
506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Optimal Control for Generalized
Network-Flow Problems
Abhishek Sinha and Eytan Modiano, Fellow, IEEE

Abstract— We consider the problem of throughput-optimal
packet dissemination, in the presence of an arbitrary mix of
unicast, broadcast, multicast, and anycast traffic, in an arbitrary
wireless network. We propose an online dynamic policy, called
Universal Max-Weight (UMW), which solves the problem effi-
ciently. To the best of our knowledge, UMW is the first known
throughput-optimal policy of such versatility in the context of
generalized network flow problems. Conceptually, the UMW pol-
icy is derived by relaxing the precedence constraints associated
with multi-hop routing and then solving a min-cost routing and
max-weight scheduling problem on a virtual network of queues.
When specialized to the unicast setting, the UMW policy yields a
throughput-optimal cycle-free routing and link scheduling policy.
This is in contrast with the well-known throughput-optimal back-
pressure (BP) policy which allows for packet cycling, resulting
in excessive latency. Extensive simulation results show that the
proposed UMW policy incurs a substantially smaller delay as
compared with the BP policy. The proof of throughput-optimality
of the UMW policy combines ideas from the stochastic Lyapunov
theory with a sample path argument from adversarial queueing
theory and may be of independent theoretical interest.

Index Terms— Throughput-optimal policies, generalized flows,
queueing theory.

I. INTRODUCTION

THE Generalized Network Flow problem involves effi-
cient transportation of messages, generated at the source

node(s), to a set of designated destination node(s) over a
multi-hop network. Depending on the number of destination
nodes associated with each source node, the problem is known
either as unicast (single destination node), broadcast (all nodes
are destination nodes), multicast (some nodes are destination
nodes) or anycast (several choices for a single destination
node). Over the last few decades, a tremendous amount of
research effort has been directed to address each of the above
problems in different networking contexts. However, despite
the increasingly diverse mix of internet traffic, to the best of
our knowledge, there exists no universal solution to the general
problem, only isolated solutions that do not interoperate and

Manuscript received December 21, 2016; revised June 6, 2017 and
November 17, 2017; accepted December 12, 2017; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor D. Leith. Date of publication
December 29, 2017; date of current version February 14, 2018. This work
was supported in part by the NSF under Grant CNS-1217048 and Grant
CNS-1524317 and in part by the DARPA I2O and Raytheon BBN Tech-
nologies under Contract HROO II-I 5-C-0097. Part of the paper appeared
in the proceedings of INFOCOM, 2017, IEEE [1]. (Corresponding author:
Abhishek Sinha.)

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
sinhaa@mit.edu; modiano@mit.edu).

Digital Object Identifier 10.1109/TNET.2017.2783846

are often suboptimal. In this paper, we provide the first such
universal solution: A throughput optimal dynamic control
policy for the generalized network flow problem.

We start with a brief discussion of the above networking
problems and then survey the relevant literature.

In the Broadcast problem, packets generated at a source
need to be distributed among all nodes in the network. In the
classic paper of Edmonds [2], the broadcast capacity of a wired
network is derived and an algorithm is proposed to compute
the maximum number of edge-disjoint spanning trees, which
together achieve the maximum broadcast throughput. The
algorithm in [2] is combinatorial in nature and does not
have a wireless counterpart, with associated interference-free
edge activations. Following Edmonds’ work, a variety of
different broadcast algorithms have been proposed in the
literature, each one targeted to optimize different metrics such
as delay [3], energy consumption [4] and fault-tolerance [5].
In the context of optimizing throughput, [6] proposes a
randomized broadcast policy, which is optimal for wired
networks. However, extending this algorithm to the wireless
setting proves to be difficult [7]. Sinha et al. [8] propose an
optimal broadcast algorithm for a wireless network, albeit with
exponential complexity. In a recent series of papers [9], [10],
a simple throughput-optimal broadcast algorithm has
been proposed for wireless networks with an underlying
DAG topology. However, this algorithm does not extend to
non-DAG networks.

The Multicast problem is a generalization of the broadcast
problem, in which the packets generated at source nodes needs
to be efficiently distributed to a subset of nodes in the network.
In its combinatorial version, the multicast problem reduces to
finding the maximum number of edge-disjoint trees, spanning
the source node and destination nodes. This problem is known
as the Steiner Tree Packing problem, which is NP-hard [11].
Numerous algorithms have been proposed in the literature for
solving the multicast problem. In [12] and [13], back-pressure
type algorithms are proposed for multicasting over wired
and wireless networks respectively. These algorithms forward
packets over a set of pre-computed distribution trees and are
limited to the throughput obtainable by these trees. Moreover,
computing and maintaining these trees is impractical in large
and time-varying networks. We note that because of the need
for packet duplications, the Multicast and Broadcast problems
do not satisfy standard flow conservation constraints, and thus
the design of throughput-optimal algorithms is non-trivial.

