Max-Weight scheduling
policy based on TSLD and queue length is developed and
analyzed. In [25], a Greedy policy, which transmits the packet
with highest current age, is shown to be Aol optimal for
symmetric network and a scheduling policy based on the
Whittle’s Index is developed. This work is extended in [32],
where the authors develop and analyze a stationary randomized
policy and a Max-Weight policy based on Aol. In [27], the Aol
minimization problem is formulated as a Markov Decision
Process and structural properties of the optimal scheduling
policy are obtained. In [31], a round-robin policy and a station-
ary randomized policy are optimized in terms of Aol. In [34],
a stationary randomized policy is optimized with respect to
average Aol and peak Aol.

In this paper, we develop policies that minimize
Aol subject to minimum throughput requirements, where
timely-throughput is modeled as in [2], and evaluate their
performance against an Aol lower bound. To the best of our
knowledge, this is the first work to consider Aol-based poli-
cies that provably satisfy throughput constraints of multiple
destinations simultaneously.

An important observation is that high throughput does
not guarantee low Aol. Next, we provide two examples that
illustrate the importance of low delay and service regularity.
Example 1: consider an M/M/1 queue with high arrival rate
and low service rate. In this system, the queue is often filled,
resulting in high throughput and high packet delay. This
high delay means that packets being served contain outdated
information. Hence, despite the high throughput, the Aol may
still be high. Example 2: consider a network with two nodes
sharing the wireless channel during a given time-interval. The
scheduling policy selects which node is allowed to transmit
packets at any given time. Policy A selects node 1 repeatedly
in the first half of the interval and node 2 in the second half.
Policy B alternates between nodes 1 and 2 throughout the
entire interval. Despite the fact that both policies have the
same throughput, policy B may outperform policy A in terms
of Aol due to its superior service regularity.

In this paper, we assume that nodes can generate a new
packet with fresh information when scheduled. This assump-
tion is motivated by applications in which end nodes can
generate (or sample) information on-demand. This assumption
allows us to gain insight into the scheduling problem. It is
important to notice that the techniques employed in this paper

'Notice that TSLD is similar to Aol.
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may be applicable to related models with stochastic packet
arrivals and buffering.

The remainder of this paper is outlined as follows. In Sec. II,
the network model and performance metrics are formally
presented. Then, in Sec. III, four low-complexity scheduling
policies are proposed and analyzed. In Sec. IV, those policies
are simulated and compared to the state-of-the-art in the
literature. The paper is concluded in Sec. V.

II. SYSTEM MODEL

Consider a single-hop wireless network with a base station
(BS) receiving time-sensitive information from M nodes. Let
the time be slotted, with slot index k£ € {1,2,---, K}, and
consider a wireless channel that allows at most one packet
transmission per slot. In each slot k, the BS either idles
or selects a node ¢ € {1,2,---,M} for transmission. Let
u;(k) be the indicator function that is equal to 1 when the
BS selects node ¢ during slot k, and w;(k) = 0 otherwise.
When u;(k) = 1, node i samples fresh information, generates
a new packet and sends this packet over the wireless channel.
The packet from node 7 is successfully received by the
BS with probability p; € (0, 1] and a transmission error occurs
with probability 1 — p;. The probability p; does not change
with time, but may differ between nodes.

The transmission scheduling policy controls the decision of
the BS in each slot k, which is represented by the set of values
{ui(k)}M,. The interference constraint associated with the
wireless channel imposes that

M
> uilk) <1, Veke{l,--- K}, (1)
=1

meaning that at any given slot k, the scheduling policy can
select at most one node for transmission. Let d;(k) be the
random variable that indicates when a packet from node @
is delivered to the BS. If node i transmits a packet during
slot k, i.e. u;(k) = 1, then d;(k) = 1 with probability p;
and d;(k) = 0 with probability 1 — p;. On the other hand, if
node i does not transmit, i.e. u;(k) = 0, then d;(k) = 0 with
probability one. It follows that E [d; (k) |u; (k)] = p;u;(k) and,
applying the law of iterated expectations

Eldi(k)] = pilE [ui(k)] . 2

In this paper, we consider non-anticipative scheduling poli-
cies, i.e. policies that do not use future knowledge in making
decisions. Denote by II the class of non-anticipative policies
and let m € II be an arbitrary admissible policy. Our goal
is to design low-complexity scheduling policies that belong
to 11, provide close to optimal Aol performance and, at the
same time, guarantee a minimum throughput level for each
individual destination. Next, we formally introduce both per-
formance metrics, throughput and Aol, and define a measure
for “closeness to optimality”.

A. Minimum Throughput Requirement

Let ¢; be a strictly positive real value that represents the
minimum throughput requirement of node ¢. Using the random
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variable df (k), we define the long-term throughput of node i
when policy 7 is employed as

K
1

i7 = lim — EldT .

Q= Jim — ; [ (k)] 3)

Then, we express the minimum throughput constraint of each

individual node as

ququ“ \V’ZE{L,M} (4)

In this paper, we assume that {g;}}, is a feasible set of
minimum throughput requirements, i.e. there exists a policy
m € II that satisfies all K interference constraints in (1) and
all M throughput constraints in (4) simultaneously. As shown
in [2, Lemma 5], the inequality

M

Gy

i Pi

)

is a necessary and sufficient condition for the feasibility of
{q;}}2,. Throughout this paper, we assume that (5) is satisfied
with strict inequality. Next, we present the Aol metric.

B. Age of Information

The Age of Information depicts how old the information
is from the perspective of the BS. Let h;(k) be the positive
integer that represents the Aol associated with node 7 at the
beginning of slot k. If the BS does not receive a packet from
node ¢ during slot k, then h;(k + 1) = h;(k) + 1, since the
information at the BS is one slot older. In contrast, if the BS
receives a packet from node ¢ during slot &, then h;(k+1) = 1,
because the received packet was generated at the beginning of
slot k. The evolution of h;(k) follows

hi(k+1) = {]1174(@ . if di(k) =1

The average Aol of node ¢ during the first K slots is cap-
tured by E [Zszl hi(k:)} /K, where the expectation is with
respect to the randomness in the channel and the scheduling
policy. For measuring the freshness of the information of

the entire network when policy 7 is employed, we use the
Expected Weighted Sum Aol

K M
> Y ahilk) yhu)] :
k=1 i=1

where h(1) = [h1(1),--- ,ha(1)]7 is the vector of initial

Aol in (6) and «; > 0 is the weight of node ¢. For simplicity,
we assume that h;(1) = 1,Vi, and omit k(1) henceforth.

