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MinimizingQueue Length Regret Under Adversarial
Network Models

QINGKAI LIANG and EYTAN MODIANO, LIDS, Massachusetts Institute of Technology, USA

Stochastic models have been dominant in network optimization theory for over two decades, due to their

analytical tractability. However, these models fail to capture non-stationary or even adversarial network

dynamics which are of increasing importance for modeling the behavior of networks under malicious attacks

or characterizing short-term transient behavior. In this paper, we focus on minimizing queue length regret

under adversarial network models, which measures the finite-time queue length difference between a causal

policy and an “oracle" that knows the future. Two adversarial network models are developed to characterize

the adversary’s behavior. We provide lower bounds on queue length regret under these adversary models and

analyze the performance of two control policies (i.e., the MaxWeight policy and the Tracking Algorithm). We

further characterize the stability region under adversarial network models, and show that both the MaxWeight

policy and the Tracking Algorithm are throughput-optimal even in adversarial settings.
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1 INTRODUCTION
1.1 Background and Motivation
Stochastic network models have been dominant in network optimization theory for over two

decades, due to their analytical tractability. For example, it is often assumed in wireless networks

that the variation of traffic patterns and the evolution of channel capacity follow some stationary

stochastic process, such as the i.i.d. model and the ergodic Markov model. Many important network

control policies (e.g., MaxWeight policy [16]) have been derived to optimize network performance

(e.g., throughput) under those stochastic network dynamics.

However, non-stationary or even adversarial dynamics have been of increasing importance in

recent years. For example, modern communication networks frequently suffer from Distributed

Denial-of-Service (DDoS) attacks or jamming attacks [17], where traffic injections and channel

conditions are controlled by some malicious entity in order to degrade network performance. As

a result, it is important to develop efficient control policies that optimize network performance

even in adversarial settings. However, extending the traditional stochastic network optimization

framework to the adversarial setting is non-trivial because many important notions and analytical

tools developed for stochastic networks cannot be applied in adversarial settings. For example, the

traditional stochastic network optimization focuses on long-term network performance while in

an adversarial environment the network may not have any steady state or well-defined long-term

time averages. Thus, typical steady-state analysis and many equilibrium-based notions such as
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11:2 Qingkai Liang and Eytan Modiano

the network throughput region cannot be used in networks with adversarial dynamics, and it

is important to understand “transient" network performance within a finite time horizon in a

non-stationary/adversarial environment.

In this paper, we investigate efficient network control policies that can optimize network perfor-

mance (i.e., queue length) within a finite time horizon in an adversarial environment.

1.2 Main Results
We develop general adversarial network models and propose a new finite-time performance metric,

referred to as queue length regret (the formal definition is given in Section 2.3):

Rπ
T =

∑
i

Qπ
i (T ) −

∑
i

Q∗
i (T ),

where

∑
i Q

π
i (T ) is the total queue length achieved by control policy π after a finite time horizonT ,

and

∑
i Q

∗
i (T ) is the minimum queue length achieved by some “oracle" that has perfect knowledge

about the future.

We first prove that it is impossible to achieve “low" queue length regret if the adversary is

unconstrained. In particular, there exist some adversarial network dynamics such that the queue

length regret grows at least linearly with the time horizon T under any causal control policy. This

impossibility result motivates us to study constrained adversarial dynamics.

We then study two adversarial network models where the network dynamics are constrained

to some “admissible" set. In particular, we first consider the (W , ϵ)-constrained adversary model,

where the total arrivals are less than (1 − ϵ) times of the total services within any window ofW
slots. Although this window-based model is relatively limited, it is widely used by existing works

(e.g., [2–4, 9, 12]) due to its analytical tractability and serves as a foundation for understanding

more generalized adversary models.

Observing the limitation of (W , ϵ)-constrained model. we then propose a more generalized

VT -constrained model, where the total queue length generated by the “oracle" during its sample

path is upper bounded by VT . By varying the values VT , the proposed VT -constrained adversary

model can cover a wide range of adversarial settings: from a strictly constrained adversary to a

fully unconstrained adversary.

Under the above two adversary models, we develop lower bounds on queue length regret. It is

shown that no causal policy can achieve sublinear queue length regret ifW or VT grows linearly

with T . We also analyze the queue length regret of two control algorithms: the MaxWeight policy

[16] and the Tracking Algorithm [3, 4] under the two adversarial models. In particular, both the

MaxWeight policy and the Tracking Algorithm achieve sublinear queue length regret wheneverW
or VT grows sublinearly with T , yet the theoretical regret bound under the Tracking Algorithm

is better than that under the MaxWeight policy. The Tracking Algorithm is also asymptotically

regret-optimal under the (W , ϵ)-constrained adversary model. We summarize these results in Table

1.

Finally, based on the above analytical results and the observation that sublinear queue length

regret is equivalent rate stability, we characterize the stability region under adversarial network

models, and show that both the MaxWeight policy and the Tracking Algorithm are throughput-

optimal even in adversarial settings.

1.3 Related Work
The study of adversarial network models dates back more than two decades ago. Rene Cruz [7]

provided the first concrete example of networks with adversarial dynamics, which were later

generalized by Borodin et al. [5] under the Adversarial Queuing Theory (AQT) framework. In AQT,
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Table 1. Queue Length Regret Bounds

(W , ϵ)-Constrained
Adversary

VT -Constrained
Adversary

Lower Bound Ω(W ) Ω(VT )

MaxWeight O(
√
TW ) if ϵ = 0

O(W /ϵ3) if ϵ > 0

O(V 1/3

T T 2/3)

Tracking Alg. O(W ) O(
√
TVT )

in each time slot, the adversary injects a set of packets at some of the nodes. In order to avoid

trivially overloading the system, the AQT framework imposes a stringent window constraints: the
maximum traffic injected in every link over any window ofW time slots should not exceed the

amount of traffic that the link can serve during that interval. Andrews et al. [1] introduced a more

generalized adversary model known as the Leaky Bucket (LB) model that differs from AQT by

allowing some traffic burst during any time interval. The AQT model and the LB model have given

rise to a large number of results since their introduction, most of which are about network stability

under several simple scheduling policies such as FIFO (see [6] for a review of these results).

However, the AQT and the LB models assume that only packet injections are adversarial while

the underlying network topology and link states remain fixed. Such a static network model does

not capture many adversarial environments, such as wireless networks under jamming attacks

where the adversary can control the channel states. Andrews and Zhang [3, 4] extended the AQT

model to single-hop dynamic wireless networks, where both packets injections and link states are

controlled by an adversary, and prove the stability of the MaxWeight algorithm in this context. Jung

et al. [2, 9] further extended the results of [3, 4] to multi-hop dynamic networks. Our window-based

(W , ϵ)-constrained model is inspired by and similar to the adversarial models used in [2–4, 9].

Moreover, we also develop a new VT -constrained model that relaxes the window constraints and

generalizes the existing window-based (W , ϵ)-constrained models.

Recently, Paschos and Tassiulas [14] considered the problem of stabilizing queues under a mixture

of stochastic and adversarial traffic injections, but their results is limited to a very specific service

provisioning model and only traffic injections are adversarial.

While the above-mentioned works focused on network stability, Neely [12] investigated the

universal network utility maximization problem where network utility needs to be maximized

subject to stability constraints under adversarial network dynamics. Algorithm (time-average)

performance is measured with respect to a so-called “W -slot look-ahead policy". Such a policy has

perfect knowledge about network dynamics over the nextW slots but it is required that under this

policy the total arrivals to each queue should not exceed the total amount of service offered to that

queue during every window ofW slots. As a result, it is similar to our (W , ϵ)-constrained model

where stringent window constraints have to be enforced. In this paper, we not only considers the

(W , ϵ)-constrained model but also develop a more general VT -constrained model that gets rid of

the window constraints.

In addition, Shakkottai et al. [8] also used the notion of queue regret in the multiarmed bandit

problem. However, their analysis is intended for stochastic environments and cannot be carried

over to adversarial environments.

In summary, our paper expands previous work in a number of fundamental ways.

First, we develop queue length regret lower bounds under both the (W , ϵ)-constrained and theVT -
constrained models. As far as we know, none of the existing works (e.g., [2–4, 9, 12]) provide lower

bounds on queue length regret (or queue length), even under the restrictive (W , ϵ)-constrained
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model where stringent window constraints are imposed. Note that our lower bounds on queue

length regret reveal fundamental limits of the system. For example, our lower bound under the

VT -constrained model reveals that if VT = Ω(T ), then no causal policy can stabilize the network

even if there exists some stabilizing non-causal policy. Moreover, these lower bounds are also critical

to establishing the optimality of the Tracking algorithm under the (W , ϵ)-constrained model.

Second, we provide analysis under the new VT -constrained adversary model which generalizes

the adversarial network dynamics models used by existing works. As far as we know, existing

works (e.g., [2–4, 9, 12]) all use the (W , ϵ)-constrained adversary model or similar windows-based

variants due to its analytical tractability. In this paper, we propose a new VT -constrained adversary

model which gets rid of the window constrains and covers the full spectrum of network dynamics.

Due to the lack of window-based structure, the analysis carried out in existing works cannot be

applied to the VT -constrained model. In this paper, we develop queue length regret upper bounds

for the MaxWeight policy and the Tracking algorithm under the VT -constrained model by using a

new “traffic shedding" technique, which converts a general VT -constrained adversary to a (W , ϵ)-
constrained adversary and then optimizes the regret bounds by carefully choosing the amount

of traffic to shed. Such a proof technique may be used to adapt any queue length regret bounds

derived under the (W , ϵ)-constrained model to that under the VT -constrained model.

Finally, to the best of our knowledge, this is the first paper that characterizes the throughput

region under arbitrary (and possibly adversarial) network dynamics, which provides a necessary

and sufficient condition on network dynamics such that the network is stable. The characterization

of the throughput region is based on our analysis under the new VT -constrained model and the

equivalence between sublinear queue length regret and rate stability.

1.4 Organization of This Paper
We first introduce the system model and relevant performance metrics in Section 2. We study

the (W , ϵ)-constrained and VT -constrained adversary models in Sections 3 and 4, respectively. In

Section 5, we characterize the stability region under adversarial network models. Finally, simulation

results and conclusions are given in Section 6 and 7, respectively.

