
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018 2637

Scheduling Policies for Minimizing Age of
Information in Broadcast Wireless Networks

Igor Kadota , Abhishek Sinha , Elif Uysal-Biyikoglu, Rahul Singh , and Eytan Modiano, Fellow, IEEE

Abstract— In this paper, we consider a wireless broadcast
network with a base station sending time-sensitive information
to a number of clients through unreliable channels. The Age
of Information (AoI), namely the amount of time that elapsed
since the most recently delivered packet was generated, captures
the freshness of the information. We formulate a discrete-time
decision problem to find a transmission scheduling policy that
minimizes the expected weighted sum AoI of the clients in the
network. We first show that in symmetric networks, a greedy
policy, which transmits the packet for the client with the highest
current age, is optimal. For general networks, we develop three
low-complexity scheduling policies: a randomized policy, a Max-
Weight policy and a Whittle’s Index policy, and derive perfor-
mance guarantees as a function of the network configuration.
To the best of our knowledge, this is the first work to derive
performance guarantees for scheduling policies that attempt to
minimize AoI in wireless networks with unreliable channels.
Numerical results show that both the Max-Weight and Whittle’s
Index policies outperform the other scheduling policies in every
configuration simulated, and achieve near optimal performance.

Index Terms— Age of Information, scheduling, optimization,
quality of service, wireless networks.

I. INTRODUCTION

AGE OF Information (AoI) has been receiving increas-
ing attention in the literature [2]–[25], particularly for

applications that generate time-sensitive information such as
position, command and control, or sensor data. An interesting
feature of this performance metric is that it captures the fresh-
ness of the information from the perspective of the destination,
in contrast to the long-established packet delay, that represents
the freshness of the information with respect to individual
packets. In particular, AoI measures the time that elapsed since
the generation of the packet that was most recently delivered to
the destination, while packet delay measures the time interval
between the generation of a packet and its delivery.

Manuscript received October 27, 2017; revised July 19, 2018; accepted
September 18, 2018; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor A. Eryilmaz. Date of publication October 30, 2018;
date of current version December 14, 2018. This work was supported in part
by NSF under Grant AST-1547331, Grant CNS-1713725, and Grant CNS-
1701964; in part by the Army Research Office (ARO) under Grant W911NF-
17-1-0508; in part by METU; and in part by the CAPES/Brazil. This paper
was presented in part at the Allerton Conference in 2016. (Corresponding
author: Igor Kadota.)

I. Kadota, A. Sinha, R. Singh, and E. Modiano are with the Laboratory
for Information and Decision Systems, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139 USA, and also with Middle East Technical
University, 06800 Ankara, Turkey (e-mail: kadota@mit.edu; sinhaa@mit.edu;
rsingh12@mit.edu; modiano@mit.edu).

E. Uysal-Biyikoglu is with the Massachusetts Institute of Technology,
Cambridge, MA 02139 USA, and also with the Department of Electri-
cal Engineering, Middle East Technical University, 06800 Ankara, Turkey
(e-mail: uelif@metu.edu.tr).

Digital Object Identifier 10.1109/TNET.2018.2873606

TABLE I

EXPECTED DELAY, EXPECTED INTER-DELIVERY TIME AND AVERAGE

AoI OF A M/M/1 QUEUE WITH μ = 1 AND VARIABLE λ

Fig. 1. Two sample sequences of packet deliveries are represented by the
green arrows. Both sequences have the same throughput, namely 3 packets
over the interval, but different delivery regularity.

The two parameters that influence AoI are packet delay and
packet inter-delivery time. In general, controlling only one is
insufficient for achieving good AoI performance. For example,
consider an M/M/1 queue with a low arrival rate and a high
service rate. In this setting, the queue is often empty, resulting
in low packet delay. Nonetheless, the AoI can still be high,
since infrequent packet arrivals result in outdated information
at the destination. Table I provides a numerical example of
an M/M/1 queue with fixed service rate μ = 1 and a variable
arrival rate λ. The first and third rows represent a system with
a high average AoI caused by high inter-delivery time and high
packet delay, respectively. The second row shows the queue
at the point of minimum average AoI [2].

A good AoI performance is achieved when packets with low
delay are delivered regularly. It is important to emphasize the
difference between delivering packets regularly and providing
a minimum throughput. Figure 1 illustrates the case of two
sequences of packet deliveries that have the same through-
put but different delivery regularity. In general, a minimum
throughput requirement can be fulfilled even if long periods
with no delivery occur, as long as those are balanced by
periods of consecutive deliveries.

The problem of minimizing AoI was introduced in [2]
and has been explored using different approaches. Queueing
Theory is used in [2]–[9] for finding the optimal server
utilization with respect to AoI. The authors in [10]–[13]
consider the problem of optimizing the times in which
packets are generated at the source in networks with
energy-harvesting or maximum update frequency constraints.
Link scheduling optimization with respect to AoI has been

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9075-3377
https://orcid.org/0000-0001-7220-0691
https://orcid.org/0000-0003-0363-3666

2638 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

recently considered in [14]–[21]. Applications of AoI are
studied in [22]–[25].

The problem of optimizing link scheduling decisions in
broadcast wireless networks with respect to throughput and
delivery times has been studied extensively in the literature.
Throughput maximization of traffic with strict packet delay
constraints has been addressed in [26]–[29]. Inter-delivery time
is considered in [30]–[36] as a measure of service regularity.
Age of Information has been considered in [14]–[21].

In this paper, we consider a network in which packets
are generated periodically and transmitted through unreliable
channels. Minimizing the AoI is particularly challenging in
wireless networks with unreliable channels due to transmission
errors that result in packet losses. Our main contribution is the
development and analysis of four low-complexity scheduling
policies: a Greedy policy, a randomized policy, a Max-Weight
policy and a Whittle’s Index policy. We first show that Greedy
achieves minimum AoI in symmetric networks. Then, for
general networks, we compare the performance of each policy
against the optimal AoI and derive the corresponding perfor-
mance guarantees. To the best of our knowledge, this is the
first work to derive performance guarantees for policies that
attempt to minimize AoI in wireless networks with unreliable
channels. A preliminary version of this work appeared in [1].

The remainder of this paper is outlined as follows. In Sec. II,
the network model is presented. In Sec. III, we find the
optimal scheduling policy for the case of symmetric networks.
In Sec. IV, we consider the general network case and derive
performance guarantees for the Greedy, Randomized and
Max-Weight policies. In Sec. V, we establish that the AoI
minimization problem is indexable and obtain the Whittle’s
Index in closed-form. Numerical results are presented in
Sec. VI. The paper is concluded in Sec. VII.

II. SYSTEM MODEL

Consider a single-hop wireless network with a base sta-
tion (BS) sending time-sensitive information to M clients. Let
the time be slotted, with T consecutive slots forming a frame.
At the beginning of every frame, the BS generates one packet
per client i ∈ {1, 2, · · · , M}. Those new packets replace
any undelivered packets from the previous frame. Denote the
frame index by the positive integer k. Packets are periodically
generated at every frame k for each client i, thus, each packet
can be unequivocally identified by the tuple (k, i).

Let n ∈ {1, · · · , T } be the index of the slot within a frame.
A slot is identified by the tuple (k, n). In a slot, the BS
transmits a packet to a selected client i over the wireless
channel. The packet is successfully delivered to client i with
probability pi ∈ (0, 1] and a transmission error occurs with
probability 1 − pi. The probability of successful transmission
pi is fixed in time, but may differ across clients. The client
sends a feedback signal to the BS after every transmission. The
feedback (success / failure) reaches the BS instantaneously and
without errors.

The transmission scheduling policies considered in this
paper are non-anticipative, i.e. policies that do not use future
knowledge in selecting clients. Let Π be the class of non-
anticipative policies and π ∈ Π be an arbitrary admissible

Fig. 2. On the top, a sample sequence of deliveries to client i during five
frames. The upward arrows represent the times of packet deliveries. On the
bottom, the associated evolution of the AoIi.

Fig. 3. Area under AoIi during any frame k in terms of hk,i and T .

policy. In a slot (k, n), policy π can either idle or select a
client with an undelivered packet. Clients that have already
received their packet by slot (k, n) can only be selected in
the next frame k+1. Scheduling policies attempt to minimize
the expected weighted sum AoI of the clients in the network.
Next, we discuss this performance metric.

A. Age of Information Formulation

Prior to introducing the expected weighted sum AoI,
we characterize the Age of Information of a single client in
the context of our system model. Let AoIi be the positive real
number that represents the Age of Information of client i. The
AoIi increases linearly in time when there is no delivery of
packets to client i. At the end of the frame in which a delivery
occurs, the AoIi is updated to T . In Fig. 2, the evolution of
AoIi is illustrated for a given sample sequence of deliveries
to client i.

In Fig. 3, the AoIi is shown in detail. Let ŝk denote the set
of clients that successfully received packets during frame k
and let the positive integer hk,i represent the number of frames
since the last delivery1 to client i. At the beginning of frame
k + 1, the value of hk,i is updated as follows

hk+1,i =
�

hk,i + 1, if i /∈ ŝk;
1, if i ∈ ŝk.

(1)

As can be seen in Fig. 3, during frame k the area under
the AoIi curve can be divided into a triangle of area T 2/2
and a parallelogram of area hk,iT

2. This area, averaged over
time, captures the average Age of Information associated with
client i. A network-wide metric for measuring the freshness of

1A similar parameter, denoted Time-Since-Last-Service, is studied in the
context of service regularity in [30], [31], [33], and [36].