(6)

otherwise.

)

- 1
BRI = "

C. Optimization Problem

With the definitions of Aol and throughput, we present the
optimization problem that is central to this paper.
Aol Optimization:

K M
1
PT* = 1 1' _E 7.
© el {Kgnoo KM l; ; azhz(k)l } (8a)
st.gi > qi, Vi (8b)

SM wik) <1, Yk (8¢)
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The minimum throughput constraints are depicted in (8b) and
the interference constraints are in (8c). The scheduling policy
that results from (8a)-(8c) is referred to as Aol-optimal.

For a given network setup (M, p;, ¢;, «;), let OPT* be the
Expected Weighted Sum Aol achieved by the Aol-optimal
policy 7*. Similarly, let OPT,, be the Aol achieved by some
policy n € II. The optimality ratio of 7 is given by

, _ OPT,

v = opT ©)
and we say that policy 7 is ¢"7-optimal. Naturally, the lower the
value of 1", the better is the Aol performance of policy 7. The
lowest 1) achievable by a policy 7 that satisfies (8b) and (8c)
is 9" = 1. In general, if policy 1 does not satisfy (8b) or (8c),
then ¢ could be lower than unity. The optimality ratio ¥7 is
used in the upcoming sections to compare the performance of
different scheduling policies.

III. SCHEDULING POLICIES

In this section, we propose four low-complexity scheduling
policies with strong Aol performances. The first three provably
satisfy the throughput constraints for every feasible set {g; }£,
and the fourth accounts for the throughput constraints, but
provides no guarantee. To evaluate the Aol performance of
each policy, we find their corresponding optimality ratio 7.
Moreover, in Sec. IV, we simulate and compare these policies
to the state-of-the-art in the literature.

Prior to introducing the policies, we obtain a lower bound to
the Aol optimization (8a)-(8c) which is used in the derivation
of the optimality ratios v". Then, we present four scheduling
policies: 1) Optimal Stationary Randomized policy; 2) Max-
Weight policy; 3) Drift-Plus-Penalty policy; and 4) Whittle’s
Index policy. The first is obtained by solving the Aol opti-
mization (8a)-(8c) over the class of Stationary Randomized
Policies. The second and third policies are derived using
Lyapunov Optimization [36]. The fourth policy is obtained by
using the Restless Multi-Armed Bandit framework [37].

A. Lower Bound

In this section, we use a sample path argument to derive a
lower bound to the Aol optimization (8a)-(8c).

Theorem 1: The optimization problem in (10a)-(10c) pro-
vides a lower bound Lp to the Aol optimization (8a)-(8c),
namely Lp < OPT" for every network setup (M, p;, q;, «;).

Lower Bound.:

1 U 1
LB:%S{W;(M <q7+1>} (10a)
st q; > qi, Vi (10b)
M ui(k) <1, VE. (10¢)

Proof: Consider a scheduling policy ©# € II that sat-
isfies all throughput and interference constraints running on
a network for the time-horizon of K slots. Let Q be the
sample space associated with this network and let w € Q) be
a sample path. For a given sample path w, the total number
of packets delivered by node ¢ during the K slots is denoted
D;(K) = Zkl,{:l d;(k) and the inter-delivery time associated
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with each of those deliveries is denoted I;[m]. In particular, let
I;[m] be the number of slots between the (m — 1)th and mth
packet deliveries from node i, Vm € {1,---, D;(K)}.> After
the last packet delivery from node ¢, the number of remaining
slots is R;. Hence, the time-horizon can be written as

D;(K)

K= Z Lim]+ R, Vie{1,2,---,M}. (11
m=1

According to the evolution of h;(k) in (6), the slot that
follows the (m — 1)th packet delivery from node 7 has an Aol
of h;(k) = 1. Since the mth packet is delivered only after
I;[m] slots, we know that h;(k) evolves as {1,2, -, I;[m]}.
This pattern is repeated throughout the entire time-horizon,
including the last R; slots. As a result, the time-average Age
of Information of node 7 can be expressed as

K Di(K)
1 . 1 (I,L' [m] + 1)Iz[m] (RIL + 1)R¢
7 > hi(k) = = > 5 + 5
k=1 m=1
D;(K) 2
1 b 1 R
=5 K Di(k) 2 Ii[m]—Ff—l-l ,

(12)

where the last equality uses (11) to replace the two linear terms
by K.

Define the operator M[x] that computes the sample mean
of any set x. In particular, let the sample mean of I;[m| and
I?[m] be

- 1 D;(K)
M[L] = Dy(K) 2 I;[ml]; (13)
_ 1 DL(K)
MI[I?] = DiE) I?[m] . (14)
v m=1

Substituting M([72] into (12) and then applying Jensen’s
inequality, yields

K ) B ) 2
%;hxk) > (% (var))” + 1) . as)

combining (11) into (13) and then substituting the result
in (15), gives

1 & 1/1(K—-R)* R?
?;hi(k)>§<?w+?+l>. (16)

By minimizing the LHS of (16) analytically with respect to
the variable R;, we have

1 & 1 K
E};hi(k) = (7&(}(”1 +1>.

Naturally, I;[1] is the number of slots between the first packet delivery
from node ¢ and the first slot £ = 1.

A7)
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Taking the expectation of (17) and applying Jensen’s inequal-
ity, yields

1

. {Di(K)] 1 1

1 & 1
EZ]E[hi(k)] > 5 (18)
k=1

K K

Applying the limit K — oo to (18) and using the definition
of throughput in (3), gives

- 1/1
IggnwE;E[hi(k)] >3 (§+1) : (19)
Combining (19) and the objective function in (7), yields
1 Loy &
Jim E[JF] = lim — Z e ,;E [ (F)]
M
_ﬁZai(}fﬂ) (20)

Finally, substituting (20) into the Aol optimization (8a)-(8c)
gives the Lower Bound (10a)-(10c). [ |

To obtain the expression in (20), we applied Jensen’s
inequality twice and minimized (16) analytically with respect
to R;. Each of those steps could have led to a loose lower
bound Lp. However, in the next section, we use this lower
bound to obtain a tight optimality ratio, ¥ < 2, for a
Stationary Randomized policy. Moreover, we evaluate the
tightness of Lp using numerical results in Sec. IV.