The Unicast problem involves a single source and a single
destination. The celebrated Back-Pressure (BP) algorithm [14]

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7220-0691

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 507

was proposed for the unicast problem. In this algorithm,
the routing and scheduling decisions are taken based on local
queue length differences. As a result, BP explores all possible
paths for routing and usually takes a long time for conver-
gence, resulting in considerable latency, especially in lightly
loaded networks. Subsequently, a number of refinements have
been proposed to improve the delay characteristics of the
BP algorithm. In [15] BP is combined with hop length based
shortest path routing for faster route discovery, and [16] pro-
poses a second order algorithm using the Hessian matrix to
improve delay.

The Anycast problem involves routing from a single source
to any one of the several given destinations. Anycast is
increasingly used in Content-Distribution Networks (CDNs)
for optimally distributing geo-replicated contents [17].

Our proposed solution uses a virtual network of queues - one
virtual queue per link in the network. We solve the routing
problem dynamically using a simple “weighted-shortest-route”
computation on the virtual network and using the correspond-
ing route on the physical network. Optimal link scheduling is
performed by a max-weight computation, also in the virtual
network, and then using the resulting activation in the phys-
ical network. The overall algorithm is dynamic, cycle-free,
and solves the generalized routing and scheduling problem
optimally (i.e., maximally stable or throughput optimal).
In addition to this, the proposed UMW policy has the fol-
lowing advantages:

1) Generalized Solution: Unlike the BP policy, which
solves only the unicast problem, the proposed
UMW policy efficiently addresses all of the aforemen-
tioned network flow problems in both wired and wireless
networks in a very general setting.

2) Delay Reduction: Although the celebrated BP policy
is throughput-optimal, its average delay performance is
known to be poor due to the occurrence of packet-
cycling in the network [15], [18]. In our proposed
UMW policy, each packet traverses a dynamically
selected acyclic route, which drastically reduces the
average latency.

3) State-Complexity Reduction: Unlike the BP policy,
which maintains per-flow queues at each node, the pro-
posed UMW policy maintains only a virtual queue
counter and a priority queue per link, irrespective of the
number and type of flows in the network. This reduces
the amount of data-structure overhead that needs to be
maintained for efficient operation (c.f. [18]).

Recently, the techniques introduced in this paper have been
utilized in [19] to solve the problem of wireless broadcast
with point-to-multipoint transmissions.

The rest of the paper is organized as follows: In Section II
we discuss the basic system model and formulate the prob-
lem. In Section III we give a brief overview of the pro-
posed UMW policy. Section IV discusses the structure and
dynamics of the virtual queues, on which UMW is based.
In Section V we prove its stability in a multi-hop physical
network. In Section VII we propose a distributed heuristic
policy derived from the UMW policy. Section VIII provides
extensive simulation results, comparing UMW with other

Fig. 1. A wireless network and its two maximal feasible link activations under
the primary interference constraint. (a) A wireless network. (b) Activation
vector s1. (c) Activation vector s2.

competing policies. Section IX concludes the paper with a
few directions for further research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a wireless network with arbitrary topology,
represented by the graph G(V, E). The network consists of
|V | = n nodes and |E| = m links. Time is slotted. A link,
if activated, can transmit one packet per slot. Due to wireless
interference constraints, only certain subsets of links may be
activated together at any slot. The set of all admissible link
activations is known as the activation set and is denoted
byM⊆ 2E . We do not impose any restriction on the structure
of the activation set M. As an example, in the case of node-
exclusive or primary interference constraint [20], the activation
set Mprimary consists of the set of all matchings [21] in the
graph G(V, E). Wired networks are a special case of the above
model, where the activation set Mwired = 2E . In other words,
in wired networks, packets can be transmitted over all links
simultaneously. See Figure 1 for an example of a wireless
network with primary interference constraints.

For simplicity in exposition, in the following, we assume
that the network topology is static, with bounded arrivals
per slot. However, the proposed policy and its analysis apply
even if the network is time-varying. Moreover, an attractive
feature of our policy is that time-varying networks do not incur
any extra computational overhead in implementation. The
performance of the proposed policy in time-varying networks
is evaluated numerically in Section VIII.

B. Traffic Model

In this paper, we consider the Generalized Network Flow
problem, where incoming packets at a source node are to
be distributed among an arbitrary set of destination nodes in
a multi-hop fashion. Formally, the set of all distinct classes
of incoming traffic is denoted by C. A class c traffic is
identified by its source node s(c) ∈ V and the set of its
required destination nodes D(c) ⊆ V . As explained below,

508 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

by varying the structure of the destination set D(c) of class c,
this general framework yields the following four fundamental
flow problems as special cases:

• UNICAST: All class c packets, arriving at a source
node s(c), are required to be delivered to a single
destination node D(c) = {t(c)}.

• BROADCAST: All class c packets, arriving at a
source node s(c), are required to be delivered to all
nodes in the network, i.e., D(c) = V .

• MULTICAST: All class c packets, arriving at a
source node s(c), are required to be delivered to a
proper subset of nodesD(c) = {t(c)1 , t

(c)
2 , . . . , t

(c)
k } �

V .

