
2090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Connectivity in Interdependent Networks
Jianan Zhang and Eytan Modiano, Fellow, IEEE

Abstract— We propose and analyze a graph model to study
the connectivity of interdependent networks. Two interdependent
networks of arbitrary topologies are modeled as two graphs,
where every node in one graph is supported by supply nodes
in the other graph, and a node fails if all of its supply nodes
fail. Such interdependence arises in cyber-physical systems and
layered network architectures. We study the supply node connec-
tivity of a network: namely, the minimum number of supply node
removals that would disconnect the network. We develop algo-
rithms to evaluate the supply node connectivity given arbitrary
network topologies and interdependence between two networks.
Moreover, we develop interdependence assignment algorithms
that maximize the supply node connectivity. We prove that a
random assignment algorithm yields a supply node connectivity
within a constant factor from the optimal for most networks.

Index Terms— Robustness, cyber-physical systems, communi-
cation networks, analytical models.

I. INTRODUCTION

THE development of smart cities and cyber-physical sys-
tems has brought interdependence between once isolated

networks and systems. In interdependent networks, one net-
work depends on another to achieve its full functionality.
Examples include smart power grids [1], [2], transporta-
tion networks [3], [4], and layered communication net-
works [5], [6]. Failures in one network not only affect the
network itself, but also may cascade to another network that
depends on it. For example, in the Italy blackout in 2003,
an initial failure in the power grid led to reduced functionality
of the communication network, which led to further failures
in the power grid due to loss of communication and con-
trol [1], [7]. Thus, the robustness of a network relies on both
its own topology and the interdependence between different
networks.

Interdependent networks have been extensively studied in
the statistical physics literature based on random graph models
since the seminal work of [7]. Nodes in two random graphs
are interdependent, and a node is functional if both itself
and its interdependent node are in the largest component of
their respective graphs. If a positive fraction of nodes are
functional as the total number of nodes approaches infinity,
the interdependent random graphs percolate. The condition

Manuscript received September 4, 2017; revised April 28, 2018; accepted
July 4, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor J. Liu. Date of publication September 10, 2018; date of current
version October 15, 2018. This work was supported by DTRA under Grant
HDTRA1-13-1-0021 and Grant HDTRA1-14-1-0058. (Corresponding author:
Jianan Zhang.)

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
jianan@mit.edu; modiano@mit.edu).

Digital Object Identifier 10.1109/TNET.2018.2863715

for percolation measures the robustness of the interdepen-
dent networks. While these models are analytically tractable,
percolation may not be a key indicator for the functionality of
infrastructure networks. For example, a network would lose
most of its functionality when a large fraction of nodes are
removed, while the graph still percolates.

A few models have been proposed for specific applications
to capture the dependence between networks, such as interde-
pendent power grids and communication networks [2], [8], and
IP-over-WDM networks [6], [9]. These models consider finite
size, arbitrary network topology, and incorporate dynamics
in real-world networks. Instead of percolation, more realis-
tic metrics are used to capture the robustness of interde-
pendent networks, such as the amount of satisfied power
demand, or traffic demand. These models are able to capture
important performance metrics in real-world networks, at the
cost of more complicated modeling and analysis.

We develop an analytically tractable model for interdepen-
dent networks which aims to capture key robustness metrics
for infrastructure networks. In contrast to the random graph
models where some assumptions are difficult to justify in
infrastructure networks (e.g., very large network size and
randomly placed links), we use a deterministic graph model to
represent each network, where nodes and edges are specified
by the topology of an infrastructure network. We develop met-
rics that measure the robustness of interdependent networks,
by generalizing canonical metrics for the robustness of a single
network. Moreover, our model is simple enough to allow for
the evaluation of the robustness of interdependent networks,
and allows us to obtain insights and principles for designing
robust interdependent networks.

A. Related Work

A closely related model is the shared risk group
model [6], [10]–[12], where a set of edges or nodes share
the same risk and can be removed by a single failure event.
The model is used to study the robustness in layered commu-
nication networks such as IP-over-WDM networks. In interde-
pendent networks, multiple demand nodes in one network may
depend on the same node in another network, and they share
the same risk (of the supply node’s failure). Suppose that a
demand node has multiple supply nodes, and is content to have
at least one supply node. The interdependent networks can be
viewed as a generalized shared risk group model, given that
the occurrences of multiple risks, instead of one single risk,
are required to remove a node in the interdependent networks.

The shared risk group model can be represented by a
colored graph (or labeled graph), in which edges or nodes that
share the same risk have the same color (or label) [12]–[14].
Complexity results and approximation algorithms have been

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3318-2165

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2091

developed to compute the minimum number of colors
that appear in an edge cut that disconnects a colored
graph [12], [15]. In interdependent networks, we study node
failures due to the removals of their supply nodes. Thus, our
focus is on the node cut in a colored graph with colored
nodes and regular edges. While most results for edge cuts that
separate a pre-specified source-destination pair (i.e., st edge
cuts) can be naturally extended to st node cuts, the extension
is not obvious when the global edge or node cuts of a graph
are considered. Although it is possible to transform a node cut
problem in an undirected graph into an edge cut problem in
a directed graph, the nature and analysis of the problem in a
directed graph are different from the problem in an undirected
graph, when global cuts are considered [16], [17]. Thus, new
techniques need to be developed in this paper to study the
global node cuts in a colored graph.

While most studies on the shared risk group model have
focused on the evaluation of robustness metrics of a given
network, there have also been previous works that take a
network design approach to optimize the metrics. For example,
in optical networks, where two logical links share the same
risk if they are supported by the same physical link, [6] and [9]
developed lightpath routing algorithms that maximize the num-
ber of physical link failures that a given logical topology can
tolerate. In this paper, we study the interdependence assign-
ment that maximizes the number of supply node failures that
a network can tolerate (to stay connected). Instead of solving
difficult integer programs as in most network design literature,
we apply graph algorithms, e.g., the vertex sampling and graph
partitioning techniques [18], [19], to develop polynomial time
algorithms that have provable performance guarantees. The
vertex sampling techniques provide bounds on the probability
that the graph is connected after random node removals.
We build connections between the node removals in a single
graph and the node failures in interdependent networks, and
study the connectivity of interdependent networks.

B. Our Contributions

We propose an analytically tractable model for two interde-
pendent networks, and study the impacts of node failures in
one network on the other network. We add a minimal ingre-
dient to the classical graph model to capture interdependence,
and define supply node connectivity as a robustness metric for
our model, analogous to the widely accepted cut metric (node
connectivity) for the classical graph model. We prove the
complexity, and develop integer programs to evaluate the
supply node connectivity, both for a given pair of nodes and
for the entire network. Moreover, we propose a polynomial
time algorithm that computes the supply node connectivity
for a special class of problems, based on which we develop
an approximation algorithm for the general problem.

In addition, we study the network design problem of
improving the robustness of interdependent networks by
assigning interdependence between two networks. We propose
a simple assignment algorithm that maximizes the supply node
connectivity of an st pair, by assigning node-disjoint paths
with different supply nodes while allowing nodes in the same
path to have the same supply node. Based on a similar idea and

Fig. 1. Demand node 3 fails if both supply nodes 1 and 2 fail.

considering disjoint connected dominating sets, we develop
an assignment algorithm that approximates the optimal global
supply node connectivity to within a polylogarithmic factor.
Finally, we propose a random assignment algorithm under
which, with high probability, the global supply node connec-
tivity is within a constant factor from the optimal in most
cases, and at worst is within a logarithmic factor from the
optimal.

The rest of the paper is organized as follows. In Section II,
we develop a one-way dependence model, where a demand
network depends on a supply network. This allows us to
deliver key results and intuitions for studying the impacts
of node failures in one network on its interdependent net-
work, using simplified notations and presentations. We study
this one-way dependence model in Sections III and IV.
In Section III, we evaluate the supply node connectivity of
the demand network. In Section IV, we develop algorithms,
which assign supply nodes to demand nodes, to maximize
the supply node connectivity. In Section V, we focus on
the bidirectional interdependence model and generalize the
above results. Section VI provides simulation results. Finally,
Section VII concludes the paper.

II. ONE-WAY DEPENDENT NETWORK MODEL

AND COLORED GRAPH REPRESENTATION

A. One-Way Dependence Model

We start by considering a one-way dependence model,
where nodes in a demand network depend on nodes in a
supply network. This simplified model allows us to focus on
the impacts of node failures in one network on the other net-
work. Let two undirected graphs G1(V1, E1) and G2(V2, E2)
represent the topologies of the demand and supply networks,
respectively. Each node in the demand network depends on
one or more nodes in the supply network. The dependence is
represented by the directed edges in Fig. 1. Every supply node
provides substitutional supply to the demand nodes. A demand
node is functional if it is adjacent to at least one supply node.
Figure 1 illustrates the failure of a demand node due to the
removals of its supply nodes.

As a more concrete example, we use G1 to represent a
communication network and G2 to represent a power grid.
Each node in G1 represents a router, and each node in G2

represents a power station. A router receives power from
one or more power stations, and fails if all of the supporting
power stations fail.

2092 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 2. Let the three red nodes in the left figure be supported by the same
supply node. Removing the supply node leads to the failure of the three red
nodes, which do not form a proper cut but form a superset of a proper cut
(i.e., the red node in the right figure). The supply node is viewed as a supply
node cut.

We aim to characterize the impacts of node removals in the
supply network on the connectivity of the demand network.
Recall that (see, e.g. [20]), in a single graph, a node cut
(i.e., vertex cut) is a set of nodes whose removals either
disconnect the graph into more than one connected compo-
nent, or make the remaining graph trivial (where a single node
remains). The node connectivity of a graph is the number of
nodes in the smallest node cut. In the one-way dependence
model, the connectivity of the demand network depends not
only on its topology G1(V1, E1), but also on the supply-
demand relationship. We define the supply node cut and supply
node connectivity of the demand network as follows.