B. Optimal Stationary Randomized Policy

Denote by Il the class of Stationary Randomized Policies
and let R € Il be a scheduling policy that, in each slot
k, selects node i with probability u; € (0,1] and idles with
probability fi;q;.. Each policy in IIg is fully characterized
by the set of scheduling probabilities {y;}},, where u; =
Elu;(k)], Vi, Yk and pige = 1 — Zi\il ;. Next, we find the
Optimal Stationary Randomized policy R* that solves the Aol
optimization (8a)-(8c) over the class IIp C II and derive the
associated optimality ratio %,

Proposition 2: Consider a policy R € Ilg with schedul-
ing probabilities {j1;}M . The long-term throughput and the
expected time-average Aol of node i can be expressed as

aft = pips ; (21)

1 & 1
lim — S E[hi(k)] = . 22
Kgrgx)KE [hi(k)] o (22)

Proof: In any given slot k, the BS receives a packet from
node ¢ if this node is scheduled and the corresponding packet
transmission is successful. The probability of this event is p; 1t;.
Moreover, the inter-delivery times I;[m] of node i are i.i.d.
with P{I;[m] = n} = pju;(1 — pipi)" 1, Vn € {1,2,--- }.

Clearly, under policy R, the sequence of packet deliver-
ies is a renewal process. Thus, we can use renewal theory
to derive (21) and (22). In particular, by the definition of
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long-term throughput (3) and the expression for the expected
time-average Aol of node ¢, we have

K
1 (a) 1
R— lim = Eld(k = pifli; 23
g;' = lim_ gl (k)] = g = P (23)
o1& ® E2m] 1 1
I}%?;E[hz(kﬂ ~ 2E[L[m]] o7 piti
(24)

where (a) follows from the elementary renewal theo-
rem and (b) from its generalization for renewal-reward
processes [38, Sec. 5.7]. [ |
Substituting both expressions from Proposition 2 into the
Aol optimization (8a)-(8c) gives the equivalent optimization
problem over the class IIr presented below.
Optimization over Randomized Policies:

OPTpR- = 25
R HelhnR{MZplul} (25a)
S.tpiphi > i, Vi (25b)
S <1, (25¢)

Notice that under the class IIg, conditions (25¢) and (8c) are
equivalent. The Optimal Stationary Randomized policy R* is
characterized by the set {z} f‘il that solves (25a)-(25¢).
Theorem 3 (Optimality Ratio for R*): The optimality ratio
of R* is such that ¥ < 2, namely the Optimal Stationary
Randomized policy is 2-optimal for every network setup.
Proof: Let ¢F be the throughput associated with the
policy that solves the Lower Bound (10a)-(10c). Consider the
policy R € Iy with long-term throughput ¢ = p;u; = ¢*
for each node 4. Since ¢I* = ¢F, it follows that R satisfies
all throughput constraints. Comparing Lp in (10a) with the
objective function associated with R, namely OPTp, yields

OPTg » OPTz. _ OPTR
)’ = < 2 26
y <beovT =G =, <% (0
where OPT* comes from (8a) and OPTg- from (25a). Recall
that Lg < OPT* < OPTg- < OPTpR. [ |

Corollary 4: The Optimal Stationary Randomized pol-
icy R* is also the solution for the Lower Bound
problem(10a)-(10c).

Proof: Using the same argument as in the proof of
Theorem 3, in particular ¢ = p;pu; = ¢F, it follows
that the scheduling policy that solves the Optimization over
Randomized policies (25a)-(25c¢) also solves the Lower Bound
(10a)-(10c). |

Proof: To find the set of scheduling probabilities {7},
that solve the optimization problem (25a)-(25¢c), we analyze
the KKT Conditions. Let {\;}}, be the KKT multipliers
associated with the relaxation of (25b) and ~ be the multiplier
associated with the relaxation of (25¢). Then, for \; > 0, Vi,

~v >0 and p; € [q;/p:, 1], Vi, we define
1 M Q;
L(pis Ai, — -
(is Ais7) = 47 2 pogi
M M
+ D X (Gi—pim)+y (Z i — 1); 27)
i=1 i=1
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and, otherwise, we define L(;, A;,y) = +00. Then, the KKT

Conditions are (i)

1) Stationarity: V,,, £(pi, Ai,y) = 0;

2) Complementary Slackness: 'y(zi]\il wi —1)=0;

3) Complementary Slackness: \;(g; — pipi) = 0,Vi;

4) Primal Feasibility: p;u; > q; , Vi, and Zf\il wi <1

5) Dual Feasibility: A\; > 0, Vi, and v > 0.
Since ¢; is strictly positive, the function £(u;, A;,7y) is convex
on the interval of interest i € [qz /pi, 1]. Therefore, if there
exists a vector ({pf M, {\ M, ~*) that satisfies all KKT
Conditions, then this vector is unique. As a result, the schedul-
ing policy R* € Il that optimizes (25a)-(25c¢) is also unique
and 1s characterlzed by {pi}M,. Next, we find the vector
({M’L i= 17 {)‘ }’L Y *)

To assess stationarity, V,,, £(ui, Ai,7) = 0, we calculate the
partial derivative of £(p;, \;,7y) with respect to ;. It follows
from the derivative that

o
Mpz o2 +Aipi =7, Vi. (28)
From complementary slackness, 'y(zi]\il wi —1) =0,

we know that either v = 0 or Zf\il i = 1. Equation (28)
shows that the value of v can only be zero if \; = 0 and
w; — oo, which violates u; € [¢;/pi, 1]. Hence, we obtain

M
v >0 and ZM:L (29)

i=1

Notice that Zf\il i = 1 implies in ju;4;¢ = 0.

Based on dual feasibility, \; > 0, we can separate nodes
1€ {l,---, M} into two categories: nodes with \; > 0 and
nodes with \; = 0.