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2639

TABLE II

DESCRIPTION OF KEY NOTATION

the information is the Expected Weighted Sum AoI, namely

EWSAoI =
1

KTM
E

�
K�

k=1

M�
i=1

αi

�
T 2

2
+ T 2hk,i

� ��� �h1

�

=
T

2M

M�
i=1

αi +
T

KM
E

�
K�

k=1

M�
i=1

αihk,i

����h1

�
, (2)

where αi is the positive real value that denotes the client’s
weight and the vector �h1 = [h1,1, · · · , h1,M]T represents the
initial values of hk,i in (1). For notation simplicity, we omit �h1

hereafter. Manipulating the expression of EWSAoI gives us the
objective function

min
π∈Π

E [Jπ
K] , where Jπ

K =
1

KM

K�
k=1

M�
i=1

αi hπ
k,i, (3)

where (3) is obtained by subtracting the constant terms
from (2) and dividing the result by T . As can be seen by
the relationship between (2) and (3), the scheduling policy that
minimizes E [Jπ

K] is the same policy that minimizes EWSAoI.
Henceforth in this paper, we refer to this policy as AoI-optimal.
With the definitions of AoI2 and objective function presented,
in the next section we introduce the Greedy policy. Table II
summarizes key notation.

III. OPTIMALITY OF GREEDY

In this section, we introduce the Greedy policy and show
that it minimizes the AoI of the finite-horizon scheduling
problem described in Sec. II under some conditions on the
underlying network. The Greedy policy is defined next.

Greedy policy schedules in each slot (k, n) a transmission
to the client with highest value of hk,i that has an undelivered
packet, with ties being broken arbitrarily.

Denote the Greedy policy as G. Observe that Greedy is
non-anticipative and work-conserving, i.e. it only idles after all

2For ease of exposition, in this paper, the value of AoIi is updated at the
beginning of the frame that follows a successful transmission to client i, rather
than immediately after the successful transmission. This update mechanism
simplifies the problem while maintaining the features of interest.

Fig. 4. Evolution of �hk when the Greedy policy is employed in a network
with M = 5 clients, T = 2 slots per frame, error-free channels, pi = 1, ∀i,
and �h1 = [7 5 4 2 2]T . In each frame, the Greedy policy transmits packets
of two clients. The elements of �hk associated with the clients that received a
packet during frame k are depicted in bold green. All elements in �hk change
according to (1): green elements are updated to 1 while black elements are
incremented by 1. In this figure, the Round Robin pattern is evident.

packets have been delivered during frame k. Next, we discuss a
few properties of the Greedy policy that lead to the optimality
result in Theorem 5.

Remark 1: The Greedy policy switches scheduling deci-
sions only after a successful packet delivery.

In slot (k, n), Greedy selects client i = argmaxj{hk,j}
from the set of clients with an undelivered packet. Assume
that this packet transmission fails and the subsequent slot
is in the same frame k. Since �hk remains unchanged and
client i still has an undelivered packet, the Greedy policy
selects the same client i. Alternatively, if the next slot is
in frame k + 1, then �hk+1,i evolves according to (1) and
Greedy selects arg maxj{hk+1,j} from the set of all clients.
It follows from (1) that client i is selected again. Hence,
the Greedy policy selects the same client i, uninterruptedly,
until its packet is delivered.

Lemma 2 (Round Robin): Without loss of generality,
reorder the client index i in descending order of �h1, with
client 1 having the highest h1,i and client M the lowest
h1,i. The Greedy policy delivers packets according to the
index sequence (1, 2, · · · , M, 1, 2, · · ·) until the end of the
time-horizon K , i.e. Greedy follows a Round Robin pattern.

The proof of Lemma 2 is in Appendix. Together, Remark 1
and Lemma 2, provide a complete description of the behavior
of Greedy. Consider a network with �h1 reordered as in
Lemma 2, the Greedy policy schedules client 1, repeatedly,
until one packet is delivered, then it schedules client 2,
repeatedly, until one packet is delivered, and so on, following
the Round Robin pattern until the end of the time-horizon. The
Greedy policy only idles when all M packets are delivered in
the same frame. Figure 4 illustrates a sequence of scheduling
decisions of Greedy in a network with error-free channels.

Corollary 3 (Steady-State of Greedy for Error-Free Chan-
nels): Consider a network with error-free channels, pi = 1, ∀i.
The Greedy policy drives this network to a steady-state in
which the sum of the elements of �hk is constant. Let m1 ∈ N

and m2 ∈ {0, 1, · · · , T − 1} be the quotient and remainder
of the division of M by T , namely M = m1T + m2. The
steady-state is achieved at the beginning of frame k = m1 +2
and the sum of �hk is given by

M�
i=1

hk,i =
Tm1 (m1 + 1)

2
+ m2(m1 + 1). (4)

Corollary 3 follows directly from the proof of Lemma 2
in Appendix. The sum in (4) comes from the expression of

2640 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

�hk in (61). Notice that (4) is independent of the initial �h1.
Figure 4 represents a network with M = 5, T = 2, m1 = 2
and m2 = 1. Thus, according to Corollary 3, the steady-state
is achieved in frame k = 4 and the sum of the elements of �hk

is 9 for k ≥ 4. Those values can be easily verified in Fig. 4.
In Theorem 5, we establish that Greedy is AoI-optimal

when the underlying network is symmetric, namely all clients
have the same channel reliability pi = p ∈ (0, 1] and weight
αi = α ≥ 0. Prior to the main result, we establish in Lemma 4
that Greedy is AoI-optimal for a symmetric network with
error-free channels.

Lemma 4 (Optimality of Greedy for Error-Free Channels):
Consider a symmetric network with error-free channels pi = 1
and weights αi = α > 0, ∀i. Among the class of admissible
policies Π, the Greedy policy attains the minimum sum
AoI (2), namely

JG
K ≤ Jπ

K , ∀π ∈ Π. (5)

The proof of Lemma 4 is in Appendix B of the supple-
mentary material. Intuitively, Greedy minimizes

	M
i=1 hk,i by

reducing the highest elements of �hk to unity at every frame.
Together, Lemma 4 and Corollary 3 show that, when channels
are error-free, Greedy drives the network to a steady-state (4)
that is AoI-optimal. Next, we use the result in Lemma 4 to
show that the Greedy policy is optimal for any symmetric
network.

Theorem 5 (Optimality of Greedy): Consider a symmetric
network with channel reliabilities pi = p ∈ (0, 1] and weights
αi = α > 0, ∀i. Among the class of admissible policies Π,
the Greedy policy attains the minimum expected sum AoI (2),
namely G = argminπ∈Π E [Jπ

K].
To show that the Greedy policy minimizes the AoI of any

symmetric network, we generalize Lemma 4 using a stochastic
dominance argument [37] that compares the evolution of �hk

when Greedy is employed to that when an arbitrary policy π
is employed. The proof of Theorem 5 is in Appendix C of the
supplementary material.

Selecting the client with an undelivered packet and highest
value of hk,i in every slot is AoI-optimal for every symmetric
network. For general networks, with clients possibly having
different channel reliabilities pi and weights αi, scheduling
decisions based exclusively on �hk may not be AoI-optimal. In
the next section, we develop three low-complexity scheduling
policies and derive performance guarantees for every policy
in the context of general networks.

IV. AGE OF INFORMATION GUARANTEES

One possible approach for finding a policy that minimizes
the EWSAoI is to optimize the objective function in (3)
using Dynamic Programming [38]. A negative aspect of this
approach is that evaluating the optimal scheduling decision for
each state of the network can be computationally demanding,
especially for networks with a large number of clients.3

3Vector �hk = [hk,1, · · · , hk,M]T is part of the state space of the
network. Since each element hk,i can take at least k different values,
hk,i ∈ {1, 2, · · · , k}, the set of possible values of �hk has cardinality at least
kM . In each slot (k, n) and for every possible network state, the Dynamic
Program finds the scheduling decision that minimizes the cost-to-go function
associated with the objective in (3). For a time-horizon of K frames, this
amounts to O(TMKM) operations.

To overcome this problem, known as the curse of dimension-
ality, and gain insight into the minimization of the Age of
Information, we consider four low-complexity scheduling poli-
cies, namely Greedy, Randomized, Max-Weight and Whittle’s
Index policies, and derive performance guarantees for each of
them.

For a given network setup (M, K, T, pi, αi), the per-
formance of an arbitrary admissible policy π ∈ Π is
given by E [Jπ

K] from (3) and the optimal performance is
E [J∗] = minη∈Π E [Jη

K]. Ideally, when expressions for E [Jπ
K]

and E [J∗] are available, we define the optimality ratio4

E [Jπ
K] /E [J∗] and say that policy π is (E [Jπ

K] /E [J∗])-
optimal. Naturally, the closer the optimality ratio is to unity,
the better is the performance of policy π. Alternatively, when
expressions for E [Jπ

K] and E [J∗] are not available, we define
the ratio

ρπ :=
Uπ

B

LB
, (6)

where LB is a lower bound to the AoI-optimal performance
and Uπ

B is an upper bound to the performance of policy π.
It follows from the inequality LB ≤ E [J∗] ≤ E [Jπ

K] ≤ Uπ
B

that E [Jπ
K] /E [J∗] ≤ ρπ and we can say that policy π is

ρπ-optimal.
Next, we obtain a lower bound LB that is used for deriv-

ing performance guarantees ρπ for the four low-complexity
scheduling policies of interest. Henceforth in this section, we
consider the infinite-horizon problem where K → ∞. The
focus on the long-term behavior of the system allows us to
derive simpler and more insightful performance guarantees.