Definition 1: A supply node cut of the demand graph is a
set of supply nodes whose removals induce a node cut in the
demand graph. (Mathematically, a supply node cut of G1 is a
set of nodes Vs ⊆ G2, such that nodes Vd ⊆ G1 do not have
any supply nodes other than Vs, and that Vd contain a node
cut of G1.)

The supply node connectivity is the number of nodes in the
smallest supply node cut.

The above definition is a generalization of the traditional
node cut to include a superset of a cut. This is necessary
because the removals of supply nodes may not correspond
to proper cuts of the demand graph (see Fig. 2). Under this
definition, graphs with larger supply node connectivity are
more robust under supply node failures.

Remark 1: In Fig. 2, suppose that every node has a single
supply node, and that the red nodes share the same supply
node u ∈ G2. By removing u, the left graph stays connected
after removing all the three red nodes, while the right graph
is disconnected. However, the left graph is less robust under
the removal of supply node u, because the failed nodes in
the left graph include all the failed nodes in the right graph.
Thus, “graph connectivity after supply node removals” does
not serve as a good measure for the robustness of the demand
graph when supply nodes fail. This motivates our definition of
supply node cut and supply node connectivity. According to
our definition, the supply node connectivity of the left graph
is one.

We study the connectivity of a source-destination pair
(s, t) ∈ G1 as a starting point, which provides insights towards
the graph connectivity with simpler analysis. In a graph, an st
node cut is a set of nodes, excluding s and t, whose removals
disconnect s from t. The number of nodes in the smallest
st node cut is the st node connectivity. Analogously, we define
st supply node cut and st supply node connectivity as follows.

Definition 2: An st supply node cut is a set of supply
nodes whose removals induce an st node cut. (Mathematically,
an st supply node cut is a set of nodes V st

s ⊆ G2, such that
nodes V st

d ⊆ G1 do not have any supply nodes other than
V st

s , and that V st
d contain an st node cut.)

The st supply node connectivity is the number of nodes in
the smallest st supply node cut.

An st supply node cut may induce demand node failures
V st

d including s and/or t, since s, t may share the same supply
nodes with nodes in the st node cut. However, removing V st

d \
{s, t} must disconnect s from t.

We consider non-adjacent s and t throughout the paper.
Otherwise, if s and t are adjacent, they are always connected
when other nodes are removed, and there is no node cut that
disconnects them.

B. Transformation to a Colored Graph

Our model is closely related to the shared risk node
group (SRNG) model [12], [21]. In the SRNG model, several
nodes share the same risk, and can be removed by a single
failure event. In interdependent networks, if every node has
one supply node, then the demand graph becomes exactly the
same as the SRNG model, where the demand nodes that have
the same supply node share the same risk.

The SRNG model can be represented by a colored graph,
where the nodes that have the same color share a common risk.
We define1 color node cut and st color node cut as follows.

Definition 3: Given a colored graph G(V, E, C) with col-
ored nodes V , regular edges E, and node-color pairs C that
represent the color for each node, a color node cut is a set of
colors Cc such that the nodes covered by colors Cc contain a
node cut of G.

A minimum color node cut of G is a color node cut Cc min

that has the minimum number of colors. The number of colors
in Cc min is the value of the minimum color node cut.

Definition 4: Given a colored graph G(V, E, C) with col-
ored nodes V , regular edges E, node-color pairs C that
represent the color for each node, and a pair of nodes
(s, t) ∈ V , a color st node cut is a set of colors Cst

c such
that the nodes covered by colors Cst

c contain an st node cut.
A minimum color st node cut is a color st node cut Cst

c min

that has the minimum number of colors. The number of colors
in Cst

c min is the value of the minimum color st node cut.
Colored graph provides an intuitive representation of the

correlated node failures using color. If every demand node has
a single supply node, then every demand node has a color that
corresponds to its supply node. After the failure of a supply
node, a demand node fails if it has the color that corresponds
to the supply node.

In general, a demand node can have multiple supply nodes,
and thus the mapping to a colored graph is not straightforward.
We propose Algorithm 1 that transforms the demand network

1Previous studies on colored graphs focused on color edge cuts in colored
graphs with colored edges and regular nodes. Much less is known about the
color node cut, a counterpart of color edge cut, in colored graphs with colored
nodes and regular edges. In fact, to the best of our knowledge, there is no
formal definition for color node cut.

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2093

Algorithm 1 Transformation From the Demand Graph G1 to
a Colored Graph G̃1

1) If a node vi ∈ G1 has ns(vi) supply nodes, ns(vi)
copies of vi exist in G̃1. Each copy has a color which
identifies a supply node. No edge exists between the
copies of vi.

2) If vi and vj are connected by an edge in G1, then all
the copies of vi are connected to all the copies of vj

in G̃1.

Fig. 3. Illustration of the transformation algorithm.

to a colored graph where every node has a single color, and
use Fig. 3 to illustrate the algorithm.

We study the connectivity of the demand graph based on
the colored graph, due to the following theorem.

Theorem 1: There is a one-to-one mapping between a sup-
ply node cut in the demand network and a color node cut in
the transformed graph of the demand network.

Proof: Let G1 be the demand graph and G2 be the supply
graph. Let G̃1 be the transformed graph of G1 by Algorithm 1.
The result trivially holds if every demand node has a single
supply node. Next we focus on the case where a demand node
has more than one supply node.

We first prove that given any supply node cut Vs of G1, there
exists a color node cut Cc of G̃1 where colors Cc correspond to
supply nodes Vs. According to the definition of a supply node
cut, the demand nodes in G1 that have no supply nodes other
than Vs contain a node cut V ∗

d of G1. By removing V ∗
d from

G1, either G1 is separated into at least two components, or a
single node v in G1 remains (by the definition of a node cut
for a graph). In the first case, nodes in G̃1 that correspond to
V ∗

d ⊆ G1 have colors in Cc and they are removed. Among the
remaining nodes, if no edge exists between two nodes in G1,
then there is no edge between their corresponding nodes in G̃1.
Therefore, the remaining nodes in G̃1 are disconnected after
removing the nodes that correspond to V ∗

d and have colors Cc.
In the second case, copies of v are the only remaining nodes
in G̃1 and they are disconnected. Thus, Cc is a color node cut
in G̃1 in both cases.

We then prove that given any color node cut Cc of G̃1, there
exists a supply node cut Vs of G1 where Vs corresponds to
colors Cc. After removing all (or a subset) of nodes in G̃1

that have colors Cc, either a single node remains in G̃1, or G̃1

is separated into multiple connected components. In the first
case, at most a single node remains in G1 after removing
Vs, and thus Vs is a supply node cut. In the second case,
if every component contains a single node, and the node
corresponds to the same node in G1, then at most one node

survives in G1 by removing supply nodes Vs. On the other
hand, if these components correspond to different nodes in G1,
there must exist two disconnected nodes v1, v2 ∈ G1, whose
copies are in different components in G̃1. (Recall that, if two
nodes are connected in G1, then their copies are connected
in G̃1. If all the remaining nodes in G1 form a connected
component, then their corresponding copies in G̃1 also form
a connected component.) In both cases, Vs is a supply node
cut of G1. �

Moreover, an st supply node cut can be represented by a
color s̃t̃ node cut in the colored graph, where s̃ is any copy
of s and t̃ is any copy of t. By considering cuts that separate
(s, t) in G1 and cuts that separate (s̃, t̃) in G̃1, we obtain the
following result by a similar proof to that of Theorem 1.

Corollary 1: There is a one-to-one mapping between a
supply node st cut in the demand network and a color s̃t̃
node cut in the transformed graph of the demand network,
where s̃ is any copy of s and t̃ is any copy of t.

Another corollary is a property of the transformed graph
G̃1 when every demand node in G1 has a fixed number
ns of supply nodes. If G1 has n1 nodes and m1 edges,
the transformed graph G̃1 has n1 ns nodes and m1 n2

s edges.
Moreover,

Corollary 2: If every demand node has a fixed number ns

of supply nodes, the following results hold.
If the node connectivity of G1 is k1, then the node connec-

tivity of G̃1 is k1 ns.
If the st node connectivity is kst

1 (s, t ∈ G1), then the s̃t̃
node connectivity is kst

1 ns, where s̃ ∈ G̃1 is any copy of s
and t̃ ∈ G̃1 is any copy of t.

Proof: By assigning ns distinct supply nodes to each
node in G1, using a total of n1 ns supply nodes, to remove
a node in G1, a distinct set of ns supply nodes must be
removed. Thus, the supply node connectivity of G1 equals
the node connectivity of G1 times ns. Moreover, in G̃1,
every node has a distinct color, and the number of colors
in a color node cut equals the number of nodes in the
same node cut. Thus, the node connectivity of G̃1, without
considering colors, equals the supply node connectivity of
G1, because of the one-to-one mapping proved in Theorem 1.
We have therefore proved that the node connectivity of G̃1

is the node connectivity of G1 times ns. The same rela-
tionship holds for st node connectivity in G1 and s̃t̃ node
connectivity in G̃1. �

C. Notations

We define notations to be used throughout the rest of the
paper. For a finite set X , the cardinality of X is denoted
by |X |. For a colored graph G(V, E, C), the number of nodes,
edges, and colors are denoted by n, m, nc, respectively. The
graph connectivity is denoted by k, and the st connectivity is
denoted by kst. The subscript i ∈ {1, 2} denotes the identity of
a graph. For example, n1 denotes the number of nodes in G1.
The subscript s denotes supply. For example, ns1 denotes the
number of supply nodes for a node in G1.