Category 1) node i with \; > 0. It follows from comple-
mentary slackness, \;(¢; — pijti) = 0, that

4di
pi= . (30)

pi
Plugging this value of p; into (28) gives the inequality A\;p; =

v —y; > 0, where we defined the constant

QiPi
. 31
e (31)

7

Vi =

Category 2) node ¢ with \; = 0. It follows from (28) that

2
_ di 4 |7
Y= — M=
Pifti pi
In summary, for any fixed value of v > 0, the scheduling
probability of node i is

_ 4% { . %‘}
pi =—maxq1l;,/—p.
pi v

Theorem 5 (Optimal Stationary Randomized Policy): The
scheduling probabilities {p; }M | that result from Algorithm 1
are the unique solution to (25a)-(25c) and, thus, characterize
the Optimal Stationary Randomized policy R*.

Notice that for a decreasing value of ~, the probability p;
remains fixed or increases. Our goal is to find the value of ~*
that gives {u;}M, satisfying the condition Z =1

(32)

(33)
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Algorithm 1 Unique Solution to KKT Conditions

Loy Oézpz/qu ,VZ € {1527" : 7M}
2: v — max;{vi}
3 pi — (qi/pi) max{1; \/vi/v} Vi
48 = py+p2 4+
5. while S < 1 do
6:  decrease vy slightly
7. repeat steps 3 and 4 to update p; and .S
8: end while
9: = iy, Vi, and v =
10: return (43, 413, - <+, War, Y)
Values of y and y; Values of y and y;
Y Y1
Y2
1 2 3 _node 1 2 3 node

(a) Initial y = 1, "9€X (b) Optimal y*  ndex

Fig. 1. [Illustration of Algorithm 1 in a network with 3 nodes. On the left,

the initial configuration with v = max{~;}. On the right, the outcome ~*
implies that under policy R* node 2 will operate with minimum required
scheduling probability 2 = g2/p2, while the other two nodes will operate
with a scheduling probability that is larger than the minimum.

Proposed algorithm to find ~*: start with v = max{~;}.
Then, according to (33), all nodes have u; = ¢;/p; and, by the
feasibility condition in (5), it follows that

M M )
;uzzgz—zgl (34)

Now, by gradually decreasing ~ and adjusting {u;}M,
according to (33), we can find the unique ~* that fulfills
Zi\il i = 1. The solution «* exists since v — 0 implies
in )7, 1 — oo. The uniqueness of v* follows from the
monotonicity of y; with respect to . This process is described
in Algorithm 1 and illustrated in Fig. 1.

Algorithm 1 outputs the set of scheduling probabilities
{u:3M, and the parameter v*. The set {\!}}, is obtained
using (28). Hence, the unique vector ({p}M  {NM, +*)
that solves the KKT Conditions is found. [ ]

In order to fulfill the throughput constraints (25b), every
scheduling policy in Iz must allocate at least u; > ¢;/p; to
each node . What differentiates policies in IIy is how they
distribute the remaining resources, 1 — Zf\il q:/pi, between
nodes. According to Algorithm 1, the Optimal Stationary Ran-
domized policy R* supplies additional resources, pf > ¢;/pi,
to nodes with high value of ~;, namely nodes with a high
priority «; or a low value of ¢;/p;. Notice that if a node
with low ¢;/p; was given the minimum required amount of
resources, it would rarely transmit and its Aol would be
high. In contrast, policy R* allocates the minimum required,

1Y = qi/pi, to nodes with low priority «; or high g;/p;.
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The policies R € IIg discussed in this section are as
simple as possible. They select nodes randomly, according to
fixed scheduling probabilities {y;}}, calculated offline by
Algorithm 1. Despite their simplicity, it was shown that R* is
2-optimal regardless of the network setup (M, p;, qi, o).
In the following sections, we develop scheduling policies
that take advantage of additional information, such as the
current Aol of each node, for selecting nodes in an adaptive
manner.

C. Max-Weight Policy

Using  techniques  from  Lyapunov  Optimization
[36, chapter 3], we derive the Max-Weight policy associated
with the Aol optimization (8a)-(8c). Max-Weight is a
scheduling policy designed to reduce the expected increase
in the Lyapunov Function. The Lyapunov Function outputs a
positive scalar that is large when the network is in undesirable
states, namely when nodes have high Aol or less throughput
than the minimum required ¢;. Intuitively, the Max-Weight
policy keeps the network in desirable states by controlling
the growth of the Lyapunov Function. Prior to presenting the
Max-Weight policy, we introduce the notions of throughput
debt, network state, Lyapunov Function and Lyapunov Drift.
Let x; (k) be the throughput debt associated with node 7 at
the beginning of slot k. The throughput debt evolves as

zi(k+1) = kg — Y05, di(t).

The value of kq; can be interpreted as the minimum number
of Eackets that node ¢ should have delivered by slot £+ 1 and

+—1 d;(t) is the total number of packets actually delivered in
the same interval. Define the operator (.)* = max{(.),0} that
computes the positive part of a scalar. Then, the positive part
of the throughput debt is given by x; (k) = max{z;(k);0}.
A large debt 7 (k) indicates to the scheduling policy 7 € IT
that node ¢ is lagging behind in terms of throughput. In fact,

(35)

strong stability of the process x; (k), namely
. 1
Jim - = B[z (K)] < oo, (36)

is sufficient to establish that the minimum throughput con-
straint, g7 > ¢;, is satisfied [36, Theorem 2.8].
Denote by Sy = (hi(k), ] (k))M, the network state at the

beginning of slot k£ and define the Lyapunov Function by

L(5k) = 5 S (aah2() +V [ ()]

where V is a strictly positive real value that depicts the
importance of the throughput constraints. Observe that L(S})
is large when nodes have high Aol or high throughput debt.
To measure the expected change in the Lyapunov Function
from one slot to the next, we define the Lyapunov Drift

A(Sk) = E{L (Sk+1) - L (Sk) |Sk }

(37)

(38)

The Max-Weight policy is designed to keep L(Sj) small
by reducing A(Sy) in every slot k. Next, we present an upper
bound on A(Sy) that can be readily used to design the Max-
Weight policy. The derivation of this upper bound is centered
around the evolution of h;(k) in (6) and the evolution of z;" (k)
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in (35). The complete derivation can be found in Appendix A
and the upper bound follows

ZE{uz ) Sk} Wilk) + B(k), — (39)
where W; (k) and B(k) are given by
Wi (k) = O‘;pi ha(k)[ha(k) + 2] + Vpix (k); (40)
M
B0 =3 {as [0+ 5] +V [af 05| b @

Both W;(k) and B(k) are fully characterized by the network
state Sy, and network setup (M, p;, ¢;, ;). Hence, both can be
used by admissible policies for making scheduling decisions.
However, notice that the term B(k) in (39) is not affected
by the choice of u;(k). Thus, for minimizing the upper bound
in (39), the Max-Weight policy selects, in each slot k, the node
with highest value of W;(k), with ties being broken arbitrarily.
Denote the Max-Weight policy as MW.