• ANYCAST: A Packet of class c, arriving at a source
node s(c), is required to be delivered to any one of
a given set of k nodes D(c) = t

(c)
1 ⊕ t

(c)
2 ⊕ . . .⊕ t

(c)
k .

Thus the anycast problem is similar to the unicast
problem, with all destinations forming a single super
destination node.

Arrivals are i.i.d. in every slot, with A(c)(t) packets from
class c arriving at the source node s(c) at slot t. The mean rate
of arrival for class c is EA(c)(t) = λ(c). The arrival rate to the
network is characterized by the vector λ = {λ(c), c ∈ C}.
The total number of external packet arrivals to the entire
network at any slot t is assumed to be bounded by a finite
number Amax.

C. Policy-Space

An admissible policy π for the generalized network flow
problem executes the following two actions at every slot t:

• LINK ACTIVATIONS: Activating a subset of interference-
free links s(t) from the activation set M.

• PACKET DUPLICATIONS AND FORWARDING: Possibly
duplicating1 and forwarding packets over the activated
links. Due to the link capacity constraint, at most one
packet may be transmitted over an active link per slot.

The set of all admissible policies is denoted by Π. The set Π
is unconstrained otherwise and includes policies which may
use all past and future packet arrival information.

A policy π ∈ Π is said to support an arrival rate vector λ
if, under the action of the policy π, the destination nodes of
any class c receive distinct class c packets at the rate λ(c),
c ∈ C. Formally, let R(c)(t) denote the number of distinct
class-c packets received in common by all destination nodes
i ∈ D(c),2 under the action of the policy π, up to time t.

Definition 1: [Policy Supporting Rate Vector λ]: A policy
π ∈ Π is said to support an arrival rate vector λ if

lim inf
t→∞

R(c)(t)
t

= λ(c), ∀c ∈ C, w.p.1 (1)

1In order to transmit a packet over multiple downstream links (e.g. in
Broadcast or Multicast), the sender must duplicate the packet and send the
copies to the respective downstream link buffers.

2To be precise, the super-destination node in case of Anycast.

The network-layer capacity region Λ(G, C)3 is defined to be
the set of all supportable rates, i.e.,

Λ(G, C) def= {λ ∈ R
|C|
+ : ∃π ∈ Π supporting λ} (2)

Clearly, the set Λ(G, C) is convex (using the usual time-sharing
argument). A policy π∗ ∈ Π, which supports any arrival rate λ
in the interior of the capacity region Λ(G, C), is called a
throughput-optimal policy.

As a side note, unlike [14], which establishes posi-
tive recurrence of the Markovian queue-lengths under the
BP policy, Definition (1) is concerned with rate stability only.
The reason for this choice will become clear in the next section
where we will see that unlike BP, the stochastic dynamics of
the physical queues are non-Markovian under the proposed
UMW policy.

D. Admissible Routes of Packets

We will design a throughput-optimal policy, which delivers
a packet p to any node in the network at most once.4 This
immediately implies that the set of all admissible routes T (c)

for packets of any class c, in general, comprises of trees rooted
at the corresponding source node s(c). In particular, depending
on the type of class c traffic, the topology of the admissible
routes T (c) takes the following special forms:

• UNICAST TRAFFIC: T (c) = set of all s(c) − t(c)

paths in the graph G.

• BROADCAST TRAFFIC: T (c) = set of all spanning
trees in the graph G, rooted at s(c).

• MULTICAST TRAFFIC: T (c) = set of all Steiner
trees [11] in G, rooted at s(c) and spanning the
vertices D(c) = {t(c)1 , t

(c)
2 , . . . , t

(c)
k }.

• ANYCAST TRAFFIC: T (c) = union of all s(c)− t
(c)
i

paths in the graph G, i = 1, 2, . . . , k.

E. Characterization of the Network-Layer Capacity Region

Consider any arrival vector λ ∈ Λ(G, C). By definition,
there exists an admissible policy π ∈ Π, which supports the
arrival rate λ by means of storing, duplicating and forwarding
packets efficiently. Taking time-averages over the actions of
the policy π, it is clear that there exists a randomized flow-
decomposition and scheduling policy to route the packets
such that none of the edges in the network are overloaded.
Indeed, in the following theorem, we show that for every
λ ∈ Λ(G, C), there exist non-negative scalars {λ(c)

i }, indexed
by the admissible routes T

(c)
i ∈ T (c) and a convex com-

bination of the link activation vectors μ ∈ conv(M) such

3Note that, Network-layer capacity region is, in general (e.g. multicast),
different from the Information-Theoretic capacity region [22].

4This should be contrasted with the popular throughput-optimal unicast
policy Back-Pressure [14], which does not satisfy this constraint and may
deliver the same packet to a node multiple times, thus potentially degrading
its delay performance.

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 509

that,

λ(c) =
∑

T
(c)
i ∈T (c)

λ
(c)
i , ∀c ∈ C (3)

λe
(def.)
=

∑

(i,c):e∈T
(c)
i ,T

(c)
i ∈T (c)

λ
(c)
i ≤ μe, ∀e ∈ E. (4)

Eqn. (3) denotes decomposition of the average incoming
flows into different admissible routes and Eqn. (4) denotes
the fact that none of the edges in the network are overloaded,
i.e. arrival rate of packets to any edge e under the policy π
is at most the rate allocated by the policy π to the edge e to
serve packets.