2 SYSTEMMODEL
2.1 Asymptotic Notations
Let f and д be two functions defined on some subset of real numbers. Then f (x) = O(д(x)) if

lim supx→∞

|f (x ) |
д(x ) < ∞. Similarly, f (x) = Ω(д(x)) if lim infx→∞

f (x )
д(x ) > 0. Also, f (x) = Θ(д(x)) if

f (x) = O(д(x)) and f (x) = Ω(д(x)). In addition, f (x) = o(д(x)) if limx→∞
f (x )
д(x ) = 0, and in this case

we say that f (x) is sublinear in д(x).

2.2 Network Model
Consider a network with N queues (the set of all queues are denoted by N = {1, · · · ,N }). Time

is slotted with a finite horizon T = {0, · · · ,T − 1}. Let ωt denote the network event that occurs
in slot t , which indicates the current network parameters, such as a vector of conditions for each

link, a vector of exogenous arrivals to each node, or other relevant information about the current

network links and exogenous arrivals.

At the beginning of each time slot t , the network operator observes the current network event

ωt and chooses a control action αt from some action space Dωt that can depend on ωt . The

network event ωt and the control action αt together produce the service vector b(αt ,ωt ) , b(t) =
(b1(t), · · · ,bN (t)) and the arrival vector a(αt ,ωt ) , a(t) = (a1(t), · · · ,aN (t)). Note that ai (t)
includes both the exogenous arrivals from outside the network to queue i , and the endogenous
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arrivals from other queues (i.e., routed packets from other queues to queue i). Thus, the above
network model accounts for both single-hop and multi-hop networks, and the control action αt may

correspond to, for example, joint routing, rate allocation and scheduling decisions in a multi-hop

network. Let Q(t) = (Q1(t), · · · ,QN (t)) be the queue length vector at the beginning of slot t (before
the arrivals in that slot). The queuing dynamics are

Qi (t + 1) = [Qi (t) + ai (t) − bi (t)]
+, ∀i ∈ N , t ∈ T ,

where [x]+ = max{x , 0}.
We assume that the sequence of network events {ωt }

T−1
t=0 are generate according to an arbi-

trary process (possibly non-stationary or even adversarial), except for the following boundedness

assumptions.

• Under any network event and any control action, the arrivals and the service rates in each slot

are bounded by constants that are independent of the time horizon T :

0 ≤ ai (t) ≤ A, 0 ≤ bi (t) ≤ B, ∀t ∈ T , i ∈ N .

For simplicity, we assume B ≥ A such that both arrivals and services are upper bounded by B in

each slot.

A policy π generates a sequence of control actions

(
απ
0
, · · · ,απ

T−1

)
within the time horizon. In

each slot t , the queue length vector, the controlled arrival vector and the service rate vector under

policy π is denoted by Qπ (t), aπ (t) and bπ (t), respectively. A causal policy is one that generates

the current control action αt only based on the knowledge up until the current slot t . In contrast, a

non-causal policy may generate the current control action αt based on knowledge of the future.

Example: An example of the above network model is the power control problem in wireless

downlink systems with N links. In each slot t , the controller observes the current network
events ωt =

(
a(t), s(t)

)
, where a(t) and s(t) correspond to the vector of exogenous arrivals

and the vector of channel capacities in slot t , respectively. Then the controller takes a control

action αt as a power allocation vector αt = (α (1)
t , · · · ,α

(N )
t ), subject to an instantaneous power

constraint αt ∈ Dωt , where α
(i)
t is the power allocated to link i in slot t . The constraint set

Dωt could be, for example, the set of power allocation vectors that satisfy the peak power

constraint

∑
i α

(i)
t ≤ αpeak . The service rate for each link i is determined by the rate-power

function bi (αt ,ωt ). For example, one possible form of the rate-power function is bi (αt ,ωt ) =

si (t) log
(
1+SINRi (αt ,ωt )

)
, where SINRi (αt ,ωt ) is the signal-to-interference-plus-noise ratio

over link i when power vector αt is allocated under network event ωt .

2.3 Performance Metrics
Our objective is to find a causal control policy that keeps the total queue length as small as possible.

Note that a network with adversarial dynamics may not have any steady state or well-defined

time averages. Hence, it is crucial to understand the transient behavior of the network, and the

traditional equilibrium-based performance metrics may not be appropriate in an adversarial setting.

As a result, we introduce the notion of queue length regret to measure the finite-time performance

achieved by a causal control policy.
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Definition 2.1 (Queue Length Regret). Given the time horizon T , the queue length regret achieved

by a causal policy π under a sequence of network events ω0, · · · ,ωT−1 is defined to be

Rπ
T

(
{ω0, · · · ,ωT−1}

)
=
∑
i ∈N

Qπ
i (T ) −

∑
i ∈N

Q∗
i (T ), (1)

where

∑
i Q

∗
i (T ) is the minimum total queue length generated by the optimal non-causal policy

that knows the the entire sequence of network events {ω0, · · · ,ωT−1} in advance. The worst-case

queue length regret achieved by policy π is

Rπ
T = sup

ω0, · · · ,ωT−1

Rπ
T

(
{ω0, · · · ,ωT−1}

)
.

In this setup, a policy π is chosen and then the adversary selects the sequence of network events

{ω0, · · · ,ωT−1} that maximize the regret. Intuitively, the notion of queue length regret captures

the worst-case queue length difference between a causal policy and an ideal T -slot lookahead
non-causal policy. This metric also measures the “price of causality", i.e., the cost of not knowing

the future.

A desirable first order characteristic of a “good" policy π is that it achieves sublinear regret

Rπ
T = o(T ) such that Rπ

T /T → 0 as the time horizon T → ∞. In other words, the time-average

queue growth rate asymptotically approaches the one achieved by the optimal non-causal policy.

We will also demonstrate the equivalence between sublinear queue length regret and rate stability
in Section 5.

In addition to being sublinear, the queue length regret should also have a low growth rate. A

lower growth rate of regret implies that the policy has a better learning ability and can adapt to

the adversarial environment faster. We define the minimax queue length regret as the minimal

queue length regret that can be achieved over the space of causal policies. A policy is said to be

asymptotically regret-optimal if it achieves the minimax regret up to a constant multiplicative factor;

this implies that, in terms of growth rate of regret, the performance of the policy is the best possible.

Finally, note that the growth rate of regret is strongly related to the notion of convergence time

(see [13] for more details).

Unfortunately, the following theorem shows that in general no causal policy can achieve sublinear

queue length regret for any sequence of network events.

Theorem 2.2. For any causal policy π , there exists a sequence of network events ω0, · · · ,ωT−1 such
that the queue length regret Rπ

T

(
{ω0, · · · ,ωT−1}

)
≥ T /2.

Proof. We prove this theorem by constructing a sequence of network events ω0, · · · ,ωT−1 such
that the lower bound is attained. Consider the power control example mentioned in Section 2.2

with N = 2 links. The constraint on power allocation is α (1)
t + α

(2)
t ≤ 1 for each t ∈ T , and the

rate-power function is bi (t) = α (i)
t si (t). Without loss generality, assume that the time horizon T is

an even number. The exogenous arrivals and channel capacities in the first T /2 slots is

a1(t) = a2(t) = 2, s1(t) = s2(t) = 2, ∀t = 0, · · · ,T /2 − 1.

Under the power allocation constraint, the total number of packets that can be cleared in the first

T /2 slots is at most T . For any causal policy π , let n1 and n2 be the number of packets cleared over

link 1 and 2 during the first T /2 slots, respectively. Then it is clear that n1 + n2 ≤ T , which implies

that min{n1,n2} ≤ T /2. Define i∗ = argmini=1,2 ni (ties are broken arbitrarily). Then the queue

length over link i∗ after T /2 slots is

Qπ
i∗ (T /2) = T − ni∗ = T −min{n1,n2} ≥ T /2.
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In the next T /2 slots, the adversary can set

ai∗ (t) = 0, si∗ (t) = 0, t = T /2, · · · ,T − 1.

For the other link (its index is denoted by i ′), the adversary can set

ai′(t) = 0, si′(t) = 2, t = T /2, · · · ,T − 1.

Since there is no capacity to clear any packet over link i∗ in the last T /2 slots, we have

Qπ
i∗ (T ) = Q

π
i∗ (T /2) ≥ T /2,

which implies that

∑
i Q

π
i (T ) ≥ T /2.

On the other hand, the optimal non-causal policy can choose the following sequence of power

allocation vectors (
α (i∗)
t ,α

(i′)
t

)
=

{
(1, 0), t = 0, · · · ,T /2 − 1,

(0, 1), t = T /2, · · · ,T − 1,

such that

∑
i Q

∗
i (T ) = 0, which implies that the queue length regret achieved by policy π is at least

T /2. This completes the proof.

Remark:Note that the above construction requires the value ofT . We can eliminate the dependence

on the time horizon T by using the standard Doubling Trick (see Section 2.3.1 in [15]). The details

about the doubling trick are given in Appendix A.1. �

Theorem 2.2 shows that sublinear queue length regret is not achievable if the adversary has

unconstrained power in determining the network dynamics. As a result, in the following two

sections, we develop two adversary models where the sequence of network events (i.e. network

dynamics) that the adversary can select is constrained to some “admissible" set. In Section 3, we

consider the (W , ϵ)-constrained adversary model that is an extension of the widely-known yet very

stringent model used in Adversarial Queuing Theory. Next in Section 4, we develop a more relaxed

adversary model called the VT -constrained adversary. Lower bounds on queue length regret and

the performance of some commonly-used algorithms are analyzed under the two adversary models.

3 (W , ϵ)-CONSTRAINED ADVERSARY MODEL
In this section, we investigate the (W , ϵ)-constrained adversary model which is an extension of the

classical Adversarial Queuing Theory (AQT) [5] (similar to the models used in[2–4, 9, 12]). It has

stringent constraints on the set of admissible network dynamics that the adversary can set, yet is

analytically tractable, which facilitates our subsequent investigation of a more relaxed adversary

model in Section 4. We first give the definition of (W , ϵ)-constrained network dynamics.

Definition 3.1 ((W , ϵ)-Constrained Dynamics). Given a window sizeW ∈ [1,T ] and a load factor

ϵ ∈ [0, 1], a sequence of network eventsω0, · · · ,ωT−1 is (W , ϵ)-constrained if there exists a (possibly
non-causal) policy π such that for any t = 0, W , 2W , · · ·

t+W −1∑
τ=t

aπi (τ ) ≤ (1 − ϵ)
t+W −1∑
τ=t

bπi (τ ), ∀i ∈ N . (2)

Any network satisfying the above is called a (W , ϵ)-constrained network. In other words, the

time horizon is divided into frames of sizeW slots, and it is required that there exists a (possibly

non-causal) policy such that during every frame the total amount of arrivals to each queue is less

than or equal to 1 − ϵ times of the total amount of services offered to that queue.