A. Universal Lower Bound

In this section, we find a lower bound to the solution of the
objective function in (3).

Theorem 6 (Lower Bound): For a given network setup,
we have LB ≤ limK→∞ E [Jπ

K] , ∀π ∈ Π, where

LB =
1

2MT

M�
i=1

�
αi

pi

�2

+
1

2M

M�
i=1

αi. (7)

Proof: First, we use a sample path argument to char-
acterize the evolution of �hk over time. Then, we derive an
expression for the objective function of the infinite-horizon
problem, namely limK→∞ Jπ

K , and manipulate this expression
to obtain LB in (7). Fatou’s lemma is employed to establish
the result in Theorem 6.

Consider a sample path ω ∈ Ω associated with a scheduling
policy π ∈ Π and a finite time-horizon K . For this sample
path, let Di(K) be the total number of packets delivered to
client i up to and including frame K , let Ii[m] be the number
of frames between the (m−1)th and mth deliveries to client i,
i.e. the inter-delivery times of client i, and let Ri be the number
of frames remaining after the last packet delivery to the same
client. Then, the time-horizon can be written as follows

K =
Di(K)�
m=1

Ii[m] + Ri, ∀i ∈ {1, 2, · · · , M}. (8)

4Optimality Ratio is also known as Approximation Ratio.

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2641

The evolution of hk,i is well-defined in each of the time
intervals Ii[m] and Ri. During the frames associated with the
interval Ii[m], the parameter hk,i evolves as 1, 2, · · · , Ii[m].
During the frames associated with the interval Ri, the value
of hk,i evolves as 1, 2, · · · , Ri. Hence, the objective function
in (3) can be rewritten as

Jπ
K =

1
KM

K�
k=1

M�
i=1

αihk,i =
1
M

M�
i=1

αi

K

�
K�

k=1

hk,i

�

=
1
M

M�
i=1

αi

K

⎡
⎣Di(K)�

m=1

(Ii[m] + 1)Ii[m]
2

+
(Ri + 1)Ri

2

⎤
⎦

(a)
=

1
2M

M�
i=1

αi

K

⎡
⎣Di(K)�

m=1

I2
i [m] + R2

i + K

⎤
⎦

=
1

2M

M�
i=1

αi

⎡
⎣Di(K)

K

⎛
⎝ 1

Di(K)

Di(K)�
m=1

I2
i [m]

⎞
⎠+

R2
i

K
+ 1

⎤
⎦,

(9)

where (a) uses (8) to substitute the sum of the linear terms
Ii[m] and Ri by K .

Now, define the operator M̄[.] that calculates the sample
mean of a set of values. Using this operator, let the sample
mean of Ii[m] and I2

i [m] be

M̄[Ii] =
1

Di(K)

Di(K)�
m=1

Ii[m] (10)

M̄[I2
i] =

1
Di(K)

Di(K)�
m=1

I2
i [m]. (11)

Combining (8) and (10) yields

K

Di(K)
=

	Di(K)
j=1 Ii[j] + Ri

Di(K)
= M̄[Ii] +

Ri

Di(K)
. (12)

Substituting (11) and (12) into the objective function gives

Jπ
K =

1
2M

M�
i=1

αi

��
M̄[Ii] +

Ri

Di(K)

�−1

M̄[I2
i] +

R2
i

K
+ 1

�
,

(13)

with probability one.
To simplify (13), consider the infinite-horizon problem with

K → ∞ and assume that the admissible class Π does not
contain policies that starve clients.

Definition 7: A policy π starves client i if, with a positive
probability, it stops transmitting packets to that client after
frame K ′ < ∞.
When π starves client i, the expected number of frames after
the last packet delivery is E [Ri] → ∞ and the objective
function E [Jπ

K] → ∞. Therefore, policies that starve clients
are excluded from the class Π without loss of optimality.

Since policies in Π transmit packets to every client repeat-
edly and each packet transmission has a positive probability pi

of being delivered, it follows that Ii[m] and Ri are finite
with probability one. Thus, in the limit K → ∞, we have
R2

i /K → 0, Di(K) → ∞ and Ri/Di(K) → 0. Applying

those limits to Jπ
K in (13) gives the objective function of the

infinite-horizon AoI problem

lim
K→∞

Jπ
K =

1
2M

M�
i=1

αi

�
M̄[I2

i]
M̄[Ii]

+ 1
�

w.p.1. (14)

This insightful expression depicts the relationship between AoI
and the moments of the inter-delivery time Ii[m].

Prior to deriving the expression of LB in (7), we introduce
some useful quantities. Define the operator V̄[.] that calculates
the sample variance of a set of values. Let the sample variance
of Ii[m] be

V̄[Ii] =
1

Di(K)

Di(K)�
m=1

�
Ii[m] − M̄[Ii]

�2
. (15)

Notice that the sample variance is positive valued and V̄[Ii] =
M̄[I2

i]− �
M̄[Ii]

�2
. Let Ai(K) be the total number of packets

transmitted to client i up to and including frame K . Any policy
π can schedule at most one client per slot, hence

M�
i=1

Ai(K) ≤ KT w.p.1. (16)

Moreover, since every transmission to client i is delivered
with the same probability pi, independently of the outcome
of previous transmissions, by the strong law of large numbers

lim
K→∞

Di(K)
Ai(K)

= pi w.p.1. (17)

With the definitions of V̄[Ii] and Ai(K), we obtain LB by
manipulating the objective function of the infinite-horizon AoI
problem in (14) as follows

lim
K→∞

Jπ
K =

1
2M

M�
i=1

αi

�
V̄[Ii]
M̄[Ii]

+ M̄[Ii] + 1
�

(a)

≥ 1
2M

M�
i=1

αiM̄[Ii] +
1

2M

M�
i=1

αi

(b)
= lim

K→∞
1

2MT
KT

M�
i=1

αi

Di(K)
+

1
2M

M�
i=1

αi

(c)

≥ lim
K→∞

1
2MT

⎛
⎝ M�

j=1

Aj(K)

⎞
⎠

M�
i=1

αi

Di(K)

�

+
1

2M

M�
i=1

αi

(d)

≥ lim
K→∞

1
2MT

M�
i=1

�
αiAi(K)
Di(K)

�2

+
1

2M

M�
i=1

αi

(e)
=

1
2MT

M�
i=1

�
αi

pi

�2

+
1

2M

M�
i=1

αi w.p.1, (18)

where (a) uses the fact that V̄[Ii] ≥ 0, (b) uses (12) with
K → ∞, (c) uses the inequality in (16), (d) uses Cauchy-
Schwarz inequality and (e) uses the equality in (17). Notice
that (18) gives the expression for LB found in (7).

2642 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

Finally, since Jπ
K in (13) is positive for every π ∈ Π and

for every K , we employ Fatou’s lemma to (18) and obtain
limK→∞ E [Jπ

K] ≥ E [limK→∞ Jπ
K] ≥ LB, establishing the

result of the theorem.
The sequence of inequalities in (18) that led to

limK→∞ E [Jπ
K] ≥ LB could have rendered a loose

lower bound. However, in the next section, we use LB to
derive a performance guarantee ρG for the Greedy policy and
show that ρG = 1 for symmetric networks with large M , i.e.
under these conditions the value of LB is as tight as possible.
Furthermore, numerical results in Sec. VI show that the lower
bound is also tight in other network configurations. In the
upcoming sections, we obtain performance guarantees for four
low-complexity scheduling policies: Greedy, Randomized,
Max-Weight and Whittle’s Index policies.

B. Greedy Policy

In this section, we analyze the Greedy policy introduced
in Sec. III and derive a closed-form expression for its per-
formance guarantee ρG. The expression for ρG depends on
the statistics of the set of values {1/pi}M

i=1, in particular of
its coefficient of variation. Let the sample mean and sample
variance of {1/pi}M

i=1 be

M̄

�
1
pi

�
=

1
M

M�
j=1

1
pj

; (19)

V̄

�
1
pi

�
=

1
M

M�
j=1

�
1
pj

− M̄

�
1
pi

��2

. (20)

Then, the coefficient of variation is given by

CV =

�
V̄

�
1
pi

��
M̄

�
1
pi

�
. (21)

The coefficient of variation is a measure of how spread out are
the values of 1/pi. The value of CV is large when {1/pi}M

i=1

are disperse and CV = 0 if and only if pi = p for all clients.
Theorem 8 (Performance of Greedy): Consider a network

(M, T, pi, αi) with an infinite time-horizon. The Greedy policy
is ρG-optimal as M → ∞, where

ρG =
M̄ [αi] M̄

�
1
pi

�
�

M̄

��
αi

pi

��2

�
1 +

C2
V

M

�
, (22)

when the sample means and sample variance are well-defined
as M → ∞.

The proof of Theorem 8 is in Appendix D of the supple-
mentary material. The expression of ρG for finite M can be
readily obtained by dividing (87) by (7). Next, we use the
performance guarantee in (22) to obtain sufficient conditions
for the optimality of the Greedy policy.