Theorem 6: The Max-Weight policy satisfies any feasible
set of minimum throughput requirements {q; }M,.

Theorem 7 (Optimality Ratio for MW ): For any given
network setup (M, p;, q;,«;), the optimality ratio of MW is
such that

wMW<4+—
=1

V- —Zm] . (42)

In particular, for every network with V. < 22%1 a; /M,
the Max-Weight policy is 4-optimal.

The proofs of Theorems 6 and 7 are provided in Appen-
dices B and C, respectively. Both theorems follow from the
analysis of the expression in (39).

Recall that the Optimal Stationary Randomized policy R*
selects nodes randomly, according to fixed scheduling prob-
abilities {p;}M,. In contrast, the Max-Weight policy MW
uses feedback from the network, namely h;(k) and ) (k),
to guide scheduling decisions. Despite the added complexity,
we expect the feedback loop to improve the performance of
MW . In fact, numerical results in Sec. IV demonstrate
that M'W outperforms R* in every network configuration
simulated. However, by comparing Theorems 3 and 7,
it might seem that R* yields a better performance than
MW. This is because the analysis associated with MW
is more challenging, leading to an optimality ratio /™YW
that is less tight than ¢®. Next, we develop a policy called
Drift-Plus-Penalty policy and show that it is 2-optimal.

D. Drift-Plus-Penalty Policy

The Drift-Plus-Penalty policy is derived using a similar
technique as the Max-Weight policy. The main difference
between these two policies is that the Drift-Plus-Penalty is
designed to reduce the sum of the Lyapunov Drift and a
Penalty Function, while the Max-Weight policy reduces only
the Lyapunov Drift. As we will see, this difference will
improve the optimality ratio of the Drift-Plus-Penalty policy
significantly.

1365

Based on the Aol minimization (8a), we define the Penalty
Function as follows

Zﬁl

where S, = (h;(k),z; (k))M, is the network state at the
beginning of slot k& and [3; is a positive real value associated
with node i. Observe that P’(S) is large when nodes have
high Aol. Similarly to (38), we define the Lyapunov Drift

as

i(k+1)[Sk], (43)

A'(Sk) :=E{L (Sk+1) — L' (Sk) [Sk } (44)
with associated Lyapunov Function
() =2 f[: EAGI (45)
2 p v

where V' is a strictly positive real value that represents
the importance of the throughput constraints. Notice that,
as opposed to the Lyapunov Function in (37), the expres-
sion in (45) does not contain the term with h;(k). This
is because the Aol term is already present in the Penalty
Function.

The Drift-Plus-Penalty policy is designed to minimize an
upper bound on A’(Sy) + P’(Sy) at every slot k. The upper
bound is derived in Appendix D of the supplementary material
by manipulating (43)-(45). The expression for the upper bound
follows

A'(Sk) + P'(Sk) < ZE{W ) 1Sk} Wi(k) + B'(k),
(46)
where W/ (k) and B’(k) are given by
W) = P2 (k) 4 Vit ) @)

M 3 v
! o i o+

B = G )+ 04Vl Wat g |9
The values of W/(k) and B’(k) can be easily calculated
by any admissible policy and thus can be used for making
scheduling decisions. For minimizing the upper bound in (46),
the Drift-Plus-Penalty policy selects, in each slot %, the node
with highest value of W/ (k), with ties being broken arbitrarily.
Denote the Drift-Plus-Penalty policy as DPP.

Theorem 8: The DPP policy satisfies any feasible set of
minimum throughput requirements {q;}M .

Theorem 9 (Optimality Ratio for DPP): For any given
network setup (M, p;,q;,«;), by choosing the constant
Bi = oi/plpi, the optimality ratio of DPP is such
that

PP <9 +5- (49)

__Z%].

In particular, for every network with V' < Zz 10 /M,
the Drift-Plus-Penalty policy is 2-optimal.
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The proofs of Theorems 8 and 9 are provided in
Appendices E and F of the supplementary material, respec-
tively. The Lyapunov Function (45) with a quadratic term in
x; (k) has a central role in showing that the DPP policy
satisfies any feasible requirements {g;}}%,. Notice that this is
also true for MW. The Penalty Function (43) with a linear
term in h;(k) is central to show that the DPP policy is
2-optimal. Recall that the MW policy with a quadratic h; (k)
was shown to be 4-optimal. Comparing Theorems 7 and 9,
we can clearly see this improvement in the optimality ratio.
However, this improvement is limited to the mathematical
analysis. Numerical results in Sec. IV suggest that DPP
and MW have similar performances. Next, we develop an
index policy based on Whittle’s Index [37] that is surprisingly
similar to MW.

E. Whittle’s Index Policy

To find Whittle’s Index, we transform the Aol optimization
(8a)-(8c) into a relaxed Restless Multi-Armed Bandit (RMAB)
problem. This is possible because every node in the network
evolves as a restless bandit. To obtain the relaxed RMAB
problem, we first substitute the K interference constraints
in (8c) by the single time-averaged constraint

1 K M
= > Efui(k)] < 1.

k=11=1

(50)

Next, we relax this time-averaged constraint, by plac-
ing (50) into the objective function (8a) together with
the associated Lagrange Multiplier C' > 0. The result-
ing optimization problem is called relaxed RMAB and
its solution lays the foundation for the design of Whit-
tle’s Index. A detailed description of this method can be
found in [37], [39].