Denote by AT (W , ϵ) the set of all sequences of network events {ω0, · · · ,ωT−1} that are (W , ϵ)-
constrained. Then the (W , ϵ)-constrained adversary can only select the sequence of network
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events from the constrained set AT (W , ϵ). In this context, the worst-case queue length regret

achieved by a causal policy π is defined to be

Rπ
T = sup

{ω0, · · · ,ωT−1 }∈AT (W ,ϵ )
Rπ
T

(
{ω0, · · · ,ωT−1}

)
,

where Rπ
T (·) is given in (1).

In the following, we first provide a lower bound on queue length regret under the (W , ϵ)-
constrained adversary model (Section 3.1), and then analyze the worst-case queue length regret

achieved by several common control policies (Section 3.2). Note that throughout this section we

mainly focus on the dependence of queue length regret onW , ϵ andT while treating the number
of users N a constant.

3.1 Lower Bound onQueue Length Regret
The following theorem provides a lower bound on queue length regret under the (W , ϵ)-constrained
adversary model.

Theorem 3.2. For any causal policy π , there exists a sequence of network events {ω0, · · · ,ωT−1} ∈

AT (W , ϵ) such that Rπ
T

(
{ω0, · · · ,ωT−1}

)
≥ max

{
(1 − 2ϵ)W /2, 0

}
.

Proof. For any given causal policy, we construct a sequence of network events such that the

lower bound is attained. The construction is similar to the one used in the proof of Theorem 2.2.

The difference is that the constructed sequence of network events are also (W , ϵ)-constrained here.

See Appendix A.2 for the detailed proof. �

Remarks: Note that if ϵ is some small (ϵ < 1/2) constant independent of the window sizeW , then

the above lower bound is of order Ω(W ). If the window sizeW is comparable with the time horizon

T , i.e.,W = Θ(T ), no causal policy can achieve sublinear (worst-case) queue length regret under

the (W , ϵ)-constrained adversary model. On the other hand, ifW = o(T ), there might exist some

causal policy that attains sublinear queue length regret, which we investigate in the next section.

In particular, we show that the above regret lower bound can be asymptotically attained by some

causal policy and thus the minimax queue length regret in (W , ϵ)-constrained networks is Θ(W ).

3.2 Algorithm Performance in (W , ϵ)-Constrained Networks
In this section, we analyze the worst-case queue length regret achieved by two network control

algorithms under the (W , ϵ)-constrained adversary model. The first is the famous MaxWeight policy

[16] that was proved to be throughput-optimal in stochastic networks. The second is a generalized

version of the Tracking Algorithm [3, 4] that was originally proposed in Adversarial Queuing

Theory.

3.2.1 MaxWeight. In each slot t , the MaxWeight algorithm simply observes the current net-

work event ωt and chooses the control action as follows:

αMW
t = arg max

αt ∈Dωt

∑
i

Qi (t)
(
bi (αt ,ωt ) − ai (αt ,ωt )

)
. (3)

The solution to (3) depends on the particular network model. For example, in a single-hop wireless

network with primary interference, the solution to (3) just corresponds to the one that serves the

queue with the largest product of queue length and service rate; in a input-queued switch with

crossbar constraints, solving (3) is equivalent to solving the Maximum Weight Matching problem

[10].
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The following theorem gives the performance of the MaxWeight policy in (W , ϵ)-constrained
networks.

Theorem 3.3. Under the (W , ϵ)-constrained adversary model, the worst-case queue length regret
achieved by the MaxWeight algorithm is O(

√
TW ) for any ϵ ≥ 0.

Moreover, in the special case where ϵ > 0 and amin > 0, a better queue length regret bound of
O
(

W
ϵ 3amin

)
can be achieved by the MaxWeight algorithm, where amin is the minimum arrival to each

queue in each slot.

Proof. The proof is based on the Lyapunov drift analysis. However, instead of considering the

one-slot drift as in the traditional stochastic analysis, we find upper bounds on theW -slot drift and

make sample-path arguments. See Appendix A.3 for details. �

There are several important observations about Theorem 3.3. First, sublinear worst-case queue

length regret could be achieved by the MaxWeight policy under the (W , ϵ)-constrained adversary

model as long asW = o(T ). Noticing that sublinear regret cannot be achieved by any causal policy

ifW = Ω(T ) (Theorem 3.2), we have the following corollary.

Corollary 3.4. Under the (W , ϵ)-constrained adversary model, sublinear worst-case queue length
regret is achievable if and only ifW = o(T ).

Second, the O(
√
TW ) queue length regret bound could be much larger than the lower bound in

Theorem 3.2 whenW is significantly smaller than T .
Third, if amin > 0 and the system is in the sub-critical regime (ϵ > 0), then the performance bound

of the MaxWeight policy is O
(

W
ϵ 3amin

)
, which could be significantly better than the O(

√
TW ) bound

whenW is much smaller than T and ϵ,amin is not too small. This is analogous to the performance

of the MaxWeight policy in stochastic networks: strong stability1 can be achieved if the system is

strictly inside the stability region (sub-critically loaded) while only rate stability can be achieved if

the system is on the boundary of the stability region (critically-loaded) [11].

Finally, it should be noted that in order to derive a better regret bound in the sub-critical regime

(ϵ > 0), we require an additional assumption that amin > 0 and the obtained bound is inversely

proportional to the value of amin. It is still unknown whether a better regret bound could be obtained

in the sub-critical regime without such an assumption. We conjecture that the regret bound of

O(W /ϵ3) may hold for MaxWeight even without the assumption that amin > 0, since no evidence

shows that there is any discontinuity at amin = 0. On other hand, if the assumption that amin > 0 is

not satisfied, then the O(
√
TW ) bound can be applied, which is sufficient to ensure that all of the

subsequent results about MaxWeight (e.g., Corollary 3.4) hold true.

3.2.2 Tracking Algorithm. The original Tracking Algorithm was proposed in [3, 4] to solve a

scheduling problem under an adversary model similar to the (W , ϵ)-constrained adversary. However,
it only works for a very specific network model: (i) the network has to be single-hop where the

arrival vector is independent of the control action, and (ii) the control action has to satisfy the

primary interference constraints, i.e., only one link incident on the same node can be activated in

each slot. Next, we extend the original Tracking Algorithm to accommodate the general network

model considered in this paper.

Let Ω be the set of all possible network events that could happen in each slot. In order for the

Tracking Algorithm to work, the cardinality of Ω has to be finite (otherwise it could be discretized

1
A queuing system is strongly stable if

∑
i Qi (t ) ≤ B for some constant B as t → ∞. A system is rate-stable if

∑
i Qi (t )/

t → 0 as t → ∞.
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into a finite set as in [3]). For example, in a single-hop network, suppose each network event ωt
corresponds to a couple (a(t), s(t)) where a(t) is a vector of exogenous packet arrivals in slot t and
s(t) a vector of link states in slot t . For any link i and time t , assume that 0 ≤ ai (t) ≤ B and ai (t) is
an integer, and each link only has a finite number of S states. Then |Ω | = (SB)N .

We maintain a virtual queue for each physical queue i and each type of network event ω ∈ Ω. In
particular, let qi,ω (t) be the virtual queue length in slot t associated with link i and network eventw ,

which corresponds to the “debts" the Tracking Algorithm “owned" to the optimal (non-causal) policy

over link i under network event ω. Here, the “debts" correspond to the queue length difference

between the Tracking Algorithm and the optimal policy, and the goal of the Tracking Algorithm

is to track the queue length trajectory under the optimal policy. In addition, the “optimal" policy

corresponds to any sequence of control actions that satisfies the window constraints (2). Note that

the optimal sequence of actions cannot be calculated online. Instead, it is calculated at the end of

every window ofW slots and the debt owned during this window will be updated at the beginning

of the next window. In each slot, the Tracking Algorithm just picks the control action that clears as

much debt as possible.

The detailed algorithm description is shown in Algorithm 1. The virtual debt queues are updated

at two times. First, the virtual debt queues are updated in each slot t , after we observe the network
event ωt and an action αt is taken:

qi,ωt (t + 1) =
[
qi,ωt (t) + ai (ωt ,αt ) − bi (ωt ,αt )

]+
, (4)

and the cleared debt in slot t by action αt is defined to be

∆qi,ωt (αt ) = qi,ωt (t) − qi,ωt (t + 1).

In step 3, the Tracking Algorithm just picks the action αTAt that maximizes the total cleared debt in

slot t . Note that during the above procedure, only the virtual queues associated with network event

ωt are updated while the virtual queues associated with any other types of network events remain

unchanged. Second, the virtual debt queues are also updated everyW slots (at the end of each

window), in order to add the debt “owned" to the optimal actions during the past window. Such

a procedure is shown in steps 5-6. The optimal sequence of control actions {α∗
τ }

t
τ=t−W +1 during

the past window [t −W + 1, t] is first calculated, and then the corresponding debts are added to

each virtual queue. In particular, the debts owned to the optimal actions in the past window for

each virtual queue qi,ω is

∑
τ ∈Bω

(
bi (ω,α

∗
τ ) − ai (ω,α

∗
τ )

)
, where Bω is the set of slots during the

past window when network event ω happens.

The following theorem gives the worst-case queue length regret achieved by the Tracking

Algorithm under the (W , ϵ)-constrained adversary model.

Theorem 3.5. Assume that the size of the network event space Ω is finite. Then under the (W , ϵ)-
constrained adversary model, the worst-case queue length regret achieved by the Tracking Algorithm
is O(W ) for any ϵ ≥ 0.

Proof. We first present an upper bound on the virtual queue length, which is given in Lemma

3.6. This lemma shows that the queue length difference between the Tracking Algorithm and the

optimal policy is at most O(W ).

Lemma 3.6. For any t ∈ T and any type of network event ω ∈ Ω, we have∑
i

qi,ω (t) ≤ NBW .
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Algorithm 1 Tracking Algorithm (TA)

1: Initialize qi,ω (0) = 0 for any i ∈ N and ω ∈ Ω.
2: for t = 0, · · · ,T − 1 do
3: Choose the control action αTAt that clears as much total debt as possible:

αTAt = arg max

αt ∈Dωt

∑
i

∆qi,ωt (αt ),

and update virtual debt queues according to (4).