We use asymptotic notations in this paper. Let f(x) > 0 and
g(x) > 0 be two functions. If there exists a constant M and

2094 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

a positive number x0, such that f(x) ≤ Mg(x) for all x ≥ x0,
then f(x) = O(g(x)). Moreover, f(x) = Ω(g(x)) if g(x) =
O(f(x)); f(x) = Θ(g(x)) if both f(x) = O(g(x)) and
f(x) = Ω(g(x)); f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0;
f(x) = ω(g(x)) if g(x) = o(f(x)).

III. EVALUATION OF THE SUPPLY NODE CONNECTIVITY

In this section, we study the supply node connectivity of the
demand network. As discussed in the previous section, supply
node cuts in the demand network are equivalent to color node
cuts in a colored graph. To simplify the presentation, we con-
sider a colored graph G(V, E, C) throughout this section.

A. Complexity

We prove that computing both the global minimum color
node cut of a graph and the minimum color st node cut are
NP-hard. The proof for the complexity of the minimum color
st node cut follows a similar approach to that of the minimum
color st edge cut in [12]. In contrast, the complexity of the
global minimum color edge cut is unknown. The detailed
proofs of Theorems 2 and 3 can be found in the appendix
in the supplementary material.

Theorem 2: Given a colored graph, computing the value of
the global minimum color node cut is NP-hard.

Theorem 3: Given a colored graph and a pair of nodes
(s, t), computing the value of the minimum color st node cut
is NP-hard.

Given the computational complexity, in the remainder of
this section, we first develop integer programs to compute the
exact values of the minimum color cuts, and then develop
polynomial time approximation algorithms.

B. Exact Computation for Arbitrary Colored Graphs

We compute the minimum color st node cut using a
mixed integer linear program (MILP). In this formulation,
each node has a potential. Connected nodes have the same
potential. The source and the destination are disconnected
if they have different potentials. We note that the classical
MILP formulation for computing the minimum edge cut also
uses node potentials to indicate disconnected components after
removing edges [22].

In the MILP formulation, indicator variable cr denotes
whether color r ∈ C is in the minimum color cut, where
C is the set of colors in the colored graph. Indicator variable
yv denotes whether node v ∈ V is a cut node that separates
the st pair, and may take value 1 only if the color of v is in
the color cut. Note that yv may take value 0 even if the color
of v is in the color cut (constraint (4)). This allows the cut
nodes to be a subset of nodes with colors {r|cr = 1} (recall
Definition 4).

The potential of a node v is denoted by pv . After removing
all the cut nodes, the potentials of nodes in a connected
component are the same, guaranteed by constraints (1) under
the condition yi = yj = 0. The same constraints guarantee that
nodes adjacent to the cut nodes may have different potentials
from the cut nodes, if yi = 1 or yj = 1. The potential of the

source is 0, and the potential of the destination is 1, guaranteed
by constraint (2). Moreover, constraint (3) guarantees that
neither s nor t is a cut node. Thus, the component that contains
s and the component that contains t are separated by an
st node cut. The objective is to minimize the number of colors
of the cut nodes.

min
∑

r∈C

cr (MILP)

s.t. − yi − yj ≤ pi − pj ≤ yi + yj , ∀(i, j) ∈ E, (1)

ps = 0, pt = 1, (2)

ys = yt = 0, (3)

yv ≤ cr, ∀r ∈ C, v ∈ {v|r is the color of v}, (4)

pv, yv ≥ 0, ∀v ∈ V,

cr ∈ {0, 1}, ∀r ∈ C.

Next we compute the global minimum color node cut of
a colored graph using an integer program (IP). The variables
c, y, p have the same representations as those in the above
MILP. Recall that a global node cut of a graph either separates
the remaining nodes into disconnected components, or makes
the remaining graph trivial. In the first case, z = 0, and
constraint (6) guarantees that there is at least one node that
has potential 1, in addition to all the cut nodes. Constraints (5)
guarantee that all the cut nodes have potential 1. Constraint (7)
guarantees that there is at least one node with potential 0.
The existence of both potential 0 nodes and potential 1 nodes,
excluding the cut nodes, implies that the remaining graph is
disconnected. In the second case, z = 1, and the number of
cut nodes is at least |V | − 1, guaranteed by constraint (8).
Given that M is sufficiently large (e.g., M = 2|V |), if z = 0,
constraint (8) is satisfied; if z = 1, constraints (6) and (7) are
satisfied. Thus, a node cut that satisfies either condition is a
feasible solution of the following IP.

min
∑

r∈C

cr (IP)

s.t. − yi − yj ≤ pi − pj ≤ yi + yj, ∀(i, j) ∈ E,

pv ≥ yv, ∀v ∈ V, (5)∑

v∈V

pv −
∑

v∈V

yv − 1 ≥ −Mz, (6)

∑

v∈V

pv − |V | + 1 ≤ Mz, (7)

∑

v∈V

yv − |V | + 1 ≥ −M(1 − z), (8)

yv ≤ cr, ∀r ∈ C, v ∈ {v|r is the color of v},
cr, pv, yv, z ∈ {0, 1}, ∀v ∈ V, ∀r ∈ C.

C. A Polynomially Solvable Case and an
Approximation Algorithm

Although computing the minimum color node cut is
NP-hard in general, there are special instances for which the
value can be computed in polynomial time. Let Vi denote
the nodes in G that have color i. The induced graph of Vi,
denoted by G[Vi], consists of Vi and edges of G that have

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2095

both ends in Vi. We prove that if G[Vi] is connected for
all i, then the minimum color node cuts can be computed in
polynomial time. It is worth noting that these special instances
are reasonable representations for real-world interdependent
networks, where a supply node is likely to support multiple
directly connected nearby demand nodes.

Algorithm 2 computes the minimum color st node cut in G
where G[Vi] is connected ∀i, for any non-adjacent (s, t) pair.

Algorithm 2 Computation of the Minimum Color st Node
Cut in G Where G[Vi] Is Connected ∀i

1) Construct a new graph G� from G as follows. Contract
the nodes Vi, which have the same color i, into
a single node ui. Connect ui and uj if and only
if there is at least one edge between Vi and Vj .
Connect s� to {ui|s is connected to Vi}, and connect t�

to {ui|t is connected to Vi}.
2) Compute the minimum s�t� node cut in G�, in which

every node has a distinct color. The minimum color
st node cut in G is given by the colors of the s�t� cut
nodes in G�.

The following lemma proves the correctness of Algorithm 2.
Lemma 1: The s�t� node connectivity in G� equals the

value of the minimum color st node cut in G, if G[Vi] is
connected, ∀i, and (s, t) are non-adjacent.

Proof: We aim to prove that there is a one-to-one mapping
between a color st node cut in G and an s�t� node cut in G�,
from which the result follows.

One direction is simple. Let C be the set of colors that
appear in G. For any st color node cut Cst

c in G, after
removing all (or a certain subset) of nodes with colors in Cst

c ,
there does not exist a sequence of colored nodes that connect
s and t. Two nodes ui, uj are connected in G� only if nodes
with color i and nodes with color j are connected in G. Thus,
there does not exist a sequence of nodes with colors in C\Cst

c

that connect s� and t� in G�.
To prove the other direction, consider any s�t� node cut in

G� and denote it by V s′t′ . Let V st ⊆ G be a set of nodes with
colors in Ccolor = {i|ui ∈ V s′t′}. We aim to prove that V st is
a superset of an st node cut in G.

If V st does not contain s or t, after removing V st from G,
no edge exists between the component that contains s and the
component that contains t. To see this, note that if no edge
exists between ui and uj in G�, then no edge exists between
any color i node and any color j node in G.

If V st contains s, we need to prove that V st \s is an st cut
in G. In Step 1 of Algorithm 2, s� is connected to all neighbors
N(s�) := {ui|s is connected to Vi} in G�. After removing
V s′t′ , N(s�) are either removed or disconnected from t�.
Therefore, the neighbors of s in G are either removed or dis-
connected from t after removing V st \ s.

The same analysis proves that if V st contains t, then V st \t
is an st cut in G. Similarly, if V st contains both s and t, then
V st \ s, t is an st cut in G. This concludes the proof that V st

is a superset of an st node cut in G. �

Remark 2: A similar result exists in the computation of
the minimum color st edge cut under the condition that all
the edges that have the same color are connected [12]. The
difference in our problem is that the source or destination may
have the same color as the nodes in a cut. Thus, to prove that a
set of colors Cst

c is a color cut, we need to prove that removing
nodes, excluding s and t, with colors Cst

c disconnects s and t.
Thus, the proof has to take care of multiple corner cases.

To compute the global minimum color node cut of a colored
graph, it is necessary to consider two different cases, resulting
from the definition of a node cut that allows the remaining
graph to be either disconnected or reduced to a single node.
Algorithm 3 computes the exact value of the global minimum
color node cut of G where G[Vi] is connected ∀i.

Algorithm 3 Computation of the Global Minimum Color
Node Cut of G Where G[Vi] Is Connected ∀i

1) Compute minimum color st node cut Cst
c for all non-

adjacent st pairs in G by Algorithm 2. Let C1
c denote

the minimum size Cst
c over all st pairs. (The cut C1

c is
the minimum color node cut of G that partitions G into
more than one component.)

2) Compute the minimum set of colors C2
c that cover at

least n− 1 out of the n nodes in G. (I.e., if there exists
a color i that is carried by one node, then C2

c include
all the colors except color i. If there is no color that is
carried by a single node, then C2

c include all the colors.)
3) The minimum color node cut of G is given by the

smaller of C1
c and C2

c .