One of the challenges associated with this method is that
Whittle’s Index is only defined for problems that are indexable.
Unfortunately, it can be shown that due to the throughput
constraints, ¢; > g¢;, the relaxed RMAB resulting from
the transformation of the Aol optimization is not indexable.
To overcome this, we relax the throughput constraints (8b),
placing them into the objective function of (8a)-(8c) as follows

Relaxed Aol Optimization:

K M
OPT = min {IQE%O 7T 2= 2 [“fE i (k)]
+0; (ﬂ — Elui(k)] ]} (51a)
Pi

st 0; >0, Vi (51b)
M
> uilk) <1, k. (51c)
=1

Each Lagrange Multiplier 6; is associated with a relaxation
of gf > ¢;. These multipliers are called throughput incentives
for they represent the penalty incurred by scheduling policies
that deviate from the corresponding throughput constraint.
Applying the transformation described at the beginning of this
section to the relaxed Aol optimization (51a)-(51c) yields

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

Doubly relaxed RMAB:

K M
— 1
o = iy iy 23 el
C g
+(C = 6B [wi(k)] - 77 + q}} (52a)
st 0; >0, Vi (52b)
C>0. (52¢)

Next, we solve the doubly relaxed RMAB, establish that the
relaxed Aol optimization is indexable and obtain a closed-form
expression for the Whittle’s Index.

The doubly relaxed RMAB is separable and thus can be
solved for each individual node. Observe that a scheduling
policy running on a network with a single node ¢ can only
choose between selecting node ¢ for transmission during slot
k or idling. The scheduling policy that optimizes (52a)-(52c)
for a given node : is characterized next.

Proposition 10 (Threshold Policy): Consider the doubly
relaxed RMAB problem (52a)-(52¢) associated with a single
node i. The optimal scheduling policy is a Threshold policy
that, in each slot k, selects node i when h;(k) > H; and idles
when 1 < h;(k) < H;. For positive fixed values of C' and 0;,
if C > 0;, the expression for the threshold is

301 ¢(1 1)2 2(C — 6;)
2 p pi 2 Pi;

Otherwise, if C' < 0;, the threshold is H; = 1.

Proposition 10 follows from [25, Propostion 4]. Next,
we define the condition for indexability and establish that
the relaxed Aol optimization is indexable. For a given value
of C, let Z;(C) = {hi(k) € N|h;(k) < H;} be the set of
states h;(k) in which the Threshold policy idles. The doubly
relaxed RMAB associated with node ¢ is indexable if the set
Z;(C') increases monotonically from @) to N, as the value of
C' increases from 0 to +oo. Furthermore, the relaxed Aol
optimization is indexable if this condition holds for all nodes.
The condition on Z;(C) follows directly from Proposition 10
and is true for all nodes 7. Thus, we establish that the relaxed
Aol optimization (51a)-(51c) is indexable.

Given indexability, we define Whittle’s Index. Let C;(h;(k))
be the Whittle’s Index associated with node ¢ in state h; (k).
By definition, C;(h;(k)) is the infimum value of C' that makes
both scheduling decisions (transmit or idle) equally desirable
to the Threshold policy while in state h;(k). The scheduling
decisions are equally desirable when the multiplier C' is such
that H; = h;(k) + 1. Using (53) to solve this equation for the
value of C' gives the following expression for the Index

H; = (53)

Cihs) = L0l |1tk + 2~ 1| 46 59

After establishing indexability and obtaining the expression
for C;(h;(k)), we define Whittle’s Index policy. The Whittle’s
Index policy selects, in each slot k, the node with highest
value of C;(h,(k)), with ties being broken arbitrarily. Denote
the Whittle’s Index policy as W 1.
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Theorem 11 (Optimality Ratio for W1I): For any given
network setup (M, p;, q;,«;), the optimality ratio of W1 is
such that

oose L[S Ty,
a Lp | M= L 2L '

In particular, for every network with Zf\il 0; <7 Zf\il a;/2,
the Whittle’s Index policy is 8-optimal.

The proof of Theorem 11 is provided in Appendix G of the
supplementary material. The arguments used for deriving 1)V
are analogous to the ones for deriving /" in Theorem 7.
Those similarities come from the fact that policies MW and
W I are almost identical. Comparing the expressions for W; (k)
and C;(h;(k)), in (40) and (54), respectively, we can see that
both have the term «;p;h?(k)/2 and both have an isolated
throughput term: W; (k) has Vp;z; (k) and C;(h;(k)) has 6;.
Naturally, we expect the performance of both policies to be
similar in terms of Aol. The key difference between MW
and WI lies in the throughput term. While the term
Vpix; (k) guarantees that MW satisfies the throughput
constraint, 7 > q;, the positive scalar 0; represents an
incentive for WI to comply with the constraint, but
provides no guarantee. The benefit of using a fixed 0; is
that there is no need to keep track of z; (k) for each node
and at every slot k.

The results in this section hold for any given set of positive
throughput incentives {0;}},. Next, we propose an algorithm
that finds the values of 6; which maximize a lower bound on
the Lagrange Dual problem associated with the relaxed Aol
optimization (51a)-(51c). Observe that OPTp in (52a) is the
Lagrange Dual function associated with (51a)-(51c). Thgg,/we
can define the Lagrange Dual problem as maxc g, {OPTp}
subject to C' > 0 and 6; > 0,Vi. Since this dual problem is
challenging to address, we consider a lower bound:

max{L(C, x;)} < max{6ﬁp} < OPT".
Cxi C.6;

(55)

(56)

subject to x; = C' — 6;, C > 0 and 6; > 0 for all nodes i,
where

N LM M ”
LR B A o
— pi — pi
N - 0 2X +[1 1]2 Xidi
S M| upi o [pi 2 ipi
11
- —— —} : (57)
pi 2

The throughput incentives ¢; that result from the maximiza-
tion of L(C, x;) are given by Algorithm 2. They are used in the
next section to simulate the Whittle’s Index policy. Simulation
results show that the values of {0}, from Algorithm 2
reduce the throughput debt when compared to 6, = 0.