4: if mod (t ,W ) =W − 1 then
5: Compute the sequence of optimal control actions {α∗

τ }
t
τ=t−W +1 in the past window [t −

W + 1, t], which is any solution that satisfies

t∑
τ=t−W +1

ai (ωτ ,α
∗
τ ) ≤ (1 − ϵ)

t∑
τ=t−W +1

bi (ωτ ,α
∗
τ ), ∀i ∈ N .

6: For each i ∈ N and ω ∈ Ω, update

qi,ω (t + 1) = qi,ω (t) +
∑
τ ∈Bω

(
bi (ω,α

∗
τ ) − ai (ω,α

∗
τ )

)
,

where Bω = {τ |t −W + 1 ≤ τ ≤ t , ωτ = ω}.
7: end if
8: end for

The proof to Lemma 3.6 is presented in Appendix A.4. Intuitively, since the Tracking Algorithm

clears as much debt as possible in each slot, it can emulate the behavior of the optimal policy in the

past, and the O(W ) gap is due to the delayed debt updated.

Now we prove Theorem 3.5. Let Q(t), a(t) and b(t) be the physical queue length vector, the

arrival vector and the service vector in slot t under the Tracking Algorithm. Also let Q∗(t), a∗(t)
and b∗(t) be the queue length vector, the arrival vector and the service vector in slot t under the
optimal policy. Without loss of generality, let T = RW for some positive integer R. For each i ∈ N ,

let τi be the last time t whenQi (t) = 0. Assume that τi is contained in frame r and let ti = (r + 1)W
(i.e., the beginning of frame r + 1). Clearly we have ti − τi ≤W and thus

Qi (ti ) ≤ Qi (τi ) +
ti−1∑
t=τi

ai (t) ≤WB. (5)

Then it follows that

Qi (T ) = Qi (ti ) +
T−1∑
t=ti

(
ai (t) − bi (t)

)
≤WB +

T−1∑
t=ti

(
ai (t) + a

∗
i (t) − a∗i (t) − bi (t)

)
≤WB +

T−1∑
t=ti

(
ai (t) + b

∗
i (t) − a∗i (t) − bi (t)

)
=WB +

∑
ω ∈W

∑
t ∈Tω

[(
b∗i (t) − a∗i (t)

)
−

(
bi (t) − ai (t)

)]
.
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Here, the first inequality is due to (5) and the second inequality is due to Equation (2). The last

equality regroups time slots according to the type of network event that occurred in each slot,

where we define

Tω = {t |ti ≤ t ≤ T − 1, ωt = ω}, ∀ω ∈ W.

Note that by the definition of the virtual queue and Lemma 3.6, we have for any i ∈ N∑
t ∈Tω

[(
b∗i (t) − a∗i (t)

)
−

(
bi (t) − ai (t)

)]
≤qi,ω (T ) − qi,ω (ti ) ≤ NBW .

Then it follows that

Qi (T ) ≤WB + |Ω |NBW .

Note that the above inequality holds for all sequence of networks events and that Q∗
i (T ) ≥ 0. Then

we can conclude that the worst-case queue length regret achieved by the Tracking Algorithm is

RT =
∑
i

Qi (T ) −
∑
i

Q∗
i (T ) ≤ NWB + |Ω |N 2BW = O(W ).

This completes the proof to Theorem 3.5. �

There are several important observations about Theorem 3.5. First, sublinear worst-case queue

length regret could be achieved by the Tracking Algorithm in (W , ϵ)-constrained networks as long

asW = o(T ). Moreover, the queue length regret bound of the Tracking Algorithm is better than

that of the MaxWeight policy, in terms of their dependence onW , ϵ and T .
Second, the Tracking Algorithm is asymptotically regret-optimal under the (W , ϵ)-constrained

adversary model (if ϵ is a small constant), since the queue length regret achieved by the Tracking

Algorithm has the same order as the lower bound in Theorem 3.2. This also implies that Θ(W ) is

also the growth rate of the minimax queue length regret in (W , ϵ)-constrained networks.

Corollary 3.7. Suppose ϵ is a small constant independent of T andW . Then under the (W , ϵ)-
constrained adversary model, the minimax queue length regret is Θ(W ).

Third, the Tracking Algorithm needs to maintain a virtual queue for each type of network events

while the size of the network event space Ω may be exponential in the number of users N . As a

result, the Tracking Algorithm may not be a practical algorithm. The purpose of presenting the

Tracking Algorithm is to demonstrate that the lower bound in Theorem 3.2 could be asymptotically

achieved by a causal policy. Note that Andrews and Zhang [3, 4] proposed methods to get rid of the

exponential dependence on N , at the expense of much more involved algorithms. Their methods

may be adapted to our scenario to achieve a better dependence on N , but it is left for future work

since the focus of this paper is the scaling of queue length regret with T while N is treated as a

constant.

4 VT -CONSTRAINED ADVERSARY MODEL
The aforementioned (W , ϵ)-constrained model is relatively restrictive, where the stringent con-

straints (2) have to be satisfied for every window ofW slots. In this section, we consider a general

adversary model where the window constraints (2) are relaxed.

The new adversary model is parameterized by the inherent variation in the sequence of network

events, which is measured as follows. Given a sequence of network events ω0, · · · ,ωT−1 and a

(possibly non-causal) policy, we define

V π
(
{ω0, · · · ,ωT−1}

)
= max

t ≤T

∑
i

Qπ
i (t).
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The above function measures the peak queue length achieved by policy π during its sample path.

We further define

V
(
{ω0, · · · ,ωT−1}

)
= min

π
V π

(
{ω0, · · · ,ωT−1}

)
,

i.e., the minimum peak queue length that could be achieved by any (possibly non-causal) policy

under the sequence of network eventsω0, · · · ,ωT−1. Note thatV (·) only depends on {ω0, · · · ,ωT−1}
and measures the inherent variations in the sequence of network events.

Now we define the notion of VT -constrained dynamics where the value of V (·) is constrained by

some budget VT .

Definition 4.1 (VT -Constrained Dynamics). Given some VT ∈ [0,NTB], a sequence of network
events ω0, · · · ,ωT−1 is VT -constrained if

V
(
{ω0, · · · ,ωT−1}

)
≤ VT .

Any network satisfying the above is called aVT -constrainednetwork. Intuitively, theVT -constrained
model requires that the total queue length generated by the “oracle" during its sample path should

be upper bounded by VT .
Denote by VT the set of all possible sequences of network events that are VT -constrained. A

VT -constrained adversary can only select the sequence of network events from the set VT . In

this context, the worst-case queue length regret achieved by a causal policy π is defined as

Rπ
T = sup

{ω0, · · · ,ωT−1 }∈VT

Rπ
T

(
{ω0, · · · ,ωT−1}

)
.

where Rπ
T (·) is given in (1). Note that we restrict the range of VT to [0,NTB] since the peak queue

length within T slots is at most NTB. Any larger value of VT has the same effect as VT = NTB.
Note also that the largerVT is, the more variations the network could have. By varying the value of

VT from 0 to NTB, the above VT -constrained adversary model covers the full spectrum of network

dynamics. If VT = 0, then the arrivals should be less than or equal to the services for each queue in
every slot, and network dynamics is stringently constrained. If VT = NTB (which corresponds to

the maximum total queue length that could be build up during T slots), the network dynamics is

completely unconstrained.

In the following, we will first provide a lower bound on queue length regret under the VT -
constrained adversary model in Section 4.1 and then analyze the regret achieved by the MaxWeight

policy and the Tracking Algorithm in Section 4.2. Some important discussions are provided in

Section 4.3.

4.1 Lower Bound onQueue Length Regret
The following theorem provides a lower bound on the queue length regret under theVT -constrained
adversary model.

Theorem 4.2. For any causal policy π , there exists a sequence of network events {ω0, · · · ,ωT−1} ∈

VT such that Rπ
T

(
{ω0, · · · ,ωT−1}

)
≥ cVT , where c is some constant independent of T and VT .

Proof. For any given causal policy, we construct a sequence of network events such that the

lower bound is attained. The construction is similar to the one used in the proof of Theorem 2.2.

The difference is that the constructed sequence of network events are VT -constrained here. See

Appendix A.5 for the detailed proof. �
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If VT = Ω(T ), then no causal policy can achieve sublinear queue length regret under the VT -
constrained adversary model. On the other hand, ifVT = o(T ), there might exist some causal policy

that attains sublinear queue length regret, which we investigate in Section 4.2.

4.2 Algorithm Performance in VT -Constrained Networks
In this section, we analyze the queue length regret achieved by two algorithms in VT -constrained
networks: the MaxWeight policy and the Tracking Algorithm. In particular, we show that both

algorithms achieves sublinear regret if VT = o(T ).

4.2.1 MaxWeight. The MaxWeight policy discussed in Section 3.2 can be directly applied in

VT -constrained networks. The following theorem gives the worst-case queue length regret achieved

by the MaxWeight policy under the VT -constrained adversary model.

Theorem 4.3. Under the VT -constrained adversary model, the worst-case queue length regret
achieved by the MaxWeight policy is O

(
T 2/3V 1/3

T

)
.

Proof. We consider a new system that is obtained by shedding a certain amount of traffic from

the original system such that the new system is (W , 0)-constrained for some windows sizeW that

is to be selected later. By the definition of VT , there exists some (possibly non-causal) policy π ∗

such that

max

t ≤T

∑
i

Qπ ∗

i (t) = VT . (6)

Denote by ãπ
∗

(t) and aπ
∗

(t) the arrival vector in the new system and in the original system in slot t
under π ∗

, respectively. Also let XT be the total amount of shed traffic within the time horizon, i.e.,

XT =

T−1∑
t=0

∑
i

aπ
∗

i (t) −
T−1∑
t=0

∑
i

ãπ
∗

(t).