We remark that the global minimum color node cut of G
can not be computed by first contracting nodes that have the
same color and then computing the global minimum node cut
in the new graph, even if G[Vi] is connected ∀i. We only
claim that the minimum color st node cut in G corresponds
to the s�t� node cut in G� obtained by Algorithm 2, and that
the global minimum color node cut of G can be computed
by Algorithm 3. Note that the topology of G� depends on the
choice of s and t (see Step 1 of Algorithm 2).

The above result can be used to develop an approximation
algorithm to compute the minimum color node cuts in an
arbitrary colored graph where the induced graph G[Vi] is not
necessarily connected. To approximate the value of the mini-
mum color st node cut, the algorithm is a slight modification
of Algorithm 2. Instead of contracting G[Vi] into a single node,
in the new algorithm, each connected component of G[Vi] is
contracted into a single node. Let the new graph be G��, and
connect s��, t�� to the nodes contracted by the components in
G that are connected to s, t, respectively. The performance of
the algorithm is given by Lemma 2.

Lemma 2: The s��t�� node connectivity in G�� is at most q
times the value of the minimum color st node cut in G, where
q is the maximum number of components of G[Vi], ∀i.

Proof: Given that the induced graph G[Vi] has at most
q components, after contracting each component into a node
with color i, the number of nodes with color i in G�� is at
most q. Let Cst

c denote a color node cut in G. By a similar

2096 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

reasoning as the proof of Lemma 1, removing nodes with
colors Cst

c disconnects s�� from t�� in G��. Let cst
min denote

the value of the minimum color st node cut Cst
c min in G. The

number of nodes in G�� with colors Cst
c min is at most cst

minq.
Moreover, cst

minq is no smaller than the s��t�� node connectivity
ks′′t′′ . Equivalently, cst

min is at least ks′′t′′/q. �
The global minimum color node cut of G can be approxi-

mated to within factor q, by approximating the minimum color
st cuts for all non-adjacent st pairs and taking the minimum
size cut, and continuing Steps 2 and 3 of Algorithm 3.
We conclude this section by summarizing the performance of
the approximation algorithms.

Theorem 4: Given a colored graph G(V, E, C), let Vi be
the set of nodes that have color i. If there are at most q
components in the induced graph G[Vi], ∀i, then the values
of the minimum color st node cut and the global minimum
color node cut can be approximated to within factor q in
O(|V |0.5|E|+ |V |2) and O(|V |2.5|E|) time, respectively. Note
that if q = 1 the exact solutions are obtained.

Proof: The fact that the minimum color st node cut can be
approximated to within factor q follows from Lemma 2. The
contraction of connected nodes that have the same color takes
O(|V |2) time, by updating the adjacency matrix representation
of G. Adding s�� and t�� to G�� takes O(|V |) time, by increasing
the numbers of rows and columns of the adjacency matrix by
two and adding the new connections. Computing the minimum
node s��t�� cut in G�� takes O(|V |0.5|E|) time [20]. The total
time of approximating the minimum color st node cut is
O(|V |0.5|E| + |V |2).

The global minimum color node cut of G is the minimum
over 1) C1

c : the minimum color node st cut ∀st, and 2) C2
c : the

minimum number of colors that cover at least n − 1 nodes.
Since the value of the minimum color st node cut can be
approximated to within factor q, the minimum over all non-
adjacent st pairs, |C1

c |, can also be approximated to within
factor q. Moreover, the exact value of |C2

c | can be obtained
in O(|V |) time. Thus, the global minimum color node cut
of G can be approximated to within factor q. The number
of non-adjacent st pairs is at most |V |2/2. The contraction of
nodes with the same color can be computed once and reused.
Computing the connections between s��, t�� and the contracted
nodes takes O(|V |) time for each (s��, t��) pair. Computing
the minimum node s��t�� cut in G�� takes O(|V |0.5|E|) time
for each (s��, t��) pair. Thus, the computation of |C1

c | requires
O(|V |2 + |V |0.5|E||V |2 + |V ||V |2) = O(|V |2.5|E|) time.

We remark that although there are faster algorithms to
compute the global minimum node cut (e.g., [23]), not all
the accelerations can be applied to our problem. For example,
computing (k+1)|V | pairs of minimum st node cut is enough
to obtain the global minimum node cut in a graph G, where k
is the node connectivity of G, because at least one node among
k + 1 nodes does not belong to a minimum cut and can be a
source or destination node. However, this does not hold in our
problem, where the number of nodes covered by a minimum
color node cut can be large, and the st node connectivity for
Θ(|V |2) st pairs should be evaluated. �

IV. MAXIMIZING THE SUPPLY NODE CONNECTIVITY

In this section, we develop supply-demand assignment
algorithms to maximize the supply node connectivity of the
demand network. Given a fixed demand network topology,
the robustness of the demand network depends on the assign-
ment of supply nodes for each demand node. For example,
if every node in a cut depends on the same set of supply
nodes, then removing these supply nodes could disconnect the
demand network. In contrast, if different nodes in every cut
depend on different supply nodes, then a larger number of
supply nodes should be removed to disconnect the demand
network.

For simplicity, in this section, we assume:
1) Every demand node has a fixed number of supply nodes,

denoted by ns.
2) Every supply node can support an arbitrary number of

demand nodes.
The total number of supply-demand pairs is n1 ns, where
n1 is the number of nodes in the demand network G1.
In Section V, we study the case where the number of nodes
supported by every supply node is fixed as well, and study the
interdependence assignment that maximizes the supply node
connectivity of both G1 and G2.

The supply-demand assignment problem can be stated as
follows in the context of a colored graph. Given a graph
G(V, E) and colors C, assign a color ci ∈ C to each node,
such that the value of the minimum color node cut of G (or the
minimum color st node cut for s, t ∈ V) is maximized. Graph
G is the transformed graph of the demand graph G1, obtained
by Algorithm 1, where each node is replicated into ns nodes.

Under the first assumption, according to Corollary 2,
the node connectivity of G is k = k1 ns, where k1 is the
node connectivity of the demand graph G1. Under any color
assignment, the minimum color node cut of G is at most k.
Moreover, the minimum color node cut of G is upper bounded
by nc, the total number of available colors (i.e., the total
number of supply nodes in G2). We aim to assign colors to
nodes in order for the value of the minimum color node cut
to be close to min(k, nc). If the value of the minimum color
node cut is min(k, nc)/α under an assignment algorithm A,
then A is an α-approximation algorithm.

A. Maximizing the st Supply Node Connectivity
by Path-Based Assignment

We first propose Algorithm 4 that maximizes the value of
the minimum color st node cut, which is simple but provides
insight towards maximizing the value of the global minimum
color node cut of a graph.

For the kst node-disjoint st paths, any pair of paths do
not share the same color if there are sufficient colors (nc ≥
kst), by the assignment in Algorithm 4. Thus, s and t stay
connected after removing fewer than kst colors. On the other
hand, if nc < kst, there exist nc paths with distinct colors, and
s and t stay connected after removing fewer than nc colors.
To summarize, the performance of Algorithm 4 is given by
the following theorem.

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2097

Algorithm 4 Path-Based Color Assignment

1) Compute the st node connectivity kst. Identify kst node-
disjoint st paths.

2) Assign the same color to all the nodes in a path. If nc ≥
kst, assign a distinct color to each path. If nc < kst,
assign a distinct color to each of nc paths, and assign
an arbitrary color to each remaining path.

Theorem 5: The value of the minimum color st node cut is
min(kst, nc) if the colors are assigned according to the Path-
based Color Assignment algorithm, where nc is the number
of colors and kst is the st node connectivity.

It is worth noting that assigning the same color to multiple
nodes in a path does not reduce the value of the minimum
color st node cut, compared with assigning a distinct color to
each node. The reason is that, a path is disconnected as long
as at least one node in the path is removed. To generalize, if a
set of nodes together form a “functional group”, it is better for
nodes in the same group to share the same risk. In contrast,
nodes in different groups should avoid sharing the same risk.
We leverage this idea to maximize the global minimum color
cut of a graph.

B. Maximizing the Global Supply Node Connectivity
by CDS-Based Assignment

In the remainder of this section, we consider the color
assignment that maximizes the global minimum color node
cut of a graph. It is helpful to identify the group of nodes
that support graph connectivity, analogous to nodes in a path
that support st connectivity. Indeed, nodes in a connected
dominating set (CDS) form such a group. A CDS is a set
of nodes S such that the induced graph G[S] is connected
and that every node in V either belongs to S or is adjacent
to a node in S. If none of the nodes S are removed, then the
graph stays connected regardless of the number of removed
nodes in V \ S. Namely, any subset of nodes V \ S is not a
node cut of the graph.

The natural analog of node-disjoint st paths is (node)
disjoint CDS, which support graph connectivity. The failures
of nodes in one CDS do not affect another disjoint CDS,
while a survived CDS suffices to keep the graph connected.
CDS partitions, which partition nodes of G(V, E) into multiple
disjoint CDS, have been studied in [17]–[19]. If the node
connectivity of G(V, E) is k and G(V, E) has n nodes, then
Ω(k/ log2 n) node-disjoint CDS can be obtained in nearly
linear time O(m polylog m), where m is the number of
edges [17], [19].

We propose Algorithm 5 that assigns colors based on CDS
partitions.