Corollary 9: The Greedy policy minimizes the expected sum
AoI (2) of any symmetric network with M → ∞.

Proof: Consider two inequalities. (i) Cauchy-Schwarz

1
M

M�
i=1

�
αi

pi

�2

≤

1
M

M�
i=1

αi

�

1
M

M�
i=1

1
pi

�
, (23)

and (ii) Positive coefficient of variation: CV ≥ 0. It is evident
from (22) that ρG = 1 if and only if both inequalities (i) and
(ii) hold with equality and this is true if and only if αi = α
and pi = p for all clients.

Theorem 8 provides a closed-form expression for the perfor-
mance guarantee ρG and Corollary 9 shows that, by leveraging
the knowledge of hk,i, the Greedy policy achieves optimal
performance in symmetric networks with M → ∞. Notice
that the Greedy policy does not take into account differences
in terms of weight αi and channel reliability pi. In the next
section, we study the class of Stationary Randomized policies
which use the knowledge of αi and pi but neglect hk,i.

C. Stationary Randomized Policy

Consider the class of Stationary Randomized policies in
which scheduling decisions are made randomly, according to
fixed probabilities. In particular, define the Randomized policy
as follows.

Randomized policy selects in each slot (k, n) client i with
probability βi/

	M
j=1 βj , for every client i and for positive

fixed values of {βi}M
i=1. The BS transmits the packet if the

selected client has an undelivered packet and idles otherwise.
Denote the Randomized policy as R. Observe that this

policy uses no information from current or past states of the
network. Moreover, it is not work-conserving, since the BS
can idle when the network still has clients with undelivered
packets. Next, we derive a closed-form expression for the
performance guarantee ρR and find a Randomized policy that
is 2-optimal for all network configurations with T = 1 slot
per frame.

Theorem 10 (Performance of Randomized): Consider a
network (M, T, pi, αi) with an infinite time-horizon. The
Randomized policy with positive values of {βi}M

i=1 is
ρR-optimal, where

ρR = 2

⎛
⎝ M�

j=1

βj

M�
i=1

αi

piβi

⎞
⎠+ (T − 1)

M�
i=1

αi

pi

�

M�
i=1

�
αi

pi

�2

+ T

M�
i=1

αi

� . (24)

Proof: The performance guarantee is defined as ρR =
UR

B /LB, where the denominator is the universal lower bound
in (7) and the numerator is an upper bound to the objective
function, namely limK→∞ E[JR

K] ≤ UR
B , which is derived in

Appendix E of the supplementary material.
Let di(k) ∈ {0, 1} be the number of packets delivered to

client i during frame k. Notice that

E [di(k)] = P(delivery to client i during frame k). (25)

When the Randomized policy is employed, this probability is
constant over time, i.e. E [di(k)] = E [di]. Moreover, the PMF
of the random variable Ii[m] that represents the number of
frames between the (m − 1)th and mth packet deliveries to
client i is given by

P (Ii[m] = n) = E [di] (1 − E [di])n−1, (26)

for n ∈ {1, 2, · · · } and is independent of m.

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2643

Clearly, when the Randomized policy is employed,
the sequence of packet deliveries is a renewal process with
geometric inter-delivery times Ii[m]. Thus, using the general-
ization of the elementary renewal theorem for renewal-reward
processes [39, Sec. 5.7] yields

lim
K→∞

1
K

K�
k=1

E[hk,i] =
E[Ii[m]2]
2E[Ii[m]]

+
1
2

=
1

E[di]
, (27)

and substituting (27) into the objective function (3) gives

lim
K→∞

E
�
JR

K

�
=

1
M

M�
i=1

αi

E [di]
. (28)

For simplicity of exposition, we consider the case T = 1 slot
per frame. The derivation of the performance guarantee ρR for
general T is in Appendix E. When T = 1, packets are always
available for transmission and the BS selects one client per
frame. Hence, the probability of delivering a packet to client i
during frame k is

E [di] =
βi	M

j=1 βj

pi. (29)

Substituting (29) into (28) gives

lim
K→∞

E
�
JR

K

�
=

1
M

M�
j=1

βj

M�
i=1

αi

piβi
= UR

B . (30)

Finally, dividing (30) by the lower bound in (7) gives the
performance guarantee ρR in (24) for T = 1.

Corollary 11: The Randomized policy with βi =�
αi/pi, ∀i, has ρR < 2 for all networks with T = 1

slot per frame.
Proof: The assignment βi =

�
αi/pi, ∀i ∈ {1, · · · , M}

is the necessary (and sufficient) condition for the
Cauchy-Schwarz inequality

M�
i=1

�
αi

pi

�2

≤
⎛
⎝ M�

j=1

βj

⎞
⎠

M�
i=1

αi

βipi

�
, (31)

to hold with equality. Applying this condition to (24) for
T = 1 results in ρR < 2. Notice that βi =

�
αi/pi is

the assignment which minimizes the RHS of (31) and the
expression in (30).

Theorem 10 gives an expression for ρR and Corollary 11
shows that, by using only the knowledge of αi and pi,
a Randomized policy can achieve 2-optimal performance in a
wide range of network setups, in particular all networks with
T = 1 slot per frame. Next, we develop a Max-Weight policy
that leverages the knowledge of αi, pi and hk,i in making
scheduling decisions.

D. Max-Weight Policy

In this section, we use concepts from Lyapunov Optimiza-
tion [40] to derive a Max-Weight policy. The Max-Weight
policy is obtained by minimizing the drift of a Lyapunov

Function of the system state at every frame k. Consider the
quadratic Lyapunov Function

L(�hk) =
1
M

M�
i=1

αih
2
k,i, (32)

and the one-frame Lyapunov Drift

Δ(�hk) = E

�
L(�hk+1) − L(�hk)

����hk

�
. (33)

The Lyapunov Function L(�hk) depicts how large the AoI
of the clients in the network during frame k is, while the
Lyapunov Drift Δ(�hk) represents the growth of L(�hk) from
one frame to the next. Intuitively, by minimizing the drift,
the Max-Weight policy reduces the value of L(�hk) and,
consequently, keeps the AoI of the clients low.

To find the policy that minimizes the one-frame drift Δ(�hk),
we first need to analyze the RHS of (33). Consider frame
k with a fixed vector �hk and a policy π making scheduling
decisions throughout the T slots of this frame. Recall that
dπ

i (k) ∈ {0, 1} represents the number of packets delivered
to client i during frame k when policy π is employed.
An alternative way to represent the evolution of hk,i defined
in (1) is

hk+1,i = dπ
i (k) + (hk,i + 1)[1 − dπ

i (k)]. (34)

Applying (34) into the conditional expectation of h2
k+1,i yields

E

�
h2

k+1,i − h2
k,i|�hk

�
= −E

�
dπ

i (k)|�hk

�
hk,i(hk,i + 2)

+ 2hk,i + 1. (35)

Substituting (32) into (33) and then using (35) gives the
following expression for the Lyapunov Drift

Δ(�hk) = − 1
M

M�
i=1

E

�
dπ

i (k)|�hk

�
αihk,i(hk,i + 2)

+
2
M

M�
i=1

αihk,i +
1
M

M�
i=1

αi. (36)

Observe that the scheduling policy π only affects the
first term on the RHS of (36). Define the weight function
Gi(hk,i) = αihk,i(hk,i + 2). During frame k, the scheduling

policy that maximizes the sum
	M

i=1 E

�
dπ

i (k)|�hk

�
Gi(hk,i)

also minimizes Δ(�hk). Notice that E

�
dπ

i (k)|�hk

�
represents

the expected throughput of client i during frame k. The
class of policies that maximize the expected weighted sum
throughput in a frame was studied in [27] and [41]. According
to [41, eq. (2)], to maximize

	M
i=1 E

�
dπ

i (k)|�hk

�
Gi(hk,i),

the scheduling policy must myopically select the client with
an undelivered packet and highest value of piGi(hk,i) in every
slot of frame k. Hence, the Max-Weight policy is defined as
follows.

Max-Weight policy schedules in each slot (k, n) a transmis-
sion to the client with highest value of piαihk,i(hk,i +2) that
has an undelivered packet, with ties being broken arbitrarily.

Denote the Max-Weight policy as MW . Observe that when
αi = α and pi = p, prioritizing according to piαihk,i(hk,i+2)

2644 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

is identical to prioritizing according to hk,i, i.e. Max-Weight
is identical to Greedy. Thus, from Theorem 5 (Optimality
of Greedy), we conclude that Max-Weight is AoI-optimal
for symmetric networks. For general networks, we derive the
performance guarantee ρMW for the Max-Weight policy.