Now we divide the time horizon into frames of sizeW slots. Without loss of generality, assume

thatW divides T . Then the total number of frames is T /W . Denote by tr = (r − 1)W the beginning

of frame r . In order to make the new system (W , 0)-constrained, we can shed traffic in each frame

r such that

∑
i Q̃

π ∗

i (tr+1) = 0, where Q̃π ∗

(t) is the queue length vector in slot t in the new system

under policy π ∗
. Note that

∑
i Q

π ∗

i (tr+1) ≤ VT by equation (6), and thus at most VT arrivals need

to be shed in frame r to ensure

∑
i Q̃

π ∗

i (tr+1) = 0. Therefore, in order to make the new system

(W , 0)-constrained, at most VTT /W arrivals need to be shed during the entire time horizon, i.e.,

XT ≤ VTT /W . (7)

Let Q(t) and Q̃(t) be queue length vector in slot t if the MaxWeight algorithm is applied to the

original system and the new system, respectively. Then it is clear that∑
i

Qi (T ) ≤ XT +
∑
i

Q̃i (T ). (8)

Since the new system is (W , 0)-constrained, by the proof of Theorem 3.3, we have∑
i

Q̃i (T ) ≤ c1
√
WT (9)

for some constant c1 > 0. Combing (7), (8) and (9) we have∑
i

Qi (T ) ≤ VTT /W + c1
√
WT .
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ChoosingW = c2V
2/3

T T 1/3 ≤ T for some constant c2 > 0, we have∑
i

Qi (T ) ≤ (
1

c2
+ c1

√
c2)T

2/3V 1/3

T = O(T 2/3V 1/3

T ),

which implies that the worst-case queue length regret achieved by the MaxWeight policy under

the VT -constrained adversary model is O(T 2/3V 1/3

T ). �

There are several observations about Theorem 4.3. First, the MaxWeight policy achieves sublinear

queue length regret under the VT -constrained adversary model whenever VT = o(T ). Notice that
sublinear regret cannot be achieved by any causal policy if VT = Ω(T ) (Theorem 4.2). We have the

following corollary.

Corollary 4.4. Under the VT -constrained adversary model, sublinear worst-case queue length
regret is achievable if and only if VT = o(T ).

Second, the MaxWeight policy does not attain the Ω(VT ) lower bound in Theorem 4.2, especially

when VT is significantly smaller than T .

4.2.2 Tracking Algorithm. The Tracking Algorithm introduced under the (W , ϵ)-constrained
adversary model requires that the window constraints (2) be satisfied for some window sizeW .

However, there might be no window structure under the VT -constrained adversary model and thus

the Tracking Algorithm cannot be directly applied in VT -constrained networks. We slightly modify

the Tracking Algorithm of Section 3.2 by settingW =
⌈√

TVT
NB

⌉
. Note that VT ∈ [0,NTB], which

guarantees thatW ≤ T . Moreover, step 6 of the original Tracking Algorithm is tweaked to find a

sequence of control actions {α∗
τ }

t
τ=t−W +1 that satisfies the following constraints:

t∑
τ=t−W +1

ai (ωτ ,α
∗
τ ) ≤

t∑
τ=t−W +1

bi (ωτ ,α
∗
τ ) +VT , ∀i ∈ N . (10)

Note that by the definition of VT -constrained networks, there always exists a feasible solution

satisfying the above constraints.

Under the above setting, the worst-case queue length regret achieved by the Tracking Algorithm

under the VT -constrained adversary model is given in the following theorem
2
.

Theorem 4.5. Under the VT -constrained adversary model, the worst-case queue length regret
achieved by the Tracking Algorithm is O(

√
VTT ).

Proof. It can be easily verified that Lemma 3.6 still holds in VT -constrained networks. Then

following the similar line of argument as in the proof to Theorem 3.5, we have

Qi (T ) ≤WB +
T−1∑
t=ti

(
ai (t) + a

∗
i (t) − a∗i (t) − bi (t)

)
≤WB +

T−1∑
t=ti

(
ai (t) + b

∗
i (t) − a∗i (t) − bi (t)

)
+
VTT

W

=WB + |Ω |NBW +
VTT

W
,

2
As is discussed in Section 3.2.2, the set of possible network events should be finite in order for the Tracking Algorithm to

work.
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where the second inequality is due to (10). ChoosingW =
⌈√

TVT
NB

⌉
, we have

Qi (T ) ≤ (1 + B)

√
TVT
NB
+ (|Ω | + 1)

√
TVTNB,

which implies that the worst-case queue length regret achieved by the Tracking Algorithm under

the VT -constrained adversary model is O(
√
TVT ). �

There are several important observations about Theorem 4.5. First, similar to MaxWeight, the

Tracking Algorithm also guarantees sublinear queue length regret whenever VT = o(T ). Second,
the Tracking Algorithm has a better regret bound than that under the MaxWeight policy when VT
is significantly smaller than T . Third, the regret bound of the Tracking Algorithm does not attain

the Ω(VT ) regret lower bound in Theorem 4.2. Thus, finding a causal policy that can close the gap

remains an open problem.

4.3 Discussions
4.3.1 Sensitivity of Tracking Algorithm to Parameters. Note that the above Tracking Algorithm

requires VT as a parameter. Unfortunately, in practice, it is impossible to know the precise value of

VT for a given network in advance. To alleviate this issue, we can search for the correct value ofVT .
Note that the range for VT is [0,NBT ]. Then one may perform binary search to find the correct

value of VT by running the Tracking algorithm with different values of VT over multiple episodes

within the time horizon (e.g., if the time horizon is T = 10
5
slots, then one episode could be 10

3

slots). Similar techniques can be applied if the Tracking Algorithm is used in (W , ϵ)-constrained
networks where the valuesW and ϵ are required as input parameters.

4.3.2 Relationship Between Adversary Models. The VT -constrained adversary model generalizes

the (W , ϵ)-constrained adversarymodel: any sequence of network events that are (W , ϵ)-constrained
must also be VT -constrained with VT = O(W ) due to the window structure. The analysis in the

VT -constrained adversary model also gives a more general condition for sublinear queue length

regret.

4.3.3 Queue Length Regret vs. Queue Length. Note that under the (W , ϵ)-constrained model, the

optimal queue length is bounded by 0 ≤
∑

i Q
∗
i (T ) ≤ O(W ); under the VT -constrained model, the

optimal queue length is bounded by 0 ≤
∑

i Q
∗
i (T ) ≤ O(VT ). As a result, the queue length regret

bounds we derived under the two constrained model are also legitimate bounds for total queue

length. While queue length regret and queue length may be quantitatively similar under the two

constrained models, it does not imply that queue length regret is equivalent to queue length in

general. For example, if we replace queue length regret by queue length, the impossibility result

in Theorem 2.2 would become meaningless since the adversary can always trivially overload the

system to obtain Ω(T ) queue length. By comparison, under the notion of queue length regret,

Theorem 2.2 establishes that the gap between a causal policy and the optimal policy could be very

large, and thus it impossible for any causal policy to stabilize the network even if the system is not

overloaded. Such an impossibility result is the primary motivation for imposing constraints on the

best achievable queue length performance as in Sections 3 and 4.

5 STABILITY REGION IN ADVERSARIAL NETWORKS
In this section, we characterize the stability region under adversarial network models. We first give

the definition of rate stability.
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Definition 5.1 (Rate Stability). A network is rate-stable under a control policy π if

lim

T→∞

∑
i Q

π
i (T )

T
= 0. (11)

Intuitively, rate stability requires that the long-term arrival rate is less than or equal to the long-term

service rate.

The following observation directly follows from the definition of queue length regret.

Observation 1. In any VT -constrained network with VT = o(T ), rate stability is equivalent to
sublinear queue length regret.

Proof. See Appendix A.6. �

Combing the above observation with Theorems 4.3 and 4.5, we have the following corollary.

Corollary 5.2. In any VT -constrained network with VT = o(T ), both the MaxWeight policy and
the Tracking Algorithm achieve rate stability .

The notion of stability region describes a necessary and sufficient condition such that rate

stability could be achieved. In particular, in a single-hop stochastic network, it was shown in [11]

that the stability region can be described by the existence of a causal policy π such that

lim

T→∞

1

T

T−1∑
t=0

ai (t) ≤ lim

T→∞

1

T

T−1∑
t=0

bπi (t), ∀i .

However, such conditions cannot be applied in adversarial settings since the above limits may not

exist. Thus, we need a new characterization of the stability region for networks with arbitrary

(possibly adversarial) dynamics. as is given in the following theorem.

Theorem 5.3. The network is rate-stable under some causal policy if and only ifV
(
{ω0, · · · ,ωT−1}

)
=

o(T ) as T → ∞, for a given sequence of network events ω0,ω1, · · · .

Proof. See Appendix A.7. �

In other words, the stability region can be described as the set of sequences of network events

{ω0,ω1, · · · } such that v
(
{ω0, · · · ,ωT−1}

)
= o(T ). We say that a control policy is throughput-

optimal if it achieves rate stability whenever the sequence of network events ω0,ω1, · · · is inside
the stability region. Combining Theorem 5.3 and Corollary 5.2, we conclude the following.

Corollary 5.4. Both the MaxWeight policy and the Tracking Algorithm are throughput-optimal
in networks with arbitrary (possibly adversarial) dynamics.

6 SIMULATIONS
In this section, we empirically validate the theoretical bounds derived in this paper and compare

the performance of the MaxWeight policy and the Tracking Algorithm in different scenarios.

In our simulations, we consider a one-hop wireless network with a single base station and N
users. In each slot, the base station observes the current channel rate for each user and selects one

of the users to serve. The packet arrival process and the evolution of channel rates are arbitrary

and possibly adversarial. In the following, we investigate two specific scenarios.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 11. Publication date: March 2018.



11:18 Qingkai Liang and Eytan Modiano

6.1 Scenario I: Network with Adaptive Adversary
First, we consider a scenario where the channel rate vector in each slot is controlled by an adaptive

adversary. There are N = 2 users in the network, and time is divided into frames ofW slots. In

the first ⌈W /2⌉ slots of each frame, the arrivals to each user are 2 packets/slot and the channel

rate for each user is also 2 packets/slot. In the remaining slots of each frame, there are no arrivals

to both users while the channel rate is zero for the user with a longer queue and 2 packets/slot

for the other user. If the two users have the same queue length, ties are broken randomly. Such

a scenario is similar to the one that we use to prove the regret lower bound under the (W , ϵ)-
constrained adversary model (see the proof of Theorems 3.2), and it has been shown that this is a
(W , 0)-constrained adversary.
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Fig. 1. Queue length trajectory of the MaxWeight policy and the Tracking Algorithm in Scenario I (adaptive
(W , 0)-constrained adversary,W = 50).