The performance of Algorithm 5 can be analyzed in a
similar approach to that of Algorithm 4. If nc ≥ kCDS, each
CDS has a distinct color, and the graph stays connected after
removing fewer than kCDS colors. If nc < kCDS, nc CDS have
distinct colors, and the graph stays connected after removing
fewer than nc colors. Therefore, the value of the minimum

Algorithm 5 CDS-Based Color Assignment

1) Compute the node connectivity k of G. Identify kCDS =
Ω(k/ log2 n) node-disjoint CDS using the algorithm
in [19].

2) Assign the same color to all the nodes in a CDS. If nc ≥
kCDS, assign a distinct color to each CDS. If nc < kCDS,
assign a distinct color to each of nc CDS, and assign an
arbitrary color to each remaining CDS.

color node cut is at least min(kCDS, nc). The performance of
Algorithm 5 is summarized by the following theorem.

Theorem 6: The value of the minimum color node cut of G
is at least min(Ω(k/ log2 n), nc) if the colors are assigned
according to the CDS-based Color Assignment algorithm,
where nc is the number of colors, n is the number of
nodes, and k is the node connectivity of G. The CDS-based
Color Assignment algorithm is an O(log2 n)-approximation
algorithm.

C. Maximizing the Global Supply Node Connectivity
by Random Assignment

Finally, we study a Random Assignment algorithm. The
algorithm is to assign each node a color randomly with equal
probability. The intuition behind the Random Assignment
algorithm is that nodes in a small cut are unlikely to be
assigned with the same color if the number of colors is large.
Thus, removing the nodes associated with a small number of
colors is unlikely to disconnect the graph.

In fact, the Random Assignment algorithm has provably
good performance. The analysis relies on the recently studied
vertex sampling problem in [19]. We first restate a sampling
theorem in [19] as follows.

Lemma 3 [19, Th. 6]: Consider a graph G in which each
node is removed independently with a given probability 1−p.
For 0 < δ < 1, if the probability that a node is not removed
satisfies p ≥ β

√
log (n/δ)/k for a sufficiently large constant

β, then the remaining graph is connected with probability at
least 1− δ, where n is the number of nodes and k is the node
connectivity of G.

This sampling theorem provides a sufficient condition for
a graph to be connected with high probability after its nodes
are randomly removed. In particular, we use the following
corollary.

Corollary 3: Given a graph G with n nodes and node
connectivity k = ω(log n), if each node is removed with up to
a constant probability 1− p < 1, then the remaining nodes in
G are connected with probability 1− δ where δ = O(ne−αk)
for some constant α.

Proof: Given that the probability p that each node remains
in G is at least a constant greater than zero, from Lemma 3
we know that the probability δ that G is disconnected satisfies
the following equation.

k (p/β)2 = log(n/δ),
δ = ne−αk,

where α = (p/β)2 is a constant.

2098 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Moreover, since k = ω(log n), δ = ne−αk ≤ n−1 = o(1).
The probability that the remaining nodes are connected is
high. �

On the other hand, if k = O(log n), β
√

log(n/δ)/k ≥
β
√

log (n)/k = Ω(1). The condition in Lemma 3 cannot
be satisfied, unless the hidden constant in k = O(log n) is
large. Thus, the probability that the graph is disconnected
after randomly removing a given fraction of nodes cannot be
bounded using this approach. For simplicity, in the following
we focus on graphs where k = ω(log n).

In a colored graph G where nodes are randomly colored
using a total of nc colors, removing nodes with colors that
belong to a given set of k� colors is equivalent to removing
each node with probability k�/nc. The probability of removing
a node is at most a constant, by restricting k� to be at most
(1 − �)nc for a constant � > 0. Thus, by Corollary 3,
the probability that G is disconnected after removing nodes
with a given set of k� colors is small. By a union bound over(
nc

k′
)

combinations of k� colors, the probability punion that G is
disconnected after removing nodes with any set of k� colors
can be bounded. If punion is small, and the remaining nodes
form a CDS with high probability (such that removing any
subset of nodes with any k� colors does not disconnect G), then
the value of the minimum color node cut of G is at least k�+1
with high probability. We next fill in the details of the proof,
and our approach closely follows the approach of computing
node connectivity after random node sampling in [19].

Theorem 7: By assigning a color uniformly at random to
each of the n nodes of G, the value of the minimum color
node cut of G is Θ (min(k, nc)) with high probability, where
nc is the number of colors and k = ω(log n) is the node
connectivity of G. If, in addition, k = ω(nc), then the value
of the minimum color node cut of G is at least (1− �)nc with
high probability for any constant � > 0.

Proof: We prove the theorem under three cases: i) k =
Θ(nc); ii) k = ω(nc); and iii) k = o(nc). In all of the three
cases, k = ω(log n).

i) First we consider the case where k = Θ (nc). For
k� ≤ (1 − �)nc, where � > 0 is a constant, the probability
that G is disconnected after removing the nodes covered
by a randomly selected set of k� colors is O(ne−αk), for
a constant α (Corollary 3). The total number of k� color
combinations among the nc colors is

(
nc

k′
) ≤ (enc

k′)k′
. Thus,

by the union bound, the probability that G is disconnected
after removing nodes with any k� colors is at most punion-1 =
O(ne−αk(enc

k′)k′
). Let k� = α min(k, nc)/(2η) ≤ (1 − �)nc,

where η satisfies η = log enc

k′ = log 2ηenc

α min(k,nc)
and is a

constant.

log punion-1 ≤ log (ne−αk(
enc

k�)k′
)

= log n − αk + k� log
enc

k�
= log n − αk + α min(k, nc)/2
≤ log n − αk/2
≤ −γ log n,

for a constant γ > 0. The last inequality follows from k =
ω(log n). Therefore, the probability that G is disconnected is
at most n−γ = o(1).

The above approach proves that with high probability,
removing nodes with any k� colors does not disconnect G.
Before concluding that the value of the minimum color node
cut of G is at least k�, we need to prove that removing any
subset of nodes with any k� colors does not disconnect G
(recall Definition 3 of a color node cut). A sufficient condition
is that the remaining nodes form a dominating set of G.

Since the node connectivity of G is k, the minimum degree
of a node in G is at least k. The probability that all the
neighbors of a node are removed is (k�/nc)k . Let k� ≤
(1 − �)nc for a constant � > 0. The probability that there
is at least one node whose neighbors are all removed can be
upper bounded using the union bound

punion-2 = n(k�/nc)k ≤ n(1 − �)k = o(1). (9)

The last inequality follows from k = ω(log n). With proba-
bility 1−o(1), there does not exist a node whose neighbors are
all removed. Thus, the remaining nodes form a dominating set.

To conclude, with probability at least 1−punion-1−punion-2 =
1− o(1), the value of the minimum color node cut of G is at
least k� = Θ(k) if k = Θ(nc) and k = ω(log n).

ii) Next we consider the case where k = ω (nc). Let
k� = (1 − �)nc.

log punion-1 ≤ log (ne−αk(
enc

k�)k′
)

= log n − αk + k� log
enc

k�
≤ log n − αk + 2k� ≤ −γ log n,

for a constant γ. The last inequality holds because k� = o(k)
(equivalently, (1 − �)nc = o(k) and k = ω(nc)) and log n =
o(k) (equivalently, k = ω(log n)). The value of the minimum
color node cut of G is at least (1 − �)nc with probability
1 − punion-1 − punion-2 = 1 − o(1).

iii) Finally we consider the case where k = o(nc). Directly
using punion-1 would incur an O(log nc) gap from the optimal
k� (i.e., k� = Ω(k/ log nc)), because the number of k� out of
nc choices is large and the union bound punion-1 is too weak.
However, it is possible to reduce the number of choices, at the
cost of removing a larger number of nodes. We use the same
approach as in [19]. Partition the colors into 2k� = o(nc)
groups. Instead of removing nodes with colors in a selected
set of k� colors, we consider removing nodes with colors in a
selected set of k� color groups, which consists of around nc/2
colors. The probability that each node is removed is 1/2. The
probability that G become disconnected is still δ = O(ne−αk).
The total number of events (i.e., combinations of k� color
groups out of 2k� color groups) is reduced to

(
2 k′

k′
) ≤ (2e)k′

.
For k� = αk/(2 log(2e)),

log punion-3 ≤ log (ne−αk(
2 ek�

k�)k′
)

= log n − αk + k� log(2e)
≤ log n − αk/2 ≤ −γ log n,

for a constant γ.
Thus, the value of the minimum color node cut of G is

at least k� = αk/(2 log(2e)) = Θ(k) with high probability
1 − punion-3 − punion-2 = 1 − o(1). �

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2099

Theorem 7 proves that the Random Assignment algorithm
is an O(1)-approximation algorithm if k = ω(log n). If k =
O(log n), under any assignment the minimum color node cut
value is at least one, and the approximation ratio is at most
O(log n).

V. BIDIRECTIONAL INTERDEPENDENCE

In the previous sections, we considered a one-way depen-
dence model. In this section, we extend the results to a bidirec-
tional interdependence model. Let G1(V1, E1) and G2(V2, E2)
denote two interdependent networks. Interdependence edges
connect nodes between two networks, which represent their
supply-demand relationship. The key difference from the one-
way dependence model is that the interdependence edges are
bidirectional (i.e., if node v ∈ G1 depends on node u ∈ G2,
then u depends on v as well).

If a node v in G1 fails due to the failures of its supply
nodes in G2, then the failure of v does not lead to further
node failures (due to a lack of supply) in G2, because all the
nodes in G2 that depend on v have failed. Otherwise, v would
not have failed in the first place. Therefore, the evaluation of
supply node connectivity in the bidirectional interdependence
model follows the same methods as the one-way dependence
model. What remains to be developed is the interdependence
assignment that maximizes the supply node connectivity of
both networks.