IV. SIMULATION RESULTS
In this section, we simulate six transmission scheduling
policies: 1) Optimal Randomized, R*; 2) Max-Weight, M W;
3) Drift-Plus-Penalty, DPP; 4) Whittle’s Index with 6},
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Algorithm 2 Throughput Incentives
s Xi = aipil(1/ai)? — (1/pi = 1/2)%]/2 Vi
: C— max;{x;}
67— pi/2min (G} @) + (1/p — 1/2)2 Vi
S =1+ P2+ + o
: while S < 1 do
decrease C slightly
repeat steps 3 and 4 to update ¢; and S
: end while
C* = C and x; = min{C*; x;} and 0 = C* — x},Vi
: return (67,65, ,0%,)

L@ R R Wy

—_
=]

W1, 5) Whittle’s Index with 6; = 0, W P; and 6) Largest
Weighted-Debt First, LD. The first four policies are developed
in Sec. Il and the last two are proposed in [25] and [2],
respectively. Policy W P was proposed in [25] for minimizing
the Aol in broadcast wireless networks without throughput
requirements. It is analogous to WI but with 6; = 0,Vi.
Policy LD selects, in each slot k, the node with highest value
of x;(k)/pi, where x;(k) is the throughput debt (35). It was
shown in [2] that LD satisfies any set of feasible throughput
requirements {g;}*£,. Notice that LD does not account for
Aol.

We simulate a network with M nodes, each having different
parameters. Node ¢ has weight o; = (M +1 —14)/M, channel
reliability p; = 4/M and minimum throughput requirement
qi = epi/M, where ¢ € [0,1) represents the hardness of
satisfying the throughput constraints ¢ > ¢;. The larger the
value of ¢, the more challenging are the constraints. Notice
that e < 1 is necessary for the feasibility of {q;}}2,. The
values of V and V' represent the importance of the throughput
constraints for MW and DPP, respectively. A lower value
of V' (or V') reduces the priority of the throughput debt and
increases the priority of Aol minimization. Recall that for any
positive V' and V', both MW and DPP are guaranteed to
satisfy any feasible throughput requirements in the long run.
Policies R*, WI, WP and LD are not affected by V nor V",

Two performance metrics are used to evaluate scheduling
policies. Figs. 2, 4 and 6 measure the Expected Weighted Sum
Aol, E[JE], defined in (7) and compare it with the lower
bound Lp in (10a). Figs. 3 and 5 measure the maximum
normalized throughput debt, defined as max;{z; (K + 1)/
Kgq;}. Figs. 2 and 3 display the evolution over time, for
K € {10% 5 % 10*,10°,5 % 10,105, 15 % 10%}, of a network
with M = 15, ¢ = 0.9 and V = V' = 1. Each data
point in Figs. 2 and 3 is an average over the results of
108/K simulations. Figs. 4 and 5 show simulations of net-
works with different sizes, namely M € {5, 10,---,25,30},
and fixed ¢ = 0.9 and V = V' = M?2 Fig. 6 shows
networks with varying throughput constraints, namely ¢ €
{0.7,0.75,---,0.95,0.999}, and fixed M = 30 and V =
V' = M?. Each data point in Figs. 4, 5 and 6 is an average
over the results of 10 simulations and each simulation runs for
a total of K = M * 106 slots.

Figs. 2 and 3 show the effects of low V and V' on MW
and DPP. A lower value of V (or V') gives lower priority
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Fig. 4. Simulation of networks with varying size M.

to the throughput debt and, as a result, the network may take
longer to achieve the desired throughput, especially when the
number of nodes M and/or € are large. This convergence time
is illustrated in Fig. 3. The advantage of having low V is the
(slight) improvement in EWSAol. Comparing MW and DPP
in Figs. 2 and 4, it can be seen that when V = V'’ goes from
152 to 1, the EWSAoI of MW decreases from 16.93 to 16.50
and DPP decreases from 17.26 to 16.61, i.e. less than 5%
improvement when V' and V"’ are decreased by a factor of 225.

Simulations clearly support the theoretical results and
discussions in Sec. III. Specifically, i) Figs. 2, 4 and 6 show
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that the performance of R* is a factor of 2 away from the
lower bound, while the performance of MW, DPP, W1 and
WP are comparable to the lower bound in every network
configuration simulated; and ii) Figs. 3 and 5 show that by
changing the throughput incentive from § = 0 (W P) to the
optimal 6* (W), the throughput debt is reduced but is still
not zero. Hence, as expected, W I and W P are not guaranteed
to satisfy the throughput requirements. From (i) and (ii) we
conclude that MW and DPP have superior performance in
terms of both Aol and throughput.

V. CONCLUDING REMARKS

In this paper, we considered a single-hop wireless network
with a number of nodes transmitting time-sensitive information
to a base station over unreliable channels. We addressed
the problem of minimizing the Expected Weighted Sum
Aol of the network while satisfying minimum throughput
requirements from the individual nodes. Four low-complexity
scheduling policies were developed: Optimal Stationary Ran-
domized policy, Max-Weight policy, Drift-Plus-Penalty policy,
and Whittle’s Index policy. The performance of each pol-
icy was evaluated both analytically and through simulation.
The Max-Weight policy and the Drift-Plus-Penalty policy
demonstrated the best performance in terms of both Aol and
throughput. Interesting related models that can be analyzed
using similar techniques include single-hop networks in which
i) packets arrive to each node according to a stochastic process
and are enqueued in separated (per node) queues; or ii) some
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links can be activated simultaneously and scheduling decisions
are for subsets of links.

APPENDIX A
UPPER BOUND ON THE LYAPUNOV DRIFT OF MW

In this appendix, we obtain the expressions in (39)-(41),
which represent an upper bound on the Lyapunov Drift. Con-
sider the network state Sy, = (h;(k), ;" (k))M,, the Lyapunov
Function L(S%) in (37) and the Lyapunov Drift A(S}) in (38).