Figure 1 shows the queue length trajectory of the MaxWeight policy and the Tracking Algorithm

under the above adaptive (W , 0)-constrained adversary. It is observed that there is no steady state

and the total queue length oscillates indefinitely with a period ofW = 50 slots. In Figure 2, we plot

the queue length regrets achieved by the MaxWeight policy and the Tracking Algorithm. The regret

lower bound, as is shown in Theorem 3.2, is also plotted in the figures for comparison. The regret

upper bounds (see Theorems 3.3 and 3.5), however, are much larger than the actual regrets achieved

by the two algorithms, thus being omitted in most of the figures. Specifically, Figures 2(a)-2(c)

illustrate the growth of queue length regret w.r.t. the time horizon T under different values ofW .

WhenW = O(1), i.e.,W does not grow with the time horizon T , the queue length regrets achieved

by both algorithms remain at some constants when T is sufficiently large. WhenW = O(
√
T ), the

regrets achieved by the two algorithms increase with the time horizon T , yet the growth rate is

sublinear. WhenW = O(T ), both algorithms have linearly-increasing queue length regret w.r.t. T .
In fact, even the regret lower bound becomes linear in T , implying that no algorithms can have

sublinear queue length regret in this case. In addition, the performances of the MaxWeight policy

and the Tracking Algorithm are similar under this adaptive (W , 0)-constrained adversary, though

the Tracking Algorithm could be slightly worse than MaxWeight occasionally. Figure 2(d) shows the

growth of queue length regrets w.r.t. the increase of window sizeW , where we fix the time horizon

T = 10
5
slots. It is observed that the queue length regret achieved by the Tracking Algorithm

grows linearly withW , just as the upper bound (Theorem 3.5) predicts. The MaxWeight policy also
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empirically achieves a regret that is linear inW , which shows that the analysis in Theorem 3.3 is

not tight in this scenario.

In conclusion, the above simulation suggests that the network does not have any steady state,

and no algorithm can achieve sublinear queue length regret ifW = O(T ). Both the MaxWeight

policy and the Tracking Algorithm achieve sublinear regret whenW = o(T ), and their performance

bounds are validated.
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√
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(c) W = O (T )
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(d) Regret vs.W

Fig. 2. Queue length regret of the MaxWeight policy and the Tracking Algorithm in Scenario I (adaptive
(W , 0)-constrined adversary). (a)-(c): growth of queue length regret w.r.t. the time horizon T under different
values ofW ; (d) growth of queue length regret w.r.t. the window sizeW where we fix the time horizonT = 10

5

slots.

6.2 Scenario II: Time-varying Network
Next, we consider a scenario where the channel rate for each user in each slot is a random variable

whose mean is time-varying and periodic. In such a scenario, the network dynamics is not as

adversarial as in Scenario I, yet it sheds light on the regret performance of the MaxWeight policy

and the Tracking Algorithm in a milder (less adversarial) setting. Similar simulation setup was

also considered in [4]. There are N = 3 users, and the mean channel rate for each user in each
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Fig. 3. Queue length trajectory ofMaxWeight and Tracking Algorithm in Scenario II (VT -constrained adversary
with time-varying mean rates, X = 50, Y = 15).

slot is periodic within the set [0, 30, 60] (packets/slot). Each mean rate is held for each user for X
consecutive slots, and thus the period is NX . For example, if X = 2, the sequence of mean rate

vectors is

(0, 30, 60) → (0, 30, 60) → (30, 60, 0) → (30, 60, 0)

→ (60, 0, 30) → (60, 0, 30) → (0, 30, 60) → · · ·

Let ri (t) and Ri (t) be the mean rate and the actual rate for user i in slot t , respectively. If ri (t) = 0,

then Ri (t) = 0 with probability 1 otherwise Ri (t) is a uniform random variable in the range of

[ri (t) − Y , ri (t) + Y ] where Y is some constant controlling the variance of channel rates. Moreover,

20 packets arrive to each user in every slot such that the system is not trivially overloaded. Note

that if Y = 0, the network is (W , 0)-constrained withW = NX , since the optimal schedule can

always serve the user with rate 60 in every slot in order to maintain the window structure. On

the other hand, if Y > 0, there exists no strict window structure, and the general VT -constrained
adversary model is adopted, where the value of VT (i.e., the peak queue length during the optimal

trajectory) is determined by X and Y . In the following, we fix Y = 15.

Figure 3 illustrates the queue length trajectory under the MaxWeight policy and the Tracking

Algorithm. Unlike in the previous scenario, the total queue lengths under both algorithm converge

to some steady states. Figure 4 illustrates the regret performance of the two algorithms under

different values of VT . It is observed that if VT = o(T ), the queue length regret achieved by both

algorithms grows sublinearly with the time horizon T ; if VT = O(T ), then both algorithms suffer

from linearly-increasing regret. Moreover, when T is sufficiently large, the regret performance of

the Tracking Algorithm is significantly better than that of the MaxWeight policy, which implies

that the Tracking Algorithm has a smaller regret growth rate or it has a better multiplicative factor.

On theother hand, when T is relatively small, the MaxWeight policy outperforms the Tracking

Algorithm by some additive constant factor. Finally, the analytical upper bounds we developed

under the VT -constrained adversary model (see Theorems 4.3 and 4.5) are validated in Figure 4(d).

Sensitivity of the Tracking Algorithm. The implementation of the Tracking Algorithm requires

VT as an input parameter. Unfortunately, in practice, it is impossible to know the precise value of

VT for a given network in advance. Figures 5 shows the sensitivity of the Tracking Algorithm to

the value of VT . An important observation is that using a larger value of VT incurs a much smaller

regret than using a smaller value of VT , though it is still worse than using the correct estimation
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Fig. 4. Queue length regret of the MaxWeight policy and the Tracking Algorithm in Scenario II (time-varying
network). (a)-(c): growth of queue length regret w.r.t. the time horizon T under different values of VT ; (d)
growth of queue length regret w.r.t. the network variation budget VT where we fix the time horizon T = 10

4

slots. Note that Y = 15 and X is varied to control the value of VT .

of VT . In particular, using a smaller value of VT leads to linear queue length regret while using a

larger value ofVT achieves sublinear regret. As we discussed in Section 4.2, the regret upper bound

we derived in Theorem 4.5 still holds true if the Tracking Algorithm uses a larger value of VT and

sublinear queue length regret can be achieved as long as the VT = o(T ). However, the upper bound
does not hold if we use a smaller value of VT , and the Tracking Algorithm may suffer from linear

regret even if the true value of VT is o(T ).

7 CONCLUSIONS
In this paper, we focus on optimizing queue length regret under adversarial network models.

We show that sublinear queue length regret cannot be achieved if the network dynamics are

unconstrained, and investigate two constrained adversary models. We first consider the restrictive

(W , ϵ)-constrained adversary model and then propose a more relaxed VT -constrained adversary

model. Lower bounds on queue length regret are derived under the two adversary models, and

the regret performance of two control policies is analyzed, i.e., the MaxWeight policy and the
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Fig. 5. Sensitivity of the Tracking Algorithm to the value of VT . The variation in the actual sequence of
network events is O(

√
T ). The Tracking Algorithm is set to use the true value (VT = O(

√
T )), a smaller value

(VT = O(1)) and a larger value (VT = O(T 3/4)), respectively.

Tracking Algorithm. It is shown that the Tracking Algorithm is nearly regret-optimal under the

(W , ϵ)-constrained adversary model and that the Tracking Algorithm has a better regret bound

than that of the MaxWeight policy. Finally, we establish the connection between the proposed

adversarial framework and the traditional stochastic network optimization framework. In particular,

we show the equivalence of sublinear queue length regret and rate stability, and characterize the

stability region under adversary models. Both the MaxWeight policy and the Tracking Algorithm

are shown to be throughput-optimal in an adversarial network.
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A APPENDIX
A.1 Doubling Trick
In this appendix, we apply the standard doubling trick [15] to the example used for proving Theorem

2.2, such that it does not require any knowledge about the time horizon T in advance.

If the time horizon T is not known in advance, we can divide the time horizon into periods of

exponentially increasing lengths: the first period has the length T1 = 2
0 = 1, the second period has

the length T2 = 2
1 = 2,..., them-th period has the length Tm = 2

m−1
, etc. Then the total number of

periods is at mostM = ⌈log
2
(T )⌉ (note that the length of the last periodM may be less than 2

M−1
).

Since the length of each period is known, we can construct the same sequence of network events

over each period as in the proof to Theorem 2.2. Let q1 and q2 be the queue length over link 1 and

link 2 at the beginning of periodM − 1. Also let n1 and n2 be the number of packets cleared over

link 1 and link 2 during the first half of periodM − 1. Following the similar line of argument as in

the proof of Theorem 2.2, we have n1 + n2 ≤ TM−1 = 2
M−2

, which implies that min{n1,n2} ≤ 2
M−3

.

Define i∗ = argmini=1,2 ni (ties are broken arbitrarily). Then the queue length over link i∗ after the
first half of periodM − 1 is

qi∗ + 2
M−2 − ni∗ ≥ qi∗ + 2

M−3 ≥ 2
M−3 ≥ 2

log
2
T−3 = T /8.

Since there is no capacity to clear any packets in the remaining half of periodM − 1, the total queue

length at the end of periodM − 1 is∑
i

Qπ
i (2

M−1) ≥ Qπ
i∗ (2

M−1) ≥ T /8. (12)

Note that during the last periodM (t = 2
M−1, · · · ,T ) the optimal policy always clears 2 packets per

slot by our construction, which implies that∑
i

Qπ
i (T ) −

∑
i

Qπ
i (2

M−1) ≥
∑
i

Q∗
i (T ) −

∑
i

Q∗
i (2

M−1)

Combing the above inequality with (12) and noticing that

∑
i Q

∗
i (2

M−1) = 0, we have

Rπ
T =

∑
i

Qπ
i (T ) −

∑
i

Q∗
i (T ) ≥

∑
i

Qπ
i (2

M−1) ≥ T /8,

which completes the proof.

A.2 Proof to Theorem 3.2
We prove this theorem by constructing a sequence of network events {ω0, · · · ,ωT−1} ∈ AT (W , ϵ)
such that the lower bound is attained. Consider the power control example mentioned in Section

2.2 with N = 2 links. The constraint on power allocation is α (1)
t + α

(2)
t ≤ 1 for each t ∈ T , and the

rate-power function is bi (t) = α (i)
t si (t). Without loss generality, we assume that (1 − ϵ)W /2 and

W /2 are integers.