We assume that there are nsi interdependence edges adja-
cent to each of the ni nodes in Gi (∀i = {1, 2}). The total
number of bidirectional interdependence edges is n1 ns1 =
n2 ns2. Under this assumption, a node in Gi is functional
if at least one of its adjacent nsi interdependence edges is
connected to a remaining node (i.e., a node that has not been
removed) in Gj (∀i, j = {1, 2}, i �= j).

We now give an overview of the bidirectional interde-
pendence assignment algorithms. To extend the CDS-based
color assignment to interdependence assignment, we aim to
avoid disjoint CDS sharing the same supply nodes as much
as possible, in both networks. Nodes in G1 are partitioned
into groups of size ns2, and nodes in G2 are partitioned
into groups of size ns1. Interdependence is assigned between
each group in G1 and each group in G2. Consider a group
P1 ∈ G1, and a corresponding group P2 ∈ G2. Every node
v1 ∈ P1 depends on all the nodes in P2, and every node
v2 ∈ P2 depends on all the nodes in P1. The key is to
partition nodes in G1 and G2 into groups. The partition is
obvious when the number of nodes in each CDS in Gi is
a multiple of nsj (∀i, j = {1, 2}, i �= j), in which case
disjoint CDS do not share any supply node. See Fig. 4 for
an illustration. Otherwise, in general, disjoint CDS may have
to share some supply nodes. As we will prove later, the supply
node connectivity will be reduced by at most a half, compared
with the ideal case where disjoint CDS do not share any supply
node. The same analysis applies to the path-based assignment
that maximizes the st supply node connectivity, and is omitted.

A. CDS-Based Interdependence Assignment

We develop an algorithm to partition the nodes in G1

into groups of size ns2, and to partition the nodes in G2

Fig. 4. An example of the partition of CDS nodes into groups. Every
node in G1 and G2 has ns1 = 1 and ns2 = 2 supply nodes, respectively.
Each CDS in Gi is partitioned into two groups of size nsj (i, j ∈ {1, 2},
i �= j). In each graph, nodes that have the same color are in the same group.
Between two graphs, nodes in groups with the same color are interdependent.
The partition achieves the optimal supply node connectivity: 2 and 4 for
G1 and G2, respectively.

into groups of size ns1. A group of size nsj is empty if
it contains no node, is full if it contains nsj nodes, and is
occupied if it contains more than zero but fewer than nsj

nodes. If |Vi|/nsj is an integer, we aim to partition Vi into
|Vi|/nsj full groups. Otherwise, if |Vi|/nsj is not an integer,
we aim to partition Vi into �|Vi|/nsj	 full groups and one
occupied group that contains |V ∗

i | = |Vi| − �|Vi|/nsj	nsj

nodes (∀i, j ∈ {1, 2}, i �= j), where V ∗
i denotes the nodes

in the occupied group. Since |V1|/ns2 = |V2|/ns1 , the total
number of groups are the same in both G1 and G2.

Interdependence is assigned between nodes in two groups,
one from each graph. For each node in Vi \ V ∗

i , there are
nsi supply nodes. For each node in V ∗

i , there are |V ∗
j | < nsi

supply nodes. (Multiple interdependence edges exist between
some nodes in V ∗

i and some nodes in V ∗
j). Given that nodes

within a group depend on the same set of supply nodes
while different groups of nodes depend on different supply
nodes, we aim to partition nodes into groups such that a large
number of groups need to be removed in order to disconnect
all the CDS. Consequently, a large number of supply nodes
need to be removed in order to disconnect all the CDS. The
partition of Vi into �|Vi|/nsj	 full groups follows Algorithm 6.
The remaining nodes (if any) form an occupied group V ∗

i if
|Vi|/nsj is not an integer.

Algorithm 6 Assign Nodes Vi Into �|Vi|/nsj	 Full Groups of
Size nsj

1) Sort the h disjoint CDS in the ascending order of their
sizes. Denote the nodes in the l-th CDS in Gi by N l,
l = 1, 2, . . . , h.

2) For l from 1 to h, start with an empty group if available,
and assign nodes from N l into the group. Repeat until
all nodes are assigned. If there are not enough empty
groups, assign the rest nodes into occupied groups until
these groups become full.

3) The algorithm terminates when the �|Vi|/nsj	 groups
become full.

We denote by h the number of disjoint CDS in Gi. Using
the algorithm in [19], h = Ω(ki/ log2 ni) disjoint CDS can
be computed. If there are extra nodes in Vi that do not belong
to the h CDS, then these nodes are added to the largest CDS.

2100 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 5. Partition the CDS nodes {N1, N2, N3} into four groups of size
three. The left, middle, right figures represent the snapshots after assigning
nodes in N1, N2, N3 in Step 2 of Algorithm 6, respectively.

Note that adding extra nodes to a CDS still yields a CDS, since
these nodes are adjacent to the nodes in the original CDS.

The following example illustrates Step 2 of the algorithm.
Before assigning N l, there are enough empty groups if
the number of empty groups is at least
|N l|/nsj�. Nodes
N l are assigned to �|N l|/nsj	 groups, which then become
full. If |N l|/nsj is not an integer, the remaining |N l| −
�|N l|/nsj	nsj ≤ nsj −1 nodes are assigned to another empty
group and the group becomes occupied. On the other hand,
if there are nr <
|N l|/nsj� empty groups before assigning
N l, then nrnsj nodes in N l are assigned to the nr groups.
The remaining nodes in N l and nodes in N l+1, . . . , Nh are
assigned to the already occupied groups.

The algorithm is further illustrated by Fig. 5. Suppose that
G1 has 12 nodes, and has three disjoint CDS, consisting of
|N1| = 2, |N2| = 4, |N3| = 6 nodes, respectively, and that
ns2 = 3. Our goal is to assign the 12 nodes in G1 to 4 groups
of size 3. Before assigning nodes in N1, all the four groups are
empty. Thus, the two nodes in N1 can be assigned to an empty
group. After the assignment, the group becomes occupied,
illustrated by the left figure in Fig. 5. Before assigning nodes
in N2, there are three empty groups. The assignment of N2

uses two groups, one of which becomes full and the other
becomes occupied (groups 2 and 3 in Fig. 5). Finally, when
assigning N3, there is only one empty group, and thus there
are not enough empty groups to hold all the nodes in N3.
The last empty group can be assigned with 3 nodes. The
remaining 3 nodes in N3 are assigned to the occupied groups
(i.e., groups 1 and 3 in Fig. 5).

We prove that disjoint CDS are sufficiently group-disjoint,
by characterizing the number of groups that need to be
removed to disconnect all the CDS.

Lemma 4: Let Vi be assigned to groups according to
Algorithm 6. The minimum number of full groups that need
to be removed, in order for each CDS to contain at least one
removed node, is at least min(
 (h − 1)/2�, �|Vi|/nsj).

Proof: Let |N l| denote the number of nodes in the l-th
CDS of Gi, ∀l ∈ {1, . . . , h}. If |N l| is a multiple of nsj , ∀l ∈
{1, . . . , h}, then nodes in N l1 are assigned to different groups
from nodes in N l2 , ∀l1, l2 ∈ {1, . . . , h}, l1 �= l2. To remove
at least one node from each of the CDS, h full groups need
to be removed. In the rest of the proof, we focus on the case
where |N l| is not a multiple of nsj for some l ∈ {1, . . . , h}.

In the first few assignments in Algorithm 6 when there are
enough empty groups, nodes in N l1 are assigned to different

groups from nodes in N l2 , ∀l1, l2 ∈ {1, . . . , kth}, l1 �= l2.
In order to disconnect all the CDS, at least one node should
be removed from each CDS. The removed nodes in CDS
N l, l = 1, . . . , kth belong to at least kth distinct groups.
Therefore, at least kth groups need to be removed in order
to disconnect all the CDS. (Note that these groups become
full by the end of Algorithm 6.)

Determining kth: Consider one CDS N l (l ∈ {1, . . . , kth}).
If |N l|/nsj is not an integer, one group occupied by N l is not
full, and the group can still be assigned with rl ≤ nsj−1 extra
nodes. If |N l|/nsj is an integer, then rl = 0. The total number
of extra nodes that can be assigned into these occupied groups
is

∑kth

l=1 rl ≤ kth(nsj − 1).
Consider the assignment when there are not enough empty

groups to hold all the nodes in N l, ∀l = kth + 1, . . . , h.
1) If |Nkth+1| ≤ nsj , then |N l| ≤ nsj , l = 1, . . . , kth.

(Recall that the CDS are sorted in the ascending order of their
sizes.) Nodes in each CDS N l belong to a single occupied
group, l = 1, . . . , kth. Moreover, since there is no empty
group available when assigning nodes in Nkth+1, all the empty
groups have been used, and kth = �|Vi|/nsj	.

2) If |Nkth+1| ≥ nsj + 1, the number of remaining CDS is
at most

h − kth ≤ �
∑kth

l=1 rl + nsj − 1
nsj + 1

	 + 1

≤ � (kth + 1)(nsj − 1)
nsj + 1

	 + 1 ≤ kth + 1.