Theorem 12 (Performance of Max-Weight): Consider a
network (M, T, pi, αi) with an infinite time-horizon. The
Max-Weight policy is ρMW -optimal, where

ρMW = 4

M�
i=1

�
αi

pi

�2

+ (T − 1)
M�
i=1

αi

pi

M�
i=1

�
αi

pi

�2

+ T

M�
i=1

αi

� . (37)

The proof of Theorem 12 is in Appendix F of the supple-
mentary material. In contrast to the Greedy and Randomized
policies, the Max-Weight policy uses all available information,
namely pi, αi and hk,i, in making scheduling decisions.
As expected, numerical results in Sec. VI demonstrate that
Max-Weight outperforms both Greedy and Randomized in
every network setup simulated. In fact, the performance of
Max-Weight is comparable to the optimal performance com-
puted using Dynamic Programming. However, by comparing
the performance guarantee ρMW in (37) with ρG and ρR,
it might seem that Max-Weight does not provide better per-
formance. The reason for this is the challenge to obtain a
tight performance upper bound for Max-Weight. As opposed
to Greedy and Randomized, the Max-Weight policy cannot
be evaluated using Renewal Theory and it does not have
properties that simplify the analysis, such as packets being
delivered following a Round Robin pattern or clients being
selected according to fixed probabilities. Next, we consider
the AoI minimization problem from a different perspective and
propose an Index policy [42], also known as Whittle’s Index
policy. This policy is surprisingly similar to the Max-Weight
policy and also yields a strong performance.

V. WHITTLE’S INDEX POLICY

Whittle’s Index policy is the optimal solution to a relaxation
of the Restless Multi-Armed Bandit (RMAB) problem. This
low-complexity heuristic policy has been extensively used
in the literature [29], [32], [43] and is known to have a
strong performance in a range of applications [44], [45]. The
challenge associated with this approach is that the Index policy
is only defined for problems that are indexable, a condition
which is often difficult to establish.

To develop the Whittle’s Index policy, the AoI minimization
problem is transformed into a relaxed RMAB problem. The
first step is to note that each client in the AoI problem evolves
as a restless bandit. Thus, the AoI problem can be posed as
a RMAB problem. The second step is to consider the relaxed
version of the RMAB problem, called the Decoupled Model,
in which clients are examined separately. The Decoupled
Model associated with each client i adheres to the network
model with M = 1, except for the addition of a service charge.
The service charge is a fixed cost per transmission C > 0
that is incurred by the network every time the BS transmits a

packet. The last step is to solve the Decoupled Model. This
solution lays the foundation for the design of the Index policy.
Next, we formulate and solve the Decoupled Model, establish
that the AoI problem is indexable and derive the Whittle’s
Index policy. A detailed introduction to the Whittle’s Index
policy can be found in [42] and [46].

A. Decoupled Model

The Decoupled Model is formulated as a Dynamic
Program (DP). For presenting the cost-to-go function, which is
central to the DP, we first introduce the state, control, transition
and objective of the model. Then, using the expression of the
cost-to-go, we establish in Proposition 13 a key property of
the Decoupled Model which is used in the characterization
of its optimal scheduling policy. Since the Decoupled Model
considers only a single client, hereafter in this section, we omit
the client index i.

Consider the network model from Sec. II with M = 1
client. Recall that at the beginning of every frame, the BS
generates a new packet that replaces any undelivered packet
from previous frame. Let sk,n represent the delivery status
of this new packet at the beginning of slot (k, n). If the
packet has been successfully delivered to the client by the
beginning of slot (k, n), then sk,n = 1, and if the packet is
still undelivered, sk,n = 0. The tuple (sk,n, hk) depicts the
system state, for it provides a complete characterization of the
network at slot (k, n).

Denote by uk,n the scheduling decision in time slot (k, n).
This quantity is equal to 1 if the BS transmits the packet in
slot (k, n), and uk,n = 0 otherwise. Since the BS can only
transmit undelivered packets, if sk,n = 1, then the decision
must be to idle uk,n = 0.

State transitions are different at frame boundaries and
within frames. At the boundary between frames k − 1 and k,
namely, in the transition from slot (k − 1, T) to slot (k, 1),
each component of the system state (sk,n, hk) evolves in
a distinct way. Since the BS generates a new packet at the
beginning of slot (k, 1), we have sk,1 = 0 for every frame k.
Whereas, the evolution of hk is divided into two cases: i) case
uk−1,T = 1, when the BS transmits the packet during slot
(k − 1, T), the value of hk depends on the feedback signal,
as follows

P (hk = hk−1 + 1|hk−1) = 1 − p; [failure] (38)

P (hk = 1|hk−1) = p; [success] (39)

and ii) case uk−1,T = 0, when the BS idles, the transition is
deterministic

P (hk = hk−1 + 1|hk−1) = 1, if sk−1,T = 0; (40)

P (hk = 1|hk−1) = 1, if sk−1,T = 1. (41)

For state transitions that occur within the same frame,
the quantity hk remains fixed and sk,n evolves according to
the scheduling decisions and feedback signals. If the BS idles
during slot (k, n − 1), the delivery status of the packet does
not change, thus

P (sk,n = sk,n−1|sk,n−1) = 1. (42)

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2645

If the BS transmits during slot (k, n − 1), the value of sk,n

depends upon the outcome of the transmission, as given by

P (sk,n = 0|sk,n−1) = 1 − p; [failure] (43)

P (sk,n = 1|sk,n−1) = p. [success] (44)

The last concept to be discussed prior to the cost-to-
go function is the objective. The objective function of the
Decoupled Model, J π

K , is analogous to Jπ
K in (3), except that

it represents a single client, introduces the service charge C
and evolves in slot increments (instead of frame increments).
The expression for the objective function is given by

min
π∈Π

E [J π
K] ,

where J π
K =

1
KT

K�
k=1

T�
n=1

(α hk + C uk,n) . (45)

The cost-to-go function Jk,n(sk,n, hk) associated with the
optimization problem in (45) has two forms. For the last slot
of any frame k, namely slot (k, T), the cost-to-go is expressed
as

Jk,T (sk,T , hk) = αhk

+ min
uk,T ∈{0,1}

{C uk,T + E[Jk+1,1(0, hk+1)]} , (46)

and for slots other than the last, we have

Jk,n(sk,n, hk) = αhk

+ min
uk,n∈{0,1}

{C uk,n + E[Jk,n+1(sk,n+1, hk)]} . (47)

Given a network setup (K, T, p, α, h1, C), it is possible to
use backward induction on (46) and (47) to compute the opti-
mal scheduling policy π∗ for the Decoupled Model. However,
for the purpose of designing the Index policy, it is not sufficient
to provide an algorithm that computes the optimal policy. The
Index policy is based on a complete characterization of π∗.
Proposition 13 provides a key feature of the optimal scheduling
policy which is used in its characterization.

Proposition 13: Consider the Decoupled Model and its
optimal scheduling policy π∗. During any frame k, the optimal
policy either: (i) idles in every slot; or (ii) transmits until the
packet is delivered or the frame ends.

Proof: The proof follows from the analysis of the back-
ward induction algorithm on (46) and (47). For this proof,
we assume that the algorithm has been running and that
the values of Jk+1,1(sk+1,1, hk+1) for all possible system
states are known. The proof is centered around the backward
induction during frame k and for a fixed value of hk.

First, we analyze the (trivial) case in which the packet has
already been delivered by the beginning of slot (k, n), i.e.
sk,n = 1. In this case, the optimal scheduling policy always
idles.

For the more interesting case of an undelivered packet,
we start by analyzing the last slot of the frame, namely slot
(k, T). It follows from the cost-to-go in (46) that the optimal
scheduling decision u∗

k,T depends only on the expression

C − p [Jk+1,1(0, hk + 1) − Jk+1,1(0, 1)] . (48)

The optimal policy idles in slot (k, T) if (48) is non-negative
and transmits if (48) is negative. By analyzing the cost-to-
go function in (47), which is associated with the optimal
scheduling decisions in the remaining slots of frame k, it is
possible to use mathematical induction to establish that:

• if it is optimal to transmit in slot (k, n + 1), then it is
also optimal to transmit in slot (k, n); and

• if it is optimal to idle in slot (k, n + 1), then it is also
optimal to idle in slot (k, n).

We conclude that if (48) is non-negative, the optimal policy
idles in every slot of frame k, and if (48) is negative, the opti-
mal policy transmits until the packet is delivered or until
frame k ends.

Let Γ ⊂ Π be the subclass of all scheduling policies that
satisfy Proposition 13. Since the optimal policy is such that
π∗ ∈ Γ, we can reduce the scope of the Decoupled Model
to policies in Γ without loss of optimality. In the following
section, we redefine the Decoupled Model so that scheduling
decisions are made only once per frame, rather than once
per slot. This new model is denoted Frame-Based Decoupled
Model.

B. Frame-Based Decoupled Model

Denote by uk the scheduling decision at the beginning of
frame k. We let uk = 0 if the BS idles in every slot of frame k
and uk = 1 if the BS transmits repeatedly until the packet is
delivered or the frame ends.

Since this discrete-time decision problem evolves in frames
and every frame begins with sk,1 = 0, we can fully represent
the system state by hk. State transitions follow the evolution of
hk in (1) and can be divided into two cases: i) case uk−1 = 0,
when the BS idles during frame k − 1

P (hk = hk−1 + 1|hk−1) = 1, (49)

and ii) case uk−1 = 1, when the BS transmits, the state transi-
tion depends on whether the packet was delivered or discarded
during frame k − 1, as follows

P (hk = hk−1 + 1|hk−1) = (1 − p)T ; [discarded] (50)

P (hk = 1|hk−1) = 1 − (1 − p)T . [delivered] (51)

The objective function of the Frame-Based Decoupled
Model, Ĵ π

K , is given by

min
π∈Γ

E

�
Ĵ π

K

�
, where Ĵ π

K =
1

KT

K�
k=1

Tαhk+Ĉuk

!
, (52)

and Ĉ = C(1 − (1 − p)T)/p is the expected value of the
service charge incurred during a frame in which the BS
transmits. By construction, the Frame-Based Decoupled Model
is equivalent to the Decoupled Model when the optimization is
carried over the policies in Γ. Thus, both models have the same
optimal scheduling policy π∗ ∈ Γ ⊂ Π. Next, we characterize
π∗ for the infinite-horizon problem.