In slot t = 0, · · · , (1 − ϵ)W /2 − 1, the exogenous arrivals and the channel capacities are

a1(t) = a2(t) = 2, s1(t) = s2(t) = 2.

In slot t = (1 − ϵ)W /2, · · · ,W /2 − 1, the arrivals and the channel capacities are

a1(t) = a2(t) = 0, s1(t) = s2(t) = 2.

Under the peak power constraints, the total number of packets that can be cleared in the firstW /2

slots is at mostW . For any causal policy π , let n1 and n2 be the number of packets cleared over link

1 and 2 during the firstW /2 slots, respectively. Then it is clear that n1 + n2 ≤W , which implies

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 11. Publication date: March 2018.



MinimizingQueue Length Regret Under Adversarial Network Models 11:25

that min{n1,n2} ≤W /2. Define i∗ = argmini=1,2 ni (ties are broken arbitrarily). Then the queue

length over link i∗ afterW /2 slots is

Qπ
i∗ (W /2) = (1 − ϵ)W −min{n1,n2}

≥ (1 − ϵ)W −W /2

= (1 − 2ϵ)W /2.

In the remaining slots, the adversary can set

ai∗ (t) = 0, si∗ (t) = 0, t =W /2, · · · ,T − 1.

For the other link (its index is denoted by i ′), the adversary can set

ai′(t) = 0, si′(t) = 2, t =W /2, · · · ,T − 1.

Since there is no capacity to clear any packet over link i∗ in the remaining T −W /2 slots, we have

Qπ
i∗ (T ) = Q

π
i∗ (W /2) ≥ (1 − 2ϵ)W /2,

which implies that

∑
i Q

π
i (T ) ≥ (1 − 2ϵ)W /2.

On the other hand, the optimal non-causal policy can choose the following sequence of power

allocation vectors (
α (i∗)
t ,α

(i′)
t

)
=

{
(1, 0), t = 0, · · · ,W /2 − 1,

(0, 1), t =W /2, · · · ,T − 1.

such that constraints (2) are satisfied, which implies that the above sequence of network events

{ω0, · · · ,ωT−1} is (W , ϵ)-constrained.Moreover, we have

∑
i Q

∗
i (T ) = 0, and thusRπ

T

(
{ω0, · · · ,ωT−1}

)
≥

(1− 2ϵ)W /2. Note that when ϵ > 1/2, the lower bound becomes negative. Since queue length regret

must be non-negative, we can finally conclude that Rπ
T

(
{ω0, · · · ,ωT−1}

)
≥ max

{
(1 − 2ϵ)W /2, 0

}
.

A.3 Proof to Theorem 3.3
Let Q(t), a(t) and b(t) be the queue length vector, the arrival vector and the service vector in slot t
under the MaxWeight policy, respectively. Also define the potential function

Φ(Q(t)) =
1

2

∑
i ∈N

Q2

i (t).

We first provide an upper bound on theW -slot drift Φ(Q(t +W )) − Φ(Q(t)).

Lemma A.1. Let a∗(t) and b∗(t) be the arrival vector and the service vector in slot t generated by
the best non-causal policy. Then theW -slot drift satisfies

Φ(Q(t +W )) − Φ(Q(t))

≤cW 2 − ϵ
∑
i

t+W −1∑
τ=t

Qi (τ )a
∗
i (τ ), ∀t ∈ T ,

where c , 7NB2.

Proof. For any i ∈ N , if Qi (t) ≥
∑t+W −1
τ=t bi (τ ), then

Q2

i (t +W ) =
[
Qi (t) +

t+W −1∑
τ=t

ai (τ ) −
t+W −1∑
τ=t

bi (τ )
]
2

.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 11. Publication date: March 2018.



11:26 Qingkai Liang and Eytan Modiano

If Qi (t) <
∑t+W −1
τ=t bi (τ ), then

Q2

i (t +W ) ≤

[
Qi (t) +

t+W −1∑
τ=t

ai (τ )
]
2

<
[ t+W −1∑

τ=t

bi (τ ) +
t+W −1∑
τ=t

ai (τ )
]
2

.

Thus, in any case, we have

Q2

i (t +W ) ≤

[
Qi (t) +

t+W −1∑
τ=t

ai (τ ) −
t+W −1∑
τ=t

bi (τ )
]
2

+
[ t+W −1∑

τ=t

bi (τ ) +
t+W −1∑
τ=t

ai (τ )
]
2

.

Then theW -slot drift is

Φ(Q(t +W )) − Φ(Q(t))

=
1

2

∑
i

Q2

i (t +W ) −
1

2

∑
i

Q2

i (t)

≤
1

2

∑
i

[
Qi (t) +

t+W −1∑
τ=t

ai (τ ) −
t+W −1∑
τ=t

bi (τ )
]
2

+
1

2

∑
i

[ t+W −1∑
τ=t

bi (τ ) +
t+W −1∑
τ=t

ai (τ )
]
2

−
1

2

∑
i

Q2

i (t)

≤

t+W −1∑
τ=t

∑
i

Qi (t)
(
ai (τ ) − bi (τ )

)
+ 2NB2W 2.

Note that for any τ ∈ [t , t +W − 1] and any i ∈ N we have

Qi (τ ) −WB ≤ Qi (t) ≤ Qi (τ ) +WB. (13)

Then it follows that

t+W −1∑
τ=t

∑
i
Qi (t)

(
ai (τ ) − bi (τ )

)
≤

t+W −1∑
τ=t

∑
i

[ (
Qi (τ ) +WB

)
ai (τ ) −

(
Qi (τ ) −WB

)
bi (τ )

]
=

t+W −1∑
τ=t

∑
i
Qi (τ )

(
ai (τ ) − bi (τ )

)
+ 2NB2W 2

≤

t+W −1∑
τ=t

∑
i
Qi (τ )

(
a∗i (τ ) − b∗i (τ )

)
+ 2NB2W 2

≤

t+W −1∑
τ=t

∑
i

[
(Qi (t) +WB)a∗i (τ ) − (Qi (t) −WB)b∗i (τ )

]
+ 2NB2W 2

≤
∑
i
Qi (t)

t+W −1∑
τ=t

(
a∗i (τ ) − b∗i (τ )

)
+ 4NB2W 2
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where the first and the third inequalities are due to (13), and the second inequality is due to the

MaxWeight policy. As a result, theW -slot drift is

Φ(Q(t +W )) − Φ(Q(t))

≤
∑
i

Qi (t)
t+W −1∑
τ=t

(
a∗i (τ ) − b∗i (τ )

)
+ 6NB2W 2

≤6NB2W 2 +
∑
i

Qi (t)
t+W −1∑
τ=t

(
a∗i (τ ) −

1

1 − ϵ
a∗i (τ )

)
≤6NB2W 2 − ϵ

∑
i

Qi (t)
t+W −1∑
τ=t

a∗i (τ )

≤6NB2W 2 − ϵ
∑
i

t+W −1∑
τ=t

(
Qi (τ ) −WB

)
a∗i (τ )

≤cW 2 − ϵ
∑
i

t+W −1∑
τ=t

Qi (τ )a
∗
i (τ ),

where the second inequality is due to the definition of (W , ϵ)-constrained adversary, the third

inequality is due to (13) and c , 7NB2
. �

We then divide the time horizon into frames of sizeW slots. The total number of frames is

K = ⌈T /W ⌉ and let tk = (k − 1)W be the beginning of frame k (where k = 1, · · · ,K ). Note that the
last frame may contain fewer thanW slots and thus T − tK ≤W . By Lemma A.1, we have for any

ϵ ≥ 0:

Φ(Q(tk )) − Φ(Q(tk−1)) ≤ cW 2.

Summing over k = 2, · · · ,K and noticing that t1 = 0 and Q(0) = 0, we have

Φ(Q(tK )) ≤ cW 2(K − 1) ≤ cWT .

Thus, we have ∑
i

Qi (tK ) ≤
√
N
√
2Φ(Q(tK )) ≤

√
2NcWT .

Since T − tK <W , we have∑
i

Qi (T ) ≤
√
2NcTW + NBW = O(

√
TW ).

Note that the above inequality holds for any sequence of network events that is (W , ϵ)-constrained.
Note also that

∑
i Q

∗
i (T ) ≥ 0. Therefore, we conclude that the worst-case queue length regret

achieved by MaxWeight under the (W , ϵ)-constrained adversary model is O(
√
TW ) for any ϵ ≥ 0.

Special case: ϵ > 0 and amin > 0.
In the special case where ϵ > 0 and amin > 0, we prove that a better regret bound O

(
W

ϵ 3amin

)
can

be achieved by MaxWeight. By Lemma A.1 we have

Φ(Q(tk )) − Φ(Q(tk−1))

≤cW 2 − ϵ
∑
i

tk−1∑
τ=tk−1

Qi (τ )a
∗
i (τ ).
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Define

K ,
{
k ∈ [1,K − 1]

���Φ(Q(tk )) ≤ c ′W 2/ϵ2
}
,

where c ′ is some constant to be determined later. Let k∗ be the largest index in K . Summing over

k = k∗ + 1, · · · ,K , we have

Φ(Q(tK )) − Φ(Q(tk∗ ))

≤cW 2(K − k∗) − ϵ
tK−1∑
τ=tk∗

∑
i

Qi (τ )a
∗
i (τ ).