To state the result precisely, define the set Λ to be the set
of all arrival vectors λ ∈ R

|C|
+ , for which there exists a ran-

domized activation vector μ ∈ conv(M) and a non-negative
flow decomposition {λ(c)

i }, such that Eqns. (3) and (4)
are satisfied. We have the following theorem:

Theorem 1: The network-layer capacity region
Λ(G, C) is characterized by the set Λ, up to its boundary,
i.e.,

int(Λ) ⊆ Λ(G, C) ⊆ Λ,

where int(S) denotes the interior of the Euclidean set S.

Proof of Theorem 1 consists of two parts: converse and
achievability. Proof of the converse is given in Appendix A,
where we show that all supportable arrival rates must belong
to the set Λ. The main result of this paper, as developed in
the subsequent sections, is the construction of an efficient
admissible policy, called Universal Max-Weight (UMW),
which achieves any arrival rate in the interior of the set Λ.

III. OVERVIEW OF THE UMW POLICY

In this section, we present a brief overview of our
throughput-optimal UMW policy, designed and analyzed in
the subsequent sections. Central to the UMW policy is
a global state vector called virtual queues Q̃(t), used for
packet routing and link activations. Each component of the
virtual queues is updated at every slot according to a one-
hop queueing (Lindley) recursion, corresponding to a relaxed
network, described in detail in section IV. Unlike the well-
known Back-Pressure algorithm for the unicast problem [14],
in which packet routing decisions are made hop-by-hop using
physical queue lengths Q(t), the UMW policy prescribes an
admissible route to each incoming packet immediately upon its
arrival (dynamic source routing). This route selection decision
is dynamically made by solving a suitable min-cost routing
problem (e.g., shortest path, MST etc.) at the source with
edge costs given by the current virtual-queue vector Q̃(t). Link
activation decisions at each slot are made by a Max-Weight
algorithm with link-weights set equal to Q̃(t). Having fixed the
routing and activation policy as above, in section V we design
a packet scheduling algorithm for the physical network, which
efficiently resolves contention among multiple packets that
wait to cross the same (active) edge at the same slot. We show
that the overall policy is throughput-optimal. One significantly

new feature of our algorithm is that it is entirely oblivious to
the length of the physical queues of the network and utilizes
the auxiliary virtual-queue state variables for stabilizing the
former.

Our proof of throughput-optimality of UMW leverages
ideas from deterministic adversarial queueing theory and com-
bines it effectively with the stochastic Lyapunov-drift based
techniques and may be of independent theoretical interest.

IV. GLOBAL VIRTUAL QUEUES: STRUCTURES,
ALGORITHMS, AND STABILITY

Here we introduce the notion of virtual queues,5 which is
obtained by relaxing the dynamics of the physical queues of
the network in the following intuitive fashion.

A. Precedence Constraints

In a multi-hop network, if a packet p is being routed along
the path T = l1 − l2 − . . . − lk, where li ∈ E is the ith link
on its path, then by the principle of causality, the packet p
cannot be physically transmitted over the jth link lj if it has not
already been transmitted by the first j−1 links l1, l2, . . . , lj−1.
This constraint is known as the precedence constraint in the
network scheduling literature [24]. In the following, we make
a radical departure by relaxing this constraint to obtain a
simpler single-hop virtual system, which will play a key role
in designing our policy and its optimality analysis.

B. The Virtual Queue Process {Q̃(t)}t≥1

The Virtual queue process Q̃(t) =
(
Q̃e(t), e ∈ E

)

is an |E| = m dimensional controlled stochastic process,
imitating a fictitious queueing network without the precedence
constraints. In particular, when a packet p of class c arrives at
the source node s(c), a dynamic policy π prescribes a suitable
route T (c)(t) ∈ T (c) to the packet. Denoting the set of all
edges in the route T (c)(t) by {l1, l2, . . . , lk}, this incoming
packet induces a virtual arrival simultaneously at each of the
virtual queues

(
Q̃li

)
, i = 1, 2, . . . , k, right upon its arrival

to the source. Since the virtual network is assumed to be
relaxed with no precedence constraints, any packet present in
the virtual queue is eligible for service. See Figure 2 for an
illustration.

The (controlled) service process allocated to the virtual
queues is denoted by {μπ(t)}t≥1. We require the service
process to satisfy the same activation constraints as in the
original system, i.e., μπ(t) ∈ M, ∀t ≥ 1.