To see this, note that there is no empty group available
when assigning nodes in ∪h

l=kth+2N
l. Otherwise, all the nodes

in Nkth+1 would have been assigned to empty groups, which
contradicts the assumption. Let No ⊆ ∪h

l=kth+2N
l denote the

nodes that will be assigned to the occupied groups (occupied
by nodes in N l, l ∈ {1, . . . , kth}). Let N∗ ⊆ ∪h

l=kth+2N
l

denote the remaining nodes that cannot be assigned to the
�|Vi|/nsj	 groups when |Vi|/nsj is not an integer. By def-
inition, No ∪ N∗ = ∪h

l=kth+2N
l. We know that |No| is at

most
∑kth

l=1 rl, which is the number of extra nodes that the
occupied groups can fit. Moreover, |N∗| is at most |Vi| −
�|Vi|/nsj	nsj ≤ nsj − 1. Therefore,

∑kth

l=1 rl + nsj − 1 is an
upper bound on the number of nodes in ∪h

l=kth+2N
l. Since

the size of N l (kth + 2 ≤ l ≤ h) is at least nsj + 1, the first
term in the summation is an upper bound on the number of
CDS Nkth+2, . . . , Nh. The additional one (second term in the
summation) accounts for the CDS Nkth+1.

In summary, given that the total number of CDS h = kth +
(h− kth) ≤ kth + (kth + 1), we obtain kth ≥ (h− 1)/2. Since
kth is an integer, kth is at least
 (h − 1)/2�. �

Given that nsi supply nodes need to be removed in order
to remove a full group of nodes of Vi, we have the following
result.

Theorem 8: Given Gi with ni nodes and node connectivity
ki, and that every node has nsi supply nodes, ∀i ∈ {1, 2},
assign interdependence between nodes in G1 and the nodes
in G2 by groups, obtained in Algorithm 6. Then, the supply
node connectivity of Gi is Ω(min (kinsi/ log2 ni, nj)), ∀i,
j ∈ {1, 2}, i �= j.

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2101

Proof: Using the algorithm in [19], h = Ω (ki/ log2 ni)
disjoint CDS can be found in Gi. By Lemma 4, the number of
full groups that should be removed in order to remove at least
one node from each CDS is min (
 (h − 1)/2�, �ni/nsj),
∀i, j ∈ {1, 2}, i �= j.

Each group of Vi can be removed by removing nsi supply
nodes in Gj . Noting that h = Ω (ki/ log2 ni) and that
ninsi/nsj = nj , the supply node connectivity of Gi is
Ω(min (kinsi/ log2 ni, nj)), ∀i, j ∈ {1, 2}, i �= j. �

We have proved that the CDS-based interdependence assign-
ment algorithm is an O(log2 ni)-approximation algorithm in
maximizing the supply node connectivity of Gi, ∀i ∈ {1, 2}.

B. Random Interdependence Assignment

We study the random assignment in order to maximize
the supply node connectivity of both graphs. The random
assignment algorithm is to randomly match ns1 copies of
nodes in G1 with ns2 copies of nodes in G2, and assign inter-
dependence between matched nodes. Under the assignment,
each of the ni nodes in Gi is supported by nsi nodes in Gj

(i, j ∈ {1, 2}, i �= j).
The key difference of the analysis from the random assign-

ment algorithm for the one-way dependence model is as
follows. By randomly removing k� nodes in G2, k�ns2 nodes
in the transformed graph of G1 (by Algorithm 1) are removed.
In contrast, in the one-way dependence model (Section IV-C),
every node is removed with probability k�ns2/n1 ns1, and the
total number of node removals follows a binomial distribution
with mean k�ns2. We derive the following lemma that bounds
the probability of a graph being disconnected after a constant
fraction of nodes are removed, instead of each node being
removed with a constant probability as in Corollary 3.

Lemma 5: Given graph G with n nodes and node connec-
tivity k = ω(log n), after randomly removing up to a constant
(less than one) fraction of n nodes, the remaining nodes in G
are connected with probability 1 − δ where δ = O(ne−α′k)
for some constant α�.

Proof: We prove a stronger result that the remaining nodes
form a connected dominating set (CDS) with high probability.
In particular, we prove for the case where (1−�)(1−p)n nodes
are randomly removed, for a constant � < 1 and a constant
p ∈ (0, 1).

Let A(nrm) denote the event that the remaining nodes in G
form a CDS after randomly removing nrm nodes, where nrm

is a deterministic value. Since adding extra nodes to a CDS
still yields a CDS, Pr(A(nrm)) is decreasing in nrm.

Consider the case where each node is randomly removed
with probability 1−p ∈ (0, 1). The number of removed nodes,
Nrm, follows a binomial distribution with mean (1−p)n. Using
the Chernoff bound, for a constant � < 1,

Pr(Nrm < (1 − �)(1 − p)n) ≤ e−(1−p)n�2/2.

The probability that the remaining nodes in G form a CDS
after removing Nrm nodes is:

Pr(A(Nrm))

=
n∑

nrm=0

Pr(A(nrm)) Pr(Nrm = nrm) (10)

≤ Pr(A((1 − �)(1 − p)n)) Pr(Nrm ≥ (1 − �)(1 − p)n)
+ 1 Pr(Nrm < (1 − �)(1 − p)n) (11)

≤ Pr(A((1 − �)(1 − p)n)) + e−(1−p)n�2/2, (12)

where Eq. (10) follows from the law of total probability,
Eq. (11) follows from that Pr(A(nrm)) is non-increasing in
nrm, and Eq. (12) follows from the Chernoff bound. Thus,

Pr(A((1 − �)(1 − p)n)) ≥ Pr(A(Nrm)) − e−(1−p)n�2/2.

From the proof of Corollary 3, we know that by removing
Nrm nodes, G is disconnected with probability at most ne−αk,
where α is a constant. Moreover, let k�/nc = 1−p in Eq. (9),
the probability that the remaining nodes in G do not form
a dominating set is at most n(1 − p)k. Thus, by the union
bound, the probability that the remaining nodes in G do not
form a connected dominating set is at most 1−Pr(A(Nrm)) ≤
ne−αk + n(1 − p)k.

We now bound the probability that the remaining nodes in
G form a CDS, after randomly removing p�n nodes, where
p� = (1 − �)(1 − p) is a constant.

Pr(A((1 − �)(1 − p)n))

≥ Pr(A(Nrm)) − e−(1−p)n�2/2

≥ 1 − ne−αk − n(1 − p)k − e−(1−p)n�2/2

Let α� = min(α,− log(1 − p), (1 − p)n�2/2k). Then
ne−αk, n(1 − p)k, e−(1−p)n�2/2 ≤ ne−α′k. Therefore,
Pr(A(p�n)) ≥ 1 − O(ne−α′k). Moreover, since α, p are
constants and n = Ω(k), α� is a constant. �

Then, following the analysis in Theorem 7, and noting
Corollary 2, we obtain the following result.

Theorem 9: Given Gi with ni nodes and node connectivity
ki, if each node in Gi has nsi supply nodes, by randomly
matching nsi copies of nodes in Gi to nsj copies of nodes
in Gj , and assigning interdependence between each pair
of matched nodes, then the supply node connectivity of
Gi is Θ(min(kinsi, nj)) with high probability, if kinsi =
ω(log (ninsi)), ∀i, j ∈ {1, 2}, i �= j. If, in addition,
kinsi = ω(nj), then the supply node connectivity of Gi is at
least (1 − �)nj with high probability for any constant � > 0.

Proof: By Corollary 2, the transformed graph
(by Algorithm 1) G̃i has ninsi nodes and node connectivity
kinsi, ∀i ∈ {1, 2}. The number of colors in Gi is the number
of nodes nj in Gj , ∀i, j ∈ {1, 2}, i �= j. Given Lemma 5,
the supply node connectivity of Gi can be computed in the
same approach as the proof for Theorem 7. �

Thus, the random assignment is an O(1)-approximation
algorithm in maximizing the supply node connectivity of
both G1 and G2, if kinsi = ω(log (ninsi)), ∀i ∈ {1, 2}.
If kinsi = O(log (ninsi)), the approximation ratio is at most
O(log (ninsi)), since the supply node connectivity is at least
one under any assignment, ∀i ∈ {1, 2}.

VI. NUMERICAL RESULTS

In this section, we apply the algorithms in the previous
sections and provide numerical results. We use MATLAB to
generate network topologies and dependence assignment, and

2102 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 6. XO network as a demand network, with randomly generated
supply nodes. The x-axis represents longitude degrees (west), and the y-axis
represents latitude degrees (north).

use JuMP [24] to compute the supply node connectivity by
calling CPLEX to solve the integer programs in a worksta-
tion that has an Intel Xeon Processor (E5-2687W v3) and
64GB RAM.

The key observations are as follows. First, the supply node
connectivity for a network of reasonable size can be computed
using the integer program in a short time. For example,
the results can be obtained within one minute, for a network
that has around 180 nodes and 650 edges. Second, the assign-
ment algorithms have good performance even when the value
of supply node connectivity is moderate. This complements the
theoretical results that the assignment algorithms are optimal
up to a constant or polylogarithmic factor. The numerical
results therefore suggest that the algorithms are practical in
the design of interdependent networks.

A. st Supply Node Connectivity

We use the XO communication network [25] of 60 nodes
as an example of the demand network, and randomly generate
36 supply nodes (marked as triangles in Fig. 6) within the
continental US.

Let each node in the XO network be supported by three
nearest supply nodes. After transforming the network into
a colored graph by Algorithm 1 and solving the MILP,
we obtain that the supply node connectivity of the st pair
Seattle-Denver is 5. In contrast, the maximum st supply node
connectivity is 9, by assigning distinct supply nodes to each of
the three node-disjoint paths (i.e., the path-based assignment
outlined in Algorithm 4). As another example, the supply node
connectivity of the st pair Seattle-Miami is only 3, because
one node in an st path has the same set of three supply nodes
as another node in a disjoint st path. By assigning distinct
supply nodes to two disjoint paths (Algorithm 4), the supply
node connectivity of Seattle-Miami can be increased to 6.