Consider the Frame-Based Decoupled Model over an
infinite-horizon with K → ∞. The state and control of the

2646 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

system in steady-state are denoted h and u, respectively. Then,
Bellman equations are given by S(1) = 0 and

S(h) + λT = min{Tαh + S(h + 1)
Ĉ + Tαh + (1 − p)T S(h + 1)
+ (1 − (1 − p)T)S(1)}, (53)

for all h ∈ {1, 2, · · · }, where λ is the optimal average cost
and S(h) is the differential cost-to-go function. Notice that
the upper part of the minimization in (53) is associated with
choosing u = 0, i.e. idling in every slot of the frame, and
the lower part with u = 1, i.e. transmitting until the packet is
delivered or the frame ends, with ties being broken in favor to
idling. The stationary scheduling policy that solves Bellman
equations5 is given in Proposition 14.

Proposition 14 (Threshold Policy): Consider the Frame-
Based Decoupled Model over an infinite-horizon. The station-
ary scheduling policy π∗ that solves Bellman equations (53)
is a threshold policy in which the BS transmits during frames
that have h > H − 1 and idles when 1 ≤ h ≤ H − 1, where
the threshold H is given by

H =

"
1 − Z +

�
Z2 +

2C

pTα

#
, (54)

and the value of Z is

Z =
1
2

+
(1 − p)T

(1 − (1 − p)T)
. (55)

The proof of Proposition 14 is in Appendix G of the
supplementary material. Intuitively, we expect that the optimal
scheduling decision is to transmit during frames in which h
is high (attempting to reduce the value of h) and to idle when
h is low (avoiding the service charge Ĉ). Moreover, if the
optimal decision is to transmit when the state is h = H , it is
natural to expect that for all h ≥ H the optimal decision
is also to transmit. This behavior characterizes a threshold
policy. In Appendix G, we demonstrate this behavior and find
the minimum integer H for which the optimal decision is to
transmit. With the complete characterization of π∗ provided in
Proposition 14, we have the necessary background to establish
indexability and to obtain the Whittle’s Index policy for the
AoI minimization problem.

C. Indexability and Index Policy

Consider the Decoupled Model and its optimal scheduling
policy π∗. Let P(C) be the set of states h for which it is
optimal to idle when the service charge is C, i.e. P(C) =
{h ∈ N|h < H}. Note from (54) that the threshold H is a
function of C. The definition of indexability is given next.

Definition 15 (Indexability): The Decoupled Model associ-
ated with client i is indexable if P(C) increases monotonically
from ∅ to the entire state space, N, as the service charge C

5In general, Expected Average Cost problems over an infinite-horizon
and with countably infinite state space are challenging to address. For the
Frame-Based Decoupled Model, it can be shown that [38, Proposition 5.6.1]
is satisfied under some additional conditions on Γ. The results in [38,
Proposition 5.6.1] and Proposition 14 are sufficient to establish the optimality
of the stationary scheduling policy π∗.

increases from 0 to +∞. The AoI minimization problem is
indexable if the Decoupled Model is indexable for all clients i.

The indexability of the Decoupled Model follows directly
from the expression of H in (54). Clearly, the threshold H
is monotonically increasing with C. Also, substituting C = 0
yields H = 1, which implies P(C) = ∅, and the limit C →
+∞ gives H → +∞ and, consequently, P(C) = N. Since
this is true for the Decoupled Model associated with every
client i, we conclude that the AoI minimization problem is
indexable. Prior to introducing the Index policy, we define the
Whittle’s Index.

Definition 16 (Index): Consider the Decoupled Model and
denote by C(h) the Whittle’s Index in state h. Given index-
ability, C(h) is the infimum service charge C that makes
both scheduling decisions (idle, transmit) equally desirable in
state h.

The closed-form expression for C(h) comes from the fact
that, for both scheduling decisions to be equally desirable in
state h, the threshold must be H = h + 1. Substituting H =
h + 1 into (54) and isolating C, gives

C(h) = pαh

�
h +

1 + (1 − p)T

1 − (1 − p)T

�
. (56)

After establishing indexability and finding the closed-form
expression for the Whittle’s Index, we return to our original
problem, with the BS transmitting packets to M clients. Recall
that there is no service charge in the original problem. The
Whittle’s Index policy is described next.

Whittle’s Index policy schedules in each slot (k, n) a trans-
mission to the client with highest value of

Ci(hk,i) = piαihi

�
hi +

1 + (1 − pi)T

1 − (1 − pi)T

�
, (57)

that has an undelivered packet, with ties being broken
arbitrarily.

Denote the Whittle’s Index policy as WI . By construction,
the index Ci(hk,i) represents the service charge that the net-
work would be willing to pay in order to transmit a packet to
client i during frame k. Intuitively, by selecting the client with
highest Ci(hk,i), the Whittle’s Index policy is transmitting the
most valuable packet. Note that the Whittle’s Index policy is
similar to the Max-Weight policy despite the fact that they
were developed using different methods. Both the Whittle’s
Index and Max-Weight policies have strong performances and
both are equivalent to the Greedy policy when the network
is symmetric, implying that WI and MW are AoI-optimal
when αi = α and pi = p. Next, we derive the performance
guarantee ρWI for the Whittle’s Index policy.

Theorem 17 (Performance of Whittle): Consider a network
(M, T, pi, αi) with an infinite time-horizon. The Whittle’s
Index policy is ρWI -optimal, where

ρWI = 4

M�
i=1

�$αi

pi

�2

+ (T − 1)
M�
i=1

$αi

pi

M�
i=1

�
αi

pi

�2

+ T

M�
i=1

αi

� , (58)

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2647

Fig. 5. Two-user symmetric network with T = 6, K = 150, αi = 1,
pi = p, ∀i. The simulation result for each policy and for each value of p is
an average over 1, 000 runs.

and

$αi =
αi

2

�
2

1 − (1 − pi)T
+ 1

�2

. (59)

To find the expression for the performance guarantee of the
Whittle’s Index policy ρWI in (58), we use similar arguments
to the ones for deriving ρMW . The proof of Theorem 17 is
in Appendix H of the supplementary material. Next, we eval-
uate the performance of the four low-complexity scheduling
policies discussed in this paper using MATLAB simulations.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the schedul-
ing policies in terms of the Expected Weighted Sum Age
of Information in (2). We compare six scheduling policies:
i) Greedy policy; ii) Randomized policy with βi =

�
αi/pi;

iii) Work-Conserving Randomized policy with βi =
�

αi/pi;
iv) Max-Weight policy; v) Whittle’s Index policy and vi) the
optimal Dynamic Program. The numerical results associated
with the first five policies are simulations, while the results
associated with the Dynamic Program are computations of
EWSAoI obtained by applying Value Iteration to the objective
function (3). By definition, the Dynamic Program yields
the optimal performance. The Work-Conserving Randomized
policy is identical to the Randomized policy, except that it
does not idle when the selected client has already delivered
its packet. In this case, it makes a new selection, using the
same probabilities βi/

	M
j=1 βj .

Figs. 5 and 6 evaluate the scheduling policies in a variety of
network settings. In Fig. 5, we consider a two-user symmetric
network with T = 6 slots in a frame, a total of K = 150
frames and both clients having the same weight α1 = α2 = 1
and channel reliability p1 = p2 ∈ {1/15, · · · , 14/15}.
In Fig. 6, we consider a two-user non-symmetric network
with K = 200, α1 = 2, α2 = 1, p1 = 2/3, p2 = 1/7 and
T ∈ {1, · · · , 10}. The initial vector is �h1 = [1, 1, · · · , 1]T in
all simulations.

Figs. 7 displays the performance of the scheduling policies
for larger networks. Due to the high computation complexity
associated with the Dynamic Program, we show the Lower

Fig. 6. Two-user general network with K = 200, α1 = 2, α2 = 1,
p1 = 2/3, p2 = 1/7. The simulation result for each policy and for each
value of T is an average over 2, 000 runs.

Fig. 7. Network with T = 3, K = 50, 000, αi = 1, pi = i/M, ∀i.
The simulation result for each policy and for each value of M is an average
over 10 runs.

Bound LB from (7) instead. We consider a network with an
increasing number of clients M ∈ {5, 10, · · · , 45, 50}, T = 3
slots in a frame, a total of K = 50, 000 frames, channel
reliability pi = i/M, ∀i ∈ {1, 2, · · · , M} and all clients
having the same weight αi = 1.

Our results in Figs. 5 and 6 show the impact of work-
conservation on the Randomized policy and show that the
performances of the Max-Weight and Whittle Index policies
are comparable to the optimal performance (DP) in every
network setting considered. Moreover, the results in Fig. 5
support the optimality of the Greedy, Max-Weight and Whittle
Index policies for any symmetric network. Figs. 6 and 7
suggest that, in general, the Max-Weight and Whittle Index
Policies outperform Greedy and Randomized. An important
feature of all policies examined in this paper is that they
require low computational resources even for networks with a
large number of clients.