Let Aπ
e (t) be the total number of virtual packet arrivals

(from all classes) to the queue Q̃e at time t under the action
of the policy π, i.e.,

Aπ
e (t) =

∑

c∈C
A(c)(t)1

(
e ∈ T (c)(t)

)
, ∀e ∈ E. (5)

Hence, we have the following one-step evolution (Lindley
recursion) of the virtual queue process {Q̃e(t)}t≥1:

Q̃e(t + 1) =
(
Q̃e(t) + Aπ

e (t)− μπ
e (t)

)+
, ∀e ∈ E, (6)

5Note that our notion of virtual queues is completely different from and
unrelated to the notion of shadow-queues proposed earlier in [13] and [18],
and virtual queues proposed in [23].

510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 2. Illustration of the virtual queue system for the four-node network G.
Upon arrival, the incoming packet p, belonging to a unicast session from
node 1 to 4, is prescribed a path Tp = {{1, 2}, {2, 3}, {3, 4}}. Relaxing
the precedence constraints, the packet p is counted as an arrival to the virtual
queues Q̃12 and Q̃23 and Q̃34 simultaneously at the same slot. In the physical
system, the packet p may take a while before reaching any edge in its path,
depending on the control policy.

We emphasize that Aπ
e (t) is a function of the routing tree

T (c)(t) that the policy chooses at time t, from the set of all
admissible routes T (c). This is discussed in the following.

C. Dynamic Control and Stability of the Virtual Queues

Next, we design a dynamic routing and link activation policy
for the virtual network, which stabilizes the virtual queue
process {Q̃(t)}t≥1, for all arrival rate-vectors λ ∈ int(Λ).
This policy is obtained by minimizing the one-step drift of
a quadratic Lyapunov-function of the virtual queue lengths
(as opposed to the real queue lengths used in the Back-Pressure
policy [14]). In the following section, we will show that when
this dynamic policy is used in conjunction with a suitable
packet scheduling policy in the physical network, the overall
policy is throughput-optimal for the physical network.

To derive a stabilizing policy for the virtual network,
consider a quadratic Lyapunov function L(Q̃(t)) defined in
terms of the virtual queue lengths:

L(Q̃(t)) =
∑

e∈E

Q̃2
e(t)

From the one-step dynamics of the virtual queues (6),
we have:

Q̃e(t + 1)2 ≤ (Q̃e(t)− μπ
e (t) + Aπ

e (t))2

= Q̃2
e(t) + (Aπ

e (t))2 + (μπ
e (t))2 + 2Q̃e(t)Aπ

e (t)
− 2Q̃e(t)μπ

e (t)− 2μπ
e (t)Aπ

e (t)

Since μπ
e (t) ≥ 0 and Aπ

e (t) ≥ 0, we have

Q̃2
e(t + 1)− Q̃2

e(t) ≤ (Aπ
e (t))2 + (μπ

e (t))2

+ 2Q̃e(t)Aπ
e (t)− 2Q̃e(t)μπ

e (t)

Hence, the one-step Lyapunov drift Δπ(t), conditional on the
current virtual queue lengths Q̃(t), under the operation of

any admissible Markovian policy π ∈ Π is upper-bounded
by

Δπ(t) def= E
(
L(Q̃(t + 1))− L(Q̃(t))|Q̃(t)

)

≤ B + 2
∑

e∈E

Q̃e(t)E
(
Aπ

e (t)|Q̃(t)
)

− 2
∑

e∈E

Q̃e(t)E
(
μπ

e (t)|Q̃(t)
)

(7)

where B is a constant, bounded by
∑

e E(Aπ
e (t))2 +

E(μπ
e (t))2) ≤ n2A2

max + m.
The upper-bound on the drift, given by (7), holds good for

any admissible policy in the virtual network. In particular,
by minimizing the upper-bound pointwise, and exploiting the
separable nature of the objective, we derive the following
decoupled dynamic routing and link activation policy for the
virtual network:

Dynamic Routing Policy: The drift-minimizing route for
each class c, over the set of all admissible routes, is selected
by minimizing the following cost function, appearing in the
middle of Eqn. (7)

RoutingCostπ ≡
∑

e∈E

Q̃e(t)Aπ
e (t),

where we remind the reader that Aπ
e (t) denotes the routing

policy-dependent arrivals to the virtual queue corresponding
to the link e at time t.

Using Eqn. (5), we may rewrite the objective-function as

RoutingCostπ =
∑

c∈C
A(c)(t)

(∑

e∈E

Q̃e(t)1
(
e ∈ T (c)(t))

)

(8)

Using the separability of the objective (8), the above opti-
mization problem decomposes into following min-cost route-
selection problem T

(c)
opt(t) for each class c:

T
(c)
opt(t) ∈ argmin

T (c)∈T (c)

(∑

e∈E

Q̃e(t)1
(
e ∈ T (c))

)
(9)

Depending on the type of flow of class c, the route-selection
problem (9) is equivalent to one of the following well-
known combinatorial problems on the graph G, with its edges
weighted by the virtual queue length vector Q̃:

• UNICAST TRAFFIC: T
(c)
opt(t) = The shortest s(c) −

t(c) path in the weighted-graph G.
• BROADCAST TRAFFIC: T

(c)
opt(t) = The minimum

weight spanning tree rooted at the source s(c), in the
weighted-graph G.