Then it follows that

tK−1∑
τ=tk∗

∑
i

Qi (τ )a
∗
i (τ )

≤
cW 2(K − k∗)

ϵ
+
Φ(Q(tk∗ ))

ϵ

≤
cW 2(K − k∗)

ϵ
+
c ′W 2

ϵ3
,

where the last inequality is due to the definition of k∗. Since ai (t) ≥ amin > 0, we have

tK−1∑
t=tk∗

N∑
i=1

Qi (t) ≤
cW 2(K − k∗)

ϵamin
+

c ′W 2

ϵ3amin
. (14)

Note that by the definition of k∗, we have for any k = k∗ + 1, · · · ,K − 1

N∑
i=1

Qi (tk ) ≥
√
2Φ(Q(tk )) ≥

√
2c ′W 2/ϵ2. (15)

Note also that the maximum increase or decrease in the total queue length in each slot is at most

NB. Define

J , min

{
W ,

√
2c ′W 2/ϵ2

NB

}
,

where the value of c ′ will be chosen such that J is an integer. Then it follows that (J − 1)NB ≤√
2c ′W 2/ϵ2. As a result, we have for any k = k∗ + 1, · · · ,K − 2

tk+1−1∑
t=tk

N∑
i=1

Qi (t)

≥

J−1∑
j=0

(√
2c ′W 2/ϵ2 − jNB

)
=J

√
2c ′W 2/ϵ2 −

1

2

(J − 1)JNB

≥
1

2

√
2c ′W 2/ϵ2 J

=min

{ c ′W 2

ϵ2NB
,
W 2

2ϵ

√
2c ′

}
,

(16)
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where the first inequality is due to (15) and the fact that maximum decrease in the total queue

length in each slot is at most NB. Therefore, we have

tK−1∑
t=tK−1

N∑
i=1

Qi (t)

≤

tK−1∑
t=tk∗

N∑
i=1

Qi (t) −
tK−1−1∑
t=tk∗

N∑
i=1

Qi (t)

≤
cW 2(K − k∗)

ϵamin
+

c ′W 2

ϵ3amin
−
W

2ϵ

√
2c ′J (K − k∗ − 2),

where the last inequality is due to (14) and (16). We choose

c ′ ≥ max

{cNB

amin
,

2c2

(amin)2

}
such that

W

2ϵ

√
2c ′J ≥

cW 2

ϵamin
.

Then it follows that

tK−1∑
t=tK−1

N∑
i=1

Qi (t) ≤
2cW 2

ϵamin
+

c ′W 2

ϵ3amin
.

Denote by X =
∑

i Qi (tK − 1), and similarly define J ′ = min

{
W , X

NB

}
. Then

tK−1∑
t=tK−1

N∑
i=1

Qi (t)

≥

J ′−1∑
j=0

(
X − jNB

)
≥
J ′X

2

= min

{WX

2

,
X 2

2NB

}
As a result, we have

min

{WX

2

,
X 2

2NB

}
≤

2cW 2

ϵamin
+

c ′W 2

ϵ3amin
,

where we can solve

X ≤ max

{
4cW

ϵamin
+

2c ′W

ϵ3amin
,

√
2NB

(
2cW 2

ϵamin
+

c ′W 2

ϵ3amin

)}
.

Therefore, we have

∑
i Qi (tK − 1) = O

(
W

ϵ 3amin

)
. Since T − tK ≤W , we have∑

i

Qi (T ) ≤
∑
i

Qi (tK − 1) + NBW = O
( W

ϵ3amin

)
.

Then we conclude that the worst-case queue length regret of the MaxWeight policy under the

(W , ϵ)-constrained adversary model is O
(

W
ϵ 3amin

)
if ϵ > 0 and amin > 0.
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A.4 Proof to Lemma 3.6
Time is divided into frames of sizeW slots. Note that by the Tracking algorithm the debt owned in

each frame will be added in batch at the beginning of the next frame (or equivalently at the end

of the current frame). Thus, there is no debt arrival within a frame, and the debt queue length in

any slot within a frame is upper bounded by the debt queue length at the beginning of that frame.

Therefore, it is sufficient to prove that at the beginning of each frame r , the total debt associated
with event ω is at most NWB.

At the beginning of frame 1 (i.e., t = 0, · · · ,W − 1), the total debt associated with event ω is 0,

because we initialize qi,ω (0) = 0 for any i ∈ N .

At the beginning of frame 2, the total debt associated with event ω is the new debt owned in

frame 1 (since the debt owned in a frame will be added in batch at the beginning of the next frame).

Suppose event ω occursm1 times in frame 1. Then the total debt associated with event ω owned in

frame 1 is at most NBm1, and thus the total debt associated with event ω at the beginning of frame

2 is also at most Nm1B ≤ NWB.
At the beginning of frame 3, the total debt associated with event ω is the sum of the remaining

debt from frame 1 and the new debt generated in frame 2. Suppose event ω occursm2 times in

frame 2. We discuss two scenarios.

• Ifm2 ≥ m1, then the debt owned in frame 1 will be cleared during the firstm1 occurrences of

event ω in frame 2, since the Tracking algorithm clears as much total debt for event ω as possible

every time event ω occurs. As a result, the remaining debt from frame 1 is zero at the end of frame

2. At the same time, the new debt owned in frame 2 is at most Nm2B. As a result, at the beginning
of frame 3, the total debt associated with event ω is at most Nm2B.
• Ifm2 < m1, then the debt owned in the firstm2 occurrences of even ω in frame 1 will be cleared

by the similar argument as in the first scenario. As a result, the remaining debt from frame 1 at

the end of frame 2 is at most N (m2 −m1)B. At the same time, the new debt owned in frame 2 is

at most Nm2B. Therefore, the total debt associated with event ω at the beginning of frame 3 is at

most N (m1 −m2)B + Nm2B = Nm1B.

Therefore, in both of the above scenarios, we have that at the beginning of frame 3 the total debt

associated with event ω is at most

max{m1,m2}NB ≤ NWB.

Similar argument applies to any of the subsequent frame r ≥ 3: at the beginning of frame r , the
total debt associated with event ω is at most

NB max

j=1, · · · ,r−1
mj ≤ NWB.

This concludes our proof.

A.5 Proof to Theorem 4.2
For any causal policy π , we construct a sequence of network events {ω0, · · · ,ωT−1} such that

V
(
{ω0, · · · ,ωT−1}

)
≤ VT , but R

π
T

(
{ω0, · · · ,ωT−1}

)
≥ cVT . Define Z , VT

NB . Since NB ≥ 1 and

VT ≤ NTB, we have Z ≤ VT and have Z ≤ T . Without loss of generality, assume that Z/2 is an
integer.

Consider the power control example mentioned in Section 2.2 with N = 2 links. The constraint

on power allocation is α (1)
t +α

(2)
t ≤ 1 for each t ∈ T , and the rate-power function is bi (t) = α (i)

t si (t).
The exogenous arrivals and channel capacities in the first Z/2 slots is

a1(t) = a2(t) = 2, s1(t) = s2(t) = 2, ∀t = 0, · · · ,Z/2 − 1.
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Under the peak power constraint, the total number of packets that can be cleared in the first Z/2
slots is at most Z . For any causal policy π , let n1 and n2 be the number of packets cleared over link

1 and 2 during the first Z/2 slots, respectively. Then it is clear that n1 + n2 ≤ Z , which implies that

min{n1,n2} ≤ Z/2. Define i∗ = argmini=1,2 ni (ties are broken arbitrarily). Then the queue length

over link i∗ after Z/2 slots is

Qπ
i∗ (Z/2) = Z − ni∗ = Z −min{n1,n2} ≥ Z/2.

In the next T − Z/2 slots, the adversary can set

ai∗ (t) = 0, si∗ (t) = 0, t = Z/2, · · · ,T − 1.

For the other link (its index is denoted by i ′), the adversary can set

ai′(t) = 0, si′(t) = 2, t = Z/2, · · · ,T − 1.

Since there is no capacity to clear any packet over link i∗ in the last T − Z/2 slots, we have

Qπ
i∗ (T ) = Q

π
i∗ (Z/2) ≥ Z/2,

which implies that

∑
i Q

π
i (T ) ≥ Z/2. On the other hand, the optimal non-causal policy π ∗

can

choose the following sequence of power allocation vectors(
α (i∗)
t ,α

(i′)
t

)
=

{
(1, 0), t = 0, · · · ,Z/2 − 1,

(0, 1), t = Z/2, · · · ,T − 1,

such that

∑
i Q

∗
i (T ) = 0, which implies that

Rπ
T

(
{ω0, · · · ,ωT−1}

)
≥ Z/2 =

VT
2NB

, cVT .

Now we evaluate the value of V
(
{ω0, · · · ,ωT−1}

)
for the above network dynamics. Clearly, the

total queue length under any (possibly non-causal) policy after the first Z/2 slots is at least Z ,

i.e., V
(
{ω0, · · · ,ωT−1}

)
≥ Z . At the same time, note that under the optimal non-causal policy π ∗

,

we have V π ∗
(
{ω0, · · · ,ωT−1}

)
= Z , which implies that V

(
{ω0, · · · ,ωT−1}

)
≤ Z . Therefore, we

conclude that V
(
{ω0, · · · ,ωT−1}

)
= Z ≤ VT .

A.6 Proof to Observation 1
Suppose that the sequence of network events is ω0,ω1, · · · . If the network is rate-stable, then (11)

implies that

∑
i Q

π
i (T ) = o(T ) as T → ∞. In any VT -constrained network with VT = o(T ), we also

have

∑
i Q

∗
i (T ) = o(T ). By the definition of queue length regret, we have

Rπ
T

(
{ω0, · · · ,ωT−1}

)
=
∑
i

Qπ
i (T ) −

∑
i

Q∗
i (T ) = o(T ).

Conversely, if the queue length regret is sublinear, then we have∑
i

Qπ
i (T ) =

∑
i

Q∗
i (T ) + R

π
T

(
{ω0, · · · ,ωT−1}

)
= o(T ),

which implies that equation (11) holds.
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A.7 Proof to Theorem 5.3
We only show the necessity since the sufficiency has been given in Corollary 5.2. If the network is

rate-stable under a certain policy π , then we have

lim

T→∞

∑
i Q

π
i (T )

T
= 0,

i.e., for any ϵ > 0, there exists some T0 ≥ 0 such that for any T ≥ T0 we have
∑

i Q
π
i (T ) ≤ ϵT .

For any T ≥ T0, we also have

max

t ≤T

∑
i

Qπ
i (t) = max

{
max

t<T0

∑
i

Qπ
i (t), max

T0≤t ≤T

∑
i

Qπ
i (t)

}
≤ max{T0NB, ϵT }.

Then it follows that for any ϵ > 0, there exists some T1 ≥
T0NB
ϵ such that for any T ≥ T1

maxt ≤T
∑

i Q
π
i (t)

T
≤ max

{T0NB

T
, ϵ
}
= ϵ,

which implies that

lim

T→∞

maxt ≤T
∑

i Q
π
i (t)

T
= 0.

As a result, we can conclude that as T → ∞

v
(
{ω0, · · · ,ωT−1}

)
≤ vπ

(
{ω0, · · · ,ωT−1}

)
= max

t ≤T

∑
i

Qπ
i (t) = o(T ).

This completes the proof.
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