VII. CONCLUDING REMARKS

This paper considered a wireless broadcast network with a
BS sending time-sensitive information to multiple clients over
unreliable channels. We studied the problem of optimizing
scheduling decisions with respect to the expected weighted
sum AoI of the clients in the network. Our main contributions

2648 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

include developing the Greedy, Randomized, Max-Weight
and Whittle’s Index policies; showing that for the case of
symmetric networks, Greedy, Max-Weight and Whittle’s Index
are AoI-optimal; and deriving performance guarantees for all
four low-complexity policies. Numerical results demonstrate
the strong performances of the Max-Weight and Whittle’s
Index policies in a variety of network conditions.

The mathematical model in Sec. II describes a network that
periodically generates packets at the BS and then transmits
those packets to the clients. It is easy to see that the same
model can represent other types of networks. A simple exam-
ple is a polling network in which the BS requests packets
from the clients and each client, once polled, generates fresh
data and transmits that data back to the BS. This network
with uplink traffic and on-demand generation of data can be
represented by our model for the case T = 1. Interesting
extensions of this work include considering stochastic arrivals,
time-varying channels and multi-hop networks.

APPENDIX

PROOF OF LEMMA 2

Lemma 2 (Round Robin): Without loss of generality, reorder
the client index i in descending order of �h1, with client
1 having the highest h1,i and client M the lowest h1,i.
The Greedy policy delivers packets according to the index
sequence (1, 2, · · · , M, 1, 2, · · ·) until the end of the time-
horizon K , i.e. Greedy follows a Round Robin pattern.

Proof: Suppose that pi = 1 for all clients, meaning that
every transmission is a successful packet delivery. Consider
the first frame k = 1 and assume that there are less clients
in the network than slots in a frame, i.e. M < T . In this
case, the Greedy Policy delivers a packet to client 1 in the
first slot, client 2 in the second slot, and so on, until the M th
packet is delivered. At this point, there are no undelivered
packets left, and Greedy idles until the end of the frame.
In the next frame k = 2, new packets are generated at the
BS and the value of hk,i is updated to 1 for all clients. Since
Greedy breaks ties arbitrarily, we choose to select clients in the
same order (1, 2, · · · , M) during frame k = 2 and during all
subsequent frames. This client ordering characterizes a circular
order. Thus, for the case M < T and pi = 1, the Greedy Policy
delivers packets to clients following a Round Robin pattern.

Now, consider the case M ≥ T and pi = 1. Let m1 ∈ N

and m2 ∈ {0, 1, · · · , T − 1} be the quotient and remainder
of the division of M by T , namely M = m1T + m2. For
simplicity of exposition, let the client index i be reordered in
descending order of hk,i at the beginning of every frame k.
Then, within every frame k, the Greedy Policy schedules
clients in the following order (1, · · · , T). The evolution of
the Greedy Policy is described in detail next:

• In the first frame, the Greedy policy delivers packets to
clients 1 through T in order.

• At the beginning of the second frame, new packets are
generated at the BS and the value of hk,i is updated to
1 for clients {1, · · · , T } and incremented by 1 for the
remaining clients. Then, the client index i is reordered
such that vector �h2 is in descending order. Reordering

can be accomplished with a cyclic shift of T elements,
in particular, clients {1, · · · , T } become {M − T +
1, · · · , M} and clients that did not receive packets in the
first frame have their index subtracted by T . With these
reordered indexes, during the second frame, the Greedy
policy delivers packets to clients 1 through T in order.

• Similarly, at the beginning of the third frame, new packets
are generated at the BS and the value of hk,i is updated
to 1 for clients {1, · · · , T } and incremented by 1 for the
remaining clients. The vector �h3 is reordered by applying
the same cyclic shift of T elements. Notice that the value
of h3,i is h3,i = 1 for the clients that received packets in
the second frame and h3,i = 2 for the clients that received
packets in the first frame. During the third frame, Greedy
delivers packets to clients 1 through T in order.

• This process is repeated until frame k = m1. Then, at the
beginning of frame k = m1 + 1, the reordered vector of
hk,i is

�hm1+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1,i + m1

m1

m1 − 1
...
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m2 elements
T elements
T elements

...
T elements
T elements

(60)

Clients {1, · · · , m2} are the only ones that did not receive
a packet so far. During frame k = m1 + 1, the Greedy
Policy delivers packets to clients 1 through T in order,
where, by definition, T > m2.

• Therefore, at the beginning of frame k = m1 + 2, all
clients have received at least one packet and the reordered
vector of hk,i is

�hm1+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 + 1
m1

m1 − 1
...
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m2 elements
T elements
T elements

...
T elements
T elements

(61)

During frame k = m1 + 2, the Greedy policy delivers
packets to clients 1 through T in order.

• At the beginning of frame k = m1 + 3, the reordered
vector of hk,i is

�hm1+3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 + 1
m1

m1 − 1
...
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m2 elements
T elements
T elements

...
T elements
T elements

(62)

Observe that (62) and (61) are identical. Clearly, in all
frames that follow, the same sequence of events occur:
i) vector �hk is updated according to (1); ii) vector �hk is
reordered using a circular shift of T elements, resulting
in �hk identical to (61); and iii) the Greedy Policy delivers
clients 1 through T in order.

KADOTA et al.: SCHEDULING POLICIES FOR MINIMIZING AGE OF INFORMATION IN BROADCAST WIRELESS NETWORKS 2649

The description above for both cases M < T and M ≥ T
shows that when channels are error-free, namely pi = 1, and
we iteratively apply cyclic shifts of T elements to the client
indexes, the Greedy Policy delivers packets to clients 1 through
T in order at every frame k. Equivalently, when no cyclic
shift is applied, the Greedy Policy delivers packets to clients
in circular order.

When channels are unreliable, the only difference in the
analysis is that each packet transmission to client i fails with
probability pi ∈ (0, 1], ∀i. According to Remark 1, in the
event of a transmission failure, Greedy continues to transmit
to the same client. Thus, transmission failures do not affect the
order in which packets are delivered. Hence, irrespective of the
network setup, the Greedy Policy delivers packets following a
Round Robin pattern until the end of the time-horizon.

REFERENCES

[1] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the age of information in broadcast wireless networks,” in Proc. IEEE
Allerton, Sep. 2016, pp. 844–851.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2731–2735.

[3] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE ISIT, Jul. 2012, pp. 2666–2670.

[4] L. Huang and E. Modiano, “Optimizing age-of-information in a
multi-class queueing system,” in Proc. IEEE ISIT, Jun. 2015,
pp. 1681–1685.

[5] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. Inf.
Theory, vol. 62, no. 4, pp. 1897–1910, Apr. 2016.

[6] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of
message transmission path diversity on status age,” IEEE Trans. Inf.
Theory, vol. 62, no. 3, pp. 1360–1374, Mar. 2016.

[7] K. Chen and L. Huang, “Age-of-information in the presence of error,”
in Proc. IEEE ISIT, Jun. 2016, pp. 2579–2583.

[8] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in Proc. IEEE ISIT, Jun. 2016, pp. 2574–2578.

[9] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age and value
of information: Non-linear age case,” in Proc. IEEE ISIT, Jun. 2017,
pp. 326–330.

[10] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of infor-
mation under energy replenishment constraints,” in Proc. IEEE ITA,
Feb. 2015, pp. 25–31.

[11] B. T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to
minimize age of information with an energy harvesting sensor,” in Proc.
IEEE ISIT, Jun. 2017, pp. 1122–1126.

[12] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE ISIT, Jun. 2015, pp. 3008–3012.

[13] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[14] Q. He, D. Yuan, and A. Ephremides, “Optimizing freshness of informa-
tion: On minimum age link scheduling in wireless systems,” in Proc.
IEEE WiOpt, May 2016, pp. 1–8.

[15] Q. He, D. Yuan, and A. Ephremides, “On optimal link scheduling with
min-max peak age of information in wireless systems,” in Proc. IEEE
ICC, May 2016, pp. 1–7.

[16] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in Proc. IEEE ISIT, Jun. 2017, pp. 141–145.

[17] S. K. Kaul and R. D. Yates, “Status updates over unreliable multiaccess
channels,” in Proc. IEEE ISIT, Jun. 2017, pp. 331–335.

[18] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness
and synchrony: Drift-based design and heavy-traffic analysis,” in Proc.
IEEE WiOpt, May 2017, pp. 1–8.

[19] Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design
and analysis of optimal scheduling algorithms,” in Proc. IEEE ISIT,
Jun. 2017, pp. 561–565.

[20] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,” in
Proc. IEEE ISIT, Jul. 2016, pp. 2569–2573.

[21] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal informa-
tion updates in multihop networks,” in Proc. IEEE ISIT, Jun. 2017,
pp. 576–580.

[22] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE SECON, Jun. 2011,
pp. 350–358.

[23] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Controlling the age of information: Buffer size, dead-
line, and packet replacement,” in Proc. IEEE MILCOM, Nov. 2016,
pp. 301–306.

[24] C. Kam, S. Kompella, and A. Ephremides, “Experimental evaluation
of the age of information via emulation,” in Proc. IEEE MILCOM,
Oct. 2015, pp. 1070–1075.

[25] A. Franco, E. Fitzgerald, B. Landfeldt, N. Pappas, and V. Angelakis,
“LUPMAC: A cross-layer MAC technique to improve the age of
information over dense WLANs,” in Proc. IEEE ICT, May 2016,
pp. 1–6.