• MULTICAST TRAFFIC: T
(c)
opt(t) = The mini-

mum weight Steiner tree rooted at the source
s(c) and spanning the destinations D(c) =
{t(c)1 , t

(c)
2 , . . . , t

(c)
k }, in the weighted-graph G.

• ANYCAST TRAFFIC: T
(c)
opt(t) = The shortest of the

k shortest s(c) − t
(c)
i paths, i = 1, 2, . . . , k in the

weighted-graph G.

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 511

Thus, the routes are selected according to a dynamic source
routing policy [25]. Apart from the minimum weight Steiner
tree problem for the multicast traffic (which is NP-hard with
several known efficient approximation algorithms [26]), all of
the above routing problems on the weighted virtual graph may
be solved efficiently using standard algorithms [27].

Dynamic Link Activation Policy: A feasible link activation
schedule μ∗(t) ∈ M is dynamically chosen at each slot by
maximizing the last term in the upper-bound of the drift-
expression (7), given as follows:

μ∗(t) ∈ arg max
µ∈M

(∑

e∈E

Q̃e(t)μe

)
(10)

This is the well-known max-weight scheduling policy, which
can be solved efficiently under various interference models
(e.g., Primary or node-exclusive model [28]).

In solving the above routing and scheduling problems,
we tacitly made the assumption that the virtual queue vector
Q̃(t) is globally known in each slot. We will discuss practical
distributed implementation of our algorithm in section VII.
Next, we establish stability of the virtual queues under
the above policy, which will be instrumental for proving
throughput-optimality of the overall UMW policy:

Theorem 2: Under the above dynamic routing and link
scheduling policy, the virtual queue process {Q̃(t)}t≥0 is
strongly stable for any arrival rate λ ∈ int(Λ), i.e.,

lim sup
T→∞

1
T

T−1∑

t=0

∑

e∈E

E(Q̃e(t)) <∞.

Proof: Consider an arrival rate vector λ ∈ int
(
Λ

)
. Thus,

from Eqns. (3) and (4), it follows that there exists a scalar
ε > 0 and a vector μ ∈ conv(M), such that we can
decompose the total arrival for each class c ∈ C into a finite
number of routes, such that

λe
(def.)
=

∑

(i,c):e∈T
(c)
i ,T

(c)
i ∈T (c)

λ
(c)
i ≤ μe − ε, ∀e ∈ E (11)

We can express μ as,

μ =
∑

i

pisi, (12)

for some activation vectors si ∈ M, ∀i and some probability
distribution p.

Now consider the following auxiliary stationary randomized
routing and link activation policy RAND ∈ Π for the virtual
queue system {Q̃(t)}, which will be useful in our proof.
The randomized policy RAND randomly selects the activation
vector sj with probability pj and routes the incoming packet of

class c along the route T
(c)
i ∈ T (c), with probability λ

(c)
i

λ(c) , ∀i, c.
Hence, the total expected arrival rate to the virtual queue Q̃e

at time slot t, due to the action of the stationary randomized
policy RAND is given by

EARAND
e (t) = λe =

∑

(i,c):e∈T
(c)
i ,T

(c)
i ∈T (c)

λ
(c)
i , ∀e ∈ E (13)

and the expected total service rate to the virtual server for the
queue Q̃e is given by

EμRAND
e (t) =

∑

i

pisi(e) = μe (14)

Since our Max-Weight policy, UMW, minimizes the RHS of
the drift expression in Eqn. (7) from the set of all feasible
policies Π, we can write

ΔUMW(t)

≤ B + 2
∑

e∈E

Q̃e(t)E
(
ARAND

e (t)|Q̃(t)
)

− 2
∑

e∈E

Q̃e(t)E
(
μRAND

e (t)|Q̃(t)
)

(a)
= B + 2

∑

e∈E

Q̃e(t)
(

EARAND
e (t)− EμRAND

e (t)
)

(b)
= B + 2

∑

e∈E

Q̃e(t)
(
λe − μe

)

(c)

≤ B − 2ε
∑

e∈E

Q̃e(t), (15)

where (a) follows from the fact that the randomized policy
RAND is memoryless and hence, independent of the virtual
queues Q̃(t), (b) follows from Eqns. (13) and (14) and finally
(c) follows from Eqn. (11).

Taking expectation of both sides w.r.t. the virtual queue
lengths Q̃(t), we bound the expected drift at slot t as

EL
(
Q̃(t + 1)

)
− EL

(
Q̃(t)

)
≤ B − 2ε

∑

e∈E

E(Q̃e(t)) (16)

Summing Eqn. (16) from t = 0 to T − 1 and remembering
that L(Q̃(T)) ≥ 0 and L(Q̃(0)) = 0, we conclude that

1
T

T−1∑

t=0

∑

e∈E

E(Q̃e(t)) ≤
B

2ε
(17)

Taking lim sup of both sides proves the claim. �
As a consequence of the strong stability of the virtual queues
{Q̃e(t), e ∈ E}, we have the following sample-path result,
which will be the key to our subsequent analysis:

Lemma 1: Under the action of the above policy,
we have for any λ ∈ int(Λ̄):

lim
t→∞

Q̃e(t)
t

= 0, ∀e ∈ E, w.p. 1.