B. Global Supply Node Connectivity

If each node in the XO network is supported by its three
nearest supply nodes, the global supply node connectivity is 3.
In contrast, if each node is supported by three randomly chosen
supply nodes, the global supply node connectivity can be
increased to 5. It is close to the maximum possible global

TABLE I

SUPPLY NODE CONNECTIVITY ks
i OF RANDOM GRAPHS

UNDER CDS-BASED AND RANDOM ASSIGNMENTS

supply node connectivity 6, given that the node connectivity
of the XO network is two and each node has three supply
nodes. However, the CDS-based assignment (Algorithm 5)
only guarantees that the supply node connectivity is at
least 3, since there do not exist two disjoint CDS in the
XO network.

C. Bidirectional Interdependence Assignment

We implement the bidirectional interdependence assignment
algorithms on randomly generated Erdos-Renyi graphs. Let Gi

be an Erdos-Renyi graph with ni nodes. Let the probability
that an edge exists between any two nodes be pi. Each node
in Gi has nsi supply nodes from Gj . Let ki denote the node
connectivity of Gi. Recall that the maximum supply node
connectivity is ks

i max = min(kinsi, nj) (i, j ∈ {1, 2}, i �= j).
Table I depicts the supply node connectivity ks

i of Gi under
the CDS-based and random interdependence assignment algo-
rithms. To obtain the numerical results for CDS-based inter-
dependence assignment algorithm, instead of using the CDS
partition algorithm in [19], we use a greedy approach to
compute the disjoint CDS, which has good performance for
Erdos-Renyi graphs. The results are averaged over 10 instances
for each of the two combinations of interdependent networks:
1) n1 = 50, n2 = 75, p1 = p2 = 0.1; 2) n1 = 50,
n2 = 75, p1 = p2 = 0.2. From the results, we observe
that the (near-linear time) CDS-based and the (linear time)
random interdependence assignment algorithms yields near-
optimal supply node connectivity in both graphs.

VII. CONCLUSION

We studied the robustness of interdependent networks based
on a finite-size, arbitrary-topology graph model. We defined
supply node connectivity as a robustness metric, by generaliz-
ing the node connectivity in a single network. We developed
integer programs to compute the supply node connectiv-
ity both for an st pair and for a network, and developed
approximation algorithms for faster computation. Moreover,
we develop interdependence assignment algorithms to design
robust interdependent networks.

Our study extends the shared risk group model, by consid-
ering that multiple risks together lead to the failure of a node.
The color assignment algorithms in Section IV can be used as
solutions to the less intensively studied design problems for
the shared risk group model, to maximize the number of risks
that a network can tolerate.

ZHANG AND MODIANO: CONNECTIVITY IN INTERDEPENDENT NETWORKS 2103

REFERENCES

[1] V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, and
R. Setola, “Modelling interdependent infrastructures using interacting
dynamical models,” Int. J. Critical Infrastruct., vol. 4, nos. 1–2,
pp. 63–79, 2008.

[2] M. Parandehgheibi and E. Modiano, “Robustness of interdependent
networks: The case of communication networks and the power
grid,” in Proc. IEEE GLOBECOM, Atlanta, GA, USA, Dec. 2013,
pp. 2164–2169.

[3] C.-G. Gu et al., “Onset of cooperation between layered networks,” Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 84, no. 2,
p. 026101, 2011.

[4] O. Yagan, D. Qian, J. Zhang, and D. Cochran, “Optimal allocation
of interconnecting links in cyber-physical systems: Interdependence,
cascading failures, and robustness,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 9, pp. 1708–1720, Sep. 2012.

[5] N. Ghani, S. Dixit, and T.-S. Wang, “On IP-over-WDM integration,”
IEEE Commun. Mag., vol. 38, no. 3, pp. 72–84, Mar. 2000.

[6] K. Lee, E. Modiano, and H.-W. Lee, “Cross-layer survivability in WDM-
based networks,” IEEE/ACM Trans. Netw., vol. 19, no. 4, pp. 1000–1013,
Aug. 2011.

[7] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, pp. 1025–1028, Apr. 2010.

[8] M. Parandehgheibi, K. Turitsyn, and E. Modiano, “Modeling the
impact of communication loss on the power grid under emergency
control,” in Proc. IEEE SmartGridComm, Miami, FL, USA, Nov. 2015,
pp. 356–361.

[9] H.-W. Lee, K. Lee, and E. Modiano, “Maximizing reliability in WDM
networks through lightpath routing,” IEEE/ACM Trans. Netw., vol. 22,
no. 4, pp. 1052–1066, Aug. 2014.

[10] D. Papadimitriou et al., Inference of Shared Risk Link Groups,
document draft-many-inference-srlg-02.txt, Working Draft, IETF Sec-
retariat, Nov. 2001.

[11] J. Q. Hu, “Diverse routing in optical mesh networks,” IEEE Trans.
Commun., vol. 51, no. 3, pp. 489–494, Mar. 2003.

[12] D. Coudert, P. Datta, S. Pérennes, H. Rivano, and M.-E. Voge, “Shared
risk resource group complexity and approximability issues,” Parallel
Process. Lett., vol. 17, no. 2, pp. 169–184, 2007.

[13] S. Yuan, S. Varma, and J. P. Jue, “Minimum-color path problems for
reliability in mesh networks,” in Proc. INFOCOM, Miami, FL, USA,
2005, pp. 2658–2669.

[14] S. Klein, L. Faria, I. Sau, R. Sucupira, and U. Souza, “On colored
edge cuts in graphs,” in Sociedade Brasileira de Computaçao, Editor,
Primeiro Encontro de Teoria da Computaçao—ETC. Porto Alegre,
Brazil: CSBC, 2016.

[15] P. Zhang, J.-Y. Cai, L.-Q. Tang, and W.-B. Zhao, “Approximation and
hardness results for label cut and related problems,” J. Combinat. Optim.,
vol. 21, no. 2, pp. 192–208, 2011.

[16] D. R. Karger, “A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem,” SIAM Rev.,
vol. 43, no. 3, pp. 499–522, 2001.

[17] K. Censor-Hillel, M. Ghaffari, and F. Kuhn, “Distributed connectivity
decomposition,” in Proc. ACM Symp. Principles Distrib. Comput., Paris,
France, 2014, pp. 156–165.

[18] K. Censor-Hillel, M. Ghaffari, and F. Kuhn, “A new perspective on
vertex connectivity,” in Proc. 25th Annu. ACM-SIAM Symp. Discrete
Algorithms, Portland, OR, USA, 2014, pp. 546–561.

[19] K. Censor-Hillel, M. Ghaffari, G. Giakkoupis, B. Haeupler, and F. Kuhn,
“Tight bounds on vertex connectivity under vertex sampling,” in Proc.
26th Annu. ACM-SIAM Symp. Discrete Algorithms, San Diego, CA,
USA, 2015, pp. 2006–2018.

[20] S. Even and R. E. Tarjan, “Network flow and testing graph connectivity,”
SIAM J. Comput., vol. 4, no. 4, pp. 507–518, 1975.

[21] P. Datta and A. K. Somani, “Diverse routing for shared risk resource
groups (SRRG) failures in WDM optical networks,” in Proc. Int. Conf.
Broadband Netw. (BroadNets), San Jose, CA, USA, 2004, pp. 120–129.

[22] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization
(Athena Scientific Series in Optimization and Neural Computation).
Belmont, MA, USA: Athena Scientific, 1997.

[23] H. N. Gabow, “Using expander graphs to find vertex connectivity,”
J. ACM, vol. 53, no. 5, pp. 800–844, 2006.

[24] M. Lubin and I. Dunning, “Computing in operations research using
Julia,” INFORMS J. Comput., vol. 27, no. 2, pp. 238–248, 2015,
doi: 10.1287/ijoc.2014.0623.

[25] XO Communications. Network Map. Accessed: Aug. 20, 2018. [Online].
Available: https://www.xo.com/about-xo/our-network/complete-network

Jianan Zhang received the B.E. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2012, and the M.S. degree from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2014, where he is currently pursuing
the Ph.D. degree with the Laboratory for Information
and Decision Systems. His research interests include
network robustness, optimization, and interdepen-
dent networks.

Eytan Modiano (S’90–M’93–SM’00–F’12)
received the B.S. degree in electrical engineering
and computer science from the University of
Connecticut at Storrs in 1986 and the M.S. and
Ph.D. degrees in electrical engineering from the
University of Maryland, College Park, MD, USA,
in 1989 and 1992, respectively. He was a Naval
Research Laboratory Fellow from 1987 to 1992,
a National Research Council Post-Doctoral Fellow
from 1992 to 1993, and a member of the Technical
Staff, MIT Lincoln Laboratory, from 1993 to 1999.

In 1999, he joined the faculty at the Massachusetts Institute of Technology,
where he is currently a Professor with the Department of Aeronautics and
Astronautics and an Associate Director of the Laboratory for Information
and Decision Systems.

His research interests include the modeling, analysis, and design of
communication networks and protocols. He is a Fellow of the IEEE and
an Associate Fellow of AIAA. He served on the IEEE Fellows Committee.
He was a co-recipient of the Infocom 2018 Best Paper Award, the MobiHoc
2018 Best Paper Award, the MobiHoc 2016 Best Paper Award, the Wiopt
2013 Best Paper Award, and the Sigmetrics 2006 Best Paper Award. He was
the Technical Program Co-Chair of the IEEE Wiopt 2006, the IEEE Infocom
2007, ACM MobiHoc 2007, and DRCN 2015. He served as an Associate
Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY and the
IEEE/ACM TRANSACTIONS ON NETWORKING. He is the Editor-in-Chief of
the IEEE/ACM TRANSACTIONS ON NETWORKING.

http://dx.doi.org/10.1287/ijoc.2014.0623

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