[26] P. P. Bhattacharya and A. Ephremides, “Optimal scheduling with strict
deadlines,” IEEE Trans. Autom. Control, vol. 34, no. 7, pp. 721–728,
Jul. 1989.

[27] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,”
in Proc. IEEE INFOCOM, Apr. 2009, pp. 486–494.

[28] K. S. Kim, C.-P. Li, I. Kadota, and E. Modiano, “Optimal scheduling
of real-time traffic in wireless networks with delayed feedback,” in
Proc. IEEE Allerton Conf. Commun., Control Comput., Sep./Oct. 2015,
pp. 1143–1149.

[29] V. Raghunathan, V. Borkar, M. Cao, and P. R. Kumar, “Index policies
for real-time multicast scheduling for wireless broadcast systems,” in
Proc. IEEE INFOCOM, Apr. 2008, pp. 1570–1578.

[30] B. Li, R. Li, and A. Eryilmaz, “Throughput-optimal wireless scheduling
with regulated inter-service times,” IEEE/ACM Trans. Netw., vol. 23,
no. 5, pp. 1542–1552, Oct. 2015.

[31] B. Li, R. Li, and A. Eryilmaz, “Wireless scheduling design for
optimizing both service regularity and mean delay in heavy-traffic
regimes,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1867–1880,
Jun. 2016.

[32] R. Singh, X. Guo, and P. R. Kumar, “Index policies for optimal mean-
variance trade-off of inter-delivery times in real-time sensor networks,”
in Proc. IEEE INFOCOM, Apr./May 2015, pp. 505–512.

[33] X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “A high reliability
asymptotic approach for packet inter-delivery time optimization in cyber-
physical systems,” in Proc. ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2015, pp. 197–206.

[34] R. Singh and A. Stolyar, “MaxWeight scheduling: ‘Smoothness’ of the
service process,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[35] X. Zheng, Z. Cai, J. Li, and H. Gao, “Scheduling flows with multiple
service frequency constraints,” IEEE Internet Things J., vol. 4, no. 2,
pp. 496–504, Apr. 2017.

[36] B. Li, A. Eryilmaz, and R. Srikant, “Emulating round-robin in wireless
networks,” in Proc. ACM MobiHoc, 2017, Art. no. 21.

[37] D. Stoyan, Comparison Methods for Queues and Other Stochastic
Models (Wiley Series in Probability and Statistics). Hoboken, NJ, USA:
Wiley, 1983.

[38] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1,
3rd ed. Belmont, MA, USA: Athena Scientific, 2005.

[39] R. G. Gallager, Stochastic Processes: Theory for Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2013.

[40] M. J. Neely, Stochastic Network Optimization With Application
to Communication and Queueing Systems. San Rafael, CA, USA:
Morgan & Claypool, 2010.

[41] K. S. Kim, C.-P. Li, and E. Modiano, “Scheduling multicast traf-
fic with deadlines in wireless networks,” in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 2193–2201.

[42] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, pp. 287–298, Jan. 1988.

[43] P. Mansourifard, T. Javidi, and B. Krishnamachari, “Optimality of
myopic policy for a class of monotone affine restless multi-armed
bandits,” in Proc. IEEE CDC, Dec. 2012, pp. 877–882.

[44] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Trans. Inf. Theory, vol. 56, no. 11, pp. 5547–5567, Nov. 2010.

[45] R. R. Weber and G. Weiss, “On an index policy for restless bandits,”
J. Appl. Probab., vol. 27, no. 3, pp. 637–648, Sep. 1990.

[46] J. Gittins, K. Glazebrook, and R. Weber, Multi-Armed Bandit Allocation
Indices, 2nd ed. Hoboken, NJ, USA: Wiley, Mar. 2011.

2650 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

[47] A. Ganti, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission
scheduling in symmetric communication models with intermittent con-
nectivity,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 998–1008,
Mar. 2007.

[48] Y.-C. Li and C.-C. Yeh, “Some equivalent forms of Bernoulli’s inequal-
ity: A survey,” Appl. Math., vol. 4, no. 7, pp. 1070–1093, Jul. 2013.

Igor Kadota received the B.S. degree in electronic
engineering from the Technological Institute of
Aeronautics (ITA), Brazil, in 2010, the S.M. degree
in telecommunications from ITA in 2013, and
the S.M. degree in communication networks from
the Massachusetts Institute of Technology (MIT)
in 2016, where he is currently working toward the
Ph.D. degree at the Laboratory for Information and
Decision Systems (LIDS).

His research is on modeling, analysis, and design
of communication networks, with the emphasis on

wireless networks and real-time traffic.
Mr. Kadota received the Best Paper Award at the IEEE INFOCOM 2018 for

his work on Age of Information.

Abhishek Sinha received the M.E. degree in
telecommunication engineering from the Indian
Institute of Science, Bengaluru, and the B.E.
degree in electronics and telecommunication engi-
neering from Jadavpur University, Kolkata, India,
in 2012 and 2010, respectively, and the Ph.D. degree
from the Massachusetts Institute of Technology
(MIT) in 2017.

He was with the Laboratory for Information and
Decision Systems, MIT. He will be starting as an
Assistant Professor with the Department of Elec-

trical Engineering, IIT Madras, in Fall 2018. His areas of interests include
network control, information theory, optimization, and applied probability.

Dr. Sinha is a recipient of several awards, including the Best Paper Award in
INFOCOM 2018, the Best Paper Award in MobiHoc 2016, the Prof. Jnansaran
Chatterjee Memorial Gold Medal and T.P. Saha Memorial Gold Centered
Silver Medal from Jadavpur University, and the Jagadis Bose National Science
Talent Search (JBNSTS) Scholarship, Kolkata, India.

Elif Uysal-Biyikoglu received the B.S. degree as
valedictorian from the Middle East Technical Uni-
versity (METU), Ankara, Turkey, in 1997, the
S.M. degree in EECS from the Massachusetts Insti-
tute of Technology (MIT) in 1999, and the Ph.D.
degree in EE from Stanford University in 2003.
From 2003 to 2005, she was with MIT as a Lecturer.

She is currently a Professor in Electrical Engi-
neering with METU, where she has been a Faculty
Member since 2006. From 2005 to 2006, she was an
Assistant Professor with the Ohio State University,

where she was later an Adjunct Professor. She held visiting positions at MIT
and Ohio State from 2014 to 2016.

Dr. Uysal-Biyikoglu is a recipient of the MIT Vinton Hayes Fellowship,
the Stanford Graduate Fellowship, the NSF Foundations on Communication
Grant from 2006 to 2010, the Turkish National Science Foundation KARIYER
Award for 2007 to 2010, the 2014 Science Academy Young Scientist Award
(in Turkey), and the 2010 IBM Faculty Award. Her research interests are
at the junction of communication and networking theories and has provided
consulting to the industry in these areas. She is an Associate Editor of the
IEEE TRANSACTIONS ON NETWORKING and the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS.

Rahul Singh received the B.E. degree in electrical
engineering from the Indian Institute of Technology,
Kanpur, India, in 2009, the M.Sc. degree in electrical
engineering from the University of Notre Dame,
South Bend, IN, USA, in 2011, and the Ph.D. degree
in electrical and computer engineering from the
Department of Electrical and Computer Engineering
Texas A&M University, College Station, TX, USA,
in 2015.

In 2015, he joined the Laboratory for Informa-
tion Decision Systems, Massachusetts Institute of

Technology, as a Postdoctoral Associate, where he was involved in several
stochastic and adversarial decision making problems that arise in network
control. He was with Encoredtech as a Data Scientist on machine learning
problems arising in time-series modeling. He is currently with Intel as a Deep
Learning Engineer. His research interests include decentralized control of
large-scale complex cyberphysical systems, operation of electricity markets
with renewable energy, machine learning, deep learning, and scheduling of
stochastic networks serving real time traffic.

Eytan Modiano (F’12) received the B.S. degree
in electrical engineering and computer science from
the University of Connecticut at Storrs in 1986, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland, College Park, MD,
USA, in 1989 and 1992, respectively.

He was a Naval Research Laboratory Fellow from
1987 to 1992, a National Research Council Postdoc-
toral Fellow from 1992 to 1993, and a member of
the Technical Staff at MIT Lincoln Laboratory from
1993 to 1999. He is currently a Professor with the

Department of Aeronautics and Astronautics and also an Associate Director
with the Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology (MIT). His research is on modeling, analysis, and
design of communication networks and protocols.

Dr. Modiano is a co-recipient of the Infocom 2018 Best Paper Award,
the MobiHoc 2018 Best Paper Award, the MobiHoc 2016 Best Paper Award,
the Wiopt 2013 Best Paper Award, and the Sigmetrics 2006 Best Paper Award.
He was the Technical Program Co-Chair for the IEEE Wiopt 2006, the IEEE
Infocom 2007, the ACM MobiHoc 2007, and the DRCN 2015. He is a fellow
of the IEEE and an Associate Fellow of the AIAA. He is the Editor-in-
Chief of the IEEE/ACM TRANSACTIONS ON NETWORKING, and served as an
Associate Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY

and the IEEE/ACM TRANSACTIONS ON NETWORKING. He has served for
the IEEE Fellows committee in 2014 and 2015, respectively.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