In other words, the virtual queues are rate-stable [29].

Proof: See Appendix C. �
The sample path result of Lemma 1 may be interpreted as

follows: For any given realization ω of the underlying sample
space Ω, define the function

F (ω, t) = max
e∈E

Q̃e(ω, t).

Note that, for any t ∈ Z+, due to the boundedness of
arrivals per slot, the function F (ω, t) is well-defined and finite.
In view of this, Lemma (1) states that under the action of

512 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

the UMW policy, F (ω, t) = o(t) almost surely.6 This result
will be used in our sample pathwise stability analysis of the
physical queueing process {Q(t)}t≥0.

D. Consequence of the Stability of the Virtual Queues

It is apparent from the virtual queue evolution equation (6),
that the stability of the virtual queues under the UMW policy
implies that the arrival rate at each virtual queue is at most
the service rate offered to it under the UMW routing and
scheduling policy. In other words, effective load of each edge e
in the virtual system is at most unity. This is a necessary
condition for stability of the physical queues when the same
routing and link activation policy is used for the multi-hop
physical network. In the following, we make the notion of
“effective load” mathematically precise.

Skorokhod Mapping: Iterating on the system equation (6),
we obtain the following well-known discrete time Skorokhod-
Map representation [30] of the virtual queue dynamics

Q̃e(t) =
(

sup
1≤τ≤t

(
Aπ

e (t− τ, t)− Sπ
e (t− τ, t)

))+

, (18)

where Aπ
e (t1, t2)

def=
∑t2−1

τ=t1
Aπ

e (τ), is the total number of
arrivals to the virtual queue Q̃e in the time interval [t1, t2)
and Sπ

e (t1, t2)
def=

∑t2−1
τ=t1

μπ
e (τ), is the total amount of service

allocated to the virtual queue Q̃e in the interval [t1, t2). For
reference, we provide a proof of Eqn. (18) in Appendix B.

Combining Equation (18) with Lemma 1, we conclude that
under the UMW policy, almost surely for any sample path
ω ∈ Ω, for each edge e ∈ E and any t0 < t, we have

Ae(ω; t0, t) ≤ Se(ω; t0, t) + F (ω, t), (19)

where F (ω, t) = o(t).
Implications for the Physical Network: Note that, every

packet arrival to a virtual queue Q̃e at time t corresponds
to a packet in the physical network, that will eventually cross
the edge e. Hence, the loading condition (19) implies that
under the UMW policy, the total number of packets injected
during any time interval (t0, t], willing to cross the edge e,
is less than the total amount of service allocated to the edge e
in that time interval up to an additive term of o(t). Thus
informally, the “effective load” of any edge e ∈ E is at most
unity.
By utilizing the sample-path result in Eqn. (19), in the fol-
lowing section we show that there exists a simple packet
scheduling scheme for the physical network, which guaran-
tees the stability of the physical queues, and consequently,
throughput-optimality.

V. OPTIMAL CONTROL OF THE PHYSICAL NETWORK

With the help of the virtual queue structure as defined
above, we next focus our attention on designing a throughput-
optimal control policy for the multi-hop physical network.
As discussed in Section II, a control policy for the physical
network consists of three components, namely (1) Routing,
(2) Link activations and (3) Packet scheduling. In the proposed

6g(t) = o(t) if limt→∞ g(t)
t

= 0.

UMW policy, the (1) Routing and (2) Link activations for
the physical network is done exactly in the same way as
in the virtual network, based on the current values of the
virtual queue state variables Q̃(t), described in Section IV-C.
It should be noted that, in the particular case of wireless
networks, it is possible that a particular edge with positive
virtual queue length is scheduled for transmission at a slot,
even though the edge does not have any packet to transmit
in its physical queue. The surprising fact, that follows from
Theorem 4 is that this kind of wasted transmissions are rare
and it does not affect the throughput.

There exist many possibilities for the third component,
namely the packet scheduler, which efficiently resolves con-
tention when multiple packets attempt to cross an active
edge e at the same time-slot t. Popular choices for the packet
scheduler include FIFO, LIFO etc. In this paper, we focus on a
particular scheduling policy which has its origin in the context
of adversarial queueing theory [31]. In particular, we extend
the Nearest To Origin (NTO) policy to the generalized network
flow setting, where a packet may be duplicated. This policy
was proposed in [32] in the context of wired networks for the
unicast problem. We appropriately extend this policy for use in
generalized flow problems, including multicast, broadcast, and
anycast, even in wireless networks. Our proposed scheduling
policy is called Extended NTO (ENTO) and is defined as
follows:

Definition 2 (Extended NTO): If multiple packets
attempt to cross an active edge e at the same time
slot t, the Extended Nearest To Origin (ENTO) policy
gives priority to the packet which has traversed the least
number of hops along its path from its origin up to the
edge e.