Substituting (37) into (38), we get
M

=3 ZaiE{hf(lﬁ: +1) —

+3 ZE{

Next, we find expressions for [z;7 (k + 1)]? — [z] (k)]? and
h2(k + 1) — h?(k) which are then substituted into (58).
To obtain the expression associated with the throughput

debt, we use the following recursion

HOIY

(k+1)]2 — [

FRPISk}.  (58)

J)z(k? + 1) = J?z(k) — dz(k?) + qi, Vk, (59)

with 2;(1) = 0. Notice that (59) is equivalent to (35). Squaring
xf (k+1), yields

[ (k +1)]" = [max{a;(k) — di(k) + q;5 0}

< [max{x (k) — di(k) + q:5 03]
< [a (k) = di(k) + @] . (60)
Manipulating (60), gives
[ (ko D[ () < —20f (B)[di () i) +1. (61

Finally, by taking the conditional expectation of (61) and
applying (2), we get the upper bound

E{[of (k+ D) = [&7 (k)]*] Sk }

< 2x7(k'> (piB{us(k)[Sk} — @) + 1. (62)

To obtain the expression associated with the Aol, we cal-
culate E{h?(k + 1)|Sk} using the evolution of h;(k) in (6).
It follows that

E { hz(ki + 1)2‘ Sk} = p;E {’U,z(k) |Sk}
+ (hi(k)+1)* (1 = piE {ui(k) [Sk }) -

(63)
Manipulating (63), we get
E{ hi(k +1)* — hs(k)?| Sk}
= —piE {u;(k) [Sk } hi(k) [hi(k) + 2] + 2R;i(k) + 1. (64)

Substituting (62) and (64) into the Lyapunov Drift in (58),
yields the expressions in (39)-(41).
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APPENDIX B
PROOF OF THEOREM 6

Theorem 6. The Max-Weight policy satisfies any feasible
set of minimum throughput requirements {q; }Z,.
Proof: The expression for the Lyapunov Drift (39) is
central to the analysis in this appendix and is rewritten below
for convenience.

)[Sk } Wilk) + B(k),

ZE{ul

where W; (k) and B(k) are given by

-
L k)

B(k) = f:{a (hi(k) 4 2) 4V ( (k)g: + ;)}

i—1

Wi(k) = hi(k)[hi(k) + 2] + Vp;

Recall that the Max-Weight policy minimizes the RHS
of (39) by selecting i = argmax{W;(k)} in every slot k.
Hence, any other policy m € II yields a lower (or equal)
RHS. Consider a Stationary Randomized Policy R € Il that,
in each slot k, selects node ¢ with probability p; € (0,1].
Then, it follows that

ZE{uz

Substituting (65) into the equation of the Lyapunov Drift gives

S

) |Sk } Wi(k

> Wik

(65)

M
A(Sk) < =D piWi(k) + B(k)
i=1
M i 2 Mo
S _ (7 a2 |:h k + 1:| + 7 +
Z 2 (k) Pifhi ; 2pifui
+—_Vz szz_ z i k) (66)
Consider the Cauchy-Schwarz inequality
M 1 2 Mo
aipipyi |hi(k) — +1} -
{; ! [ " Pitti ;pim
M 1 2
> 9> i |hi(k) - + 1‘ . (67)
i=1 Pitti
Applying this inequality to (66) yields
Mo M
A(Sk) <) 5 — VY (pipi — gi)a (k)
im1 Pt i=1
-1
VM 1 ;
)
i=1
M 2
X 9> i |hi(k) - + 1‘ (68)
i=1 Pitti
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and rearranging the terms

22} S

- Pilbi =1

+ {f

i=1

1 ’ M 90,
hi(k) — +1]p <— LA A(S
() Difli ‘} {z; piﬂi} (Si)

(69)

For simplicity of exposition, we divide inequality (69) into
four terms LHS, + LHS, < RHS, + RHS,. Taking their
expectation with respect to S, summing them over k €

{1,2,---, K} and then dividing them by KM, gives
M oo M K
U{Sl:{z:pim}{I(Mz:z:”’pz a)E i(k)]}
1=1 i=1 k=1
(70)
| K M 1 2
LHSy = —— E «a; |hi(k) — +1
= Y {z L \}
(71)
Moo | K
RHS, = — LY —— N E[A(S 72
' {1pzm}KM; A 72)
1 M Qa; M «
RHS; = — ! 4+ VMy. (73)

From the definition of Lyapunov Drift (38) and the fact that
the Lyapunov Function (37) is non-negative, the expression of
RHS, can be simplified as follows

M
s, < {3220 L 2

im Pit

(74)

recall that h;(1) = 1 and z;(1) = 0. Hence, the Lyapunov
Function L(S7) is a positive finite constant.

Since LH S, is non-negative, it follows that the inequality
can be reduced to LHS; < RHS1 + RHS5. Using (74) and
applying the limit &' — oo yields

hm —ZE

o)

M

1 o
< {2

—, DPilti

M

Z {(szz - Qz)

i=1

+ VM} (75)

Hence, by rearranging the terms, we can show that for any
given node i, we have strong stability

dn YR <o
what establishes condition (36). [ |
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APPENDIX C
PROOF OF THEOREM 7

Theorem 7 (Optimality Ratio for M W). For any given
network setup (M, pi, ¢;, «;), the optimality ratio of MW is

such that
M
2
V—-— 0411 .

i=1

MW <4+— (77)

In particular, for every network with V' < 2 E — /M,
the Max-Weight policy is 4-optimal.

Proof: Consider the analysis in Appendix B. In particular,
the inequality LH S1+ LH Sy, < RHS1+ RH S5 presented in
(70)-(73). Applying Jensen’s inequality twice to L H Ss, yields

{KZE[Z ( (k)—p;i+1> }QSLHSQ
M{ IA({W—M; <sz >}2§LHSQ.
(78)

Since LH S, is non-negative, it follows that the inequality
can be reduced to LHS> < RH S| + RHS5. Using equations
(74) and (78), and then applying the limit K — oo yields

I S S

lim
=1

IN
‘H
*)
]
bS]
SE
——
—N—
YR
bS]
=8
_|_
<
<
——

w 1M041L'
J< 2o

lim E[JMW] <
A B LK = pigts
1 M o
+ = - ~— +VM
M <; pim> <; Dilbi )
M s
OPTyw < — > ——+V (79)
im1 Pilbi

Analogously to the proof of Theorem 3, let ¢* be the
long-term throughput associated with the policy that solves
the Lower Bound optimization (10a)-(10c). Then, evaluating
Lp from (10a) gives

M

1
2MZ QMZO”

Now, for each node ¢, we impose the following scheduling
probability p; = (jiL /pi. Then, evaluating (79) gives

Lp= (80)

M
OPTarw < %Z}j—ﬁv 81)
Comparing (80) and (81), yields
9 M
Lp < OPTaw <4Lp+ |V - o 2@] . (32
what establishes the expression in (42). [ |
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