The Extended NTO policy may be easily implemented by
maintaining a priority queue [27] for each edge. The initial
priority of each incoming packet at the source is set to zero.
Upon transmission by an edge, the priority of a transmitted
packet is decreased by one. The transmitted packet is then
copied into the next-hop priority queue(s) (if any) according to
its assigned route. See Figure 3 for an illustration. The pseudo
code for the full UMW algorithm is provided in Algorithm 1.

We next state the following theorem which proves the
stability of the physical queues under the ENTO policy:

Theorem 3: Under the action of the UMW policy with
ENTO packet scheduling, the physical queues are rate-
stable [29] for any arrival vector λ ∈ int(Λ), i.e.,

lim
t→∞

∑
e∈E Qe(t)

t
= 0, w.p. 1

Proof: This theorem is proved by extending the argument
of Gamarnik [32] and combining it with the sample path
loading condition in Eqn. (19). See Appendix D for the
detailed argument. �

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 513

Fig. 3. A schematic diagram showing the scheduling policy ENTO in
action. The packets p1 and p2 originate from the sources S1 and S2. Part
of their assigned routes is shown in blue and red respectively. The packets
contend for crossing the active edge e3 at the same time slot. According to
the ENTO policy, the packet p2 has higher priority (having crossed a single
edge e4 from its source) than p1 (having crossed two edges e1 and e2 from its
source) for crossing the edge e3. Note that, although a copy of p1 might have
already crossed the edge e5, this edge does not fall in the path connecting the
source S1 to the edge e3 and hence does not enter into priority calculations.

Algorithm 1 Universal Max-Weight Algorithm (UMW) at Slot
t for the Generalized Flow Problem in a Wireless Network
Require: Graph G(V, E), Virtual queue lengths {Q̃e(t), e ∈

E} at the slot t.
1: [Edge-Weight Assignment] Assign each edge of the graph

e ∈ E a weight We(t) equal to Q̃e(t), i.e.

W (t)← Q̃(t)

2: [Route Assignment] Compute a Minimum Weight Route
T (c)(t) ∈ T (c)(t) for a class c incoming packet in the
weighted graph G(V, E), according to Eqn. (9).

3: [Link Activation] Choose the activation μ(t) from the set
of all feasible activations M, which maximizes the total
activated link-weights, i.e.

μ(t)← arg max
s∈M

s ·W (t)

4: [Packet Forwarding] Forward physical packets from the
physical queues over the activated links according to the
ENTO scheduling policy.

5: [Virtual Queue Counter Update] Update the virtual
queues assuming a precedence-relaxed system, i.e.,

Q̃e(t + 1)←
(

Q̃e(t) + Ae(t)− μe(t)
)+

, ∀e ∈ E

As a direct consequence of Theorem 3, we have the main
result of this paper:

Theorem 4: The UMW policy is throughput-optimal.

Proof: For any class c ∈ C, the number of packets
R(c)(t), received by all nodes i ∈ D(c) may be bounded

as follows:

A(c)(0, t)−
∑

e∈E

Qe(t)
(∗)
≤ R(c)(t) ≤ A(c)(0, t), (20)

where the lower-bound (∗) follows from the simple observa-
tion that if a packet p of class c has not reached all destination
nodesD(c), then at least one copy of it must be present in some
physical queue.

Dividing both sides of Eqn. (20) by t, taking limits and
using SLLN and Theorem 3, we conclude that w.p. 1

lim
t→∞

R(c)(t)
t

= λ(c)

Hence from the definition (1), we conclude that UMW is
throughput-optimal. �

VI. EXTENSION OF THE UMW POLICY

TO TIME-VARYING NETWORKS

The proposed UMW policy may be readily extended to
time-varying networks. In particular, we consider a simple
model of a time-varying network, introduced earlier in our
paper [10], where each link can be in two states at any slot -
ON and OFF. Hence, the state of the network at slot t may
be denoted by the binary vector σ(t) ∈ {0, 1}m, where

σ(e, t) =

{
1, if e is ON at slot t

0, otherwise.

The link-state process {σ(τ)}τ>1 is assumed to be evolving
according to a stationary ergodic process. The routing and
scheduling action of a feasible policy at slot t may depend
on the observed network states {σ(τ)}t0. A link e can be
activated at slot t only if it is ON at that slot, i.e., σ(e, t) = 1.
Carrying out similar virtual queue construction and analysis,
the one step conditional drift expression in Eqn. 7 is modified
as follows

Δπ(t) def= E
(
L(Q̃(t + 1))− L(Q̃(t))|Q̃(t), σ(t)

)

≤ B + 2
∑

e∈E

Q̃e(t)E
(
Aπ

e (t)|Q̃(t), σ(t)
)

− 2
∑

e∈E

Q̃e(t)E
(
μπ

e (t)|Q̃(t), σ(t)
)

(21)

Note that, the routing policy, which minimizes the RHS of
Eqn. (21) is the same as Eqn. (9). Moreover, given the virtual
queue lengths, it does not depend on the current network
state σ(t). The link scheduling policy, however, depends on
the current network state. In particular, we activate a set of
ON links which are feasible and have the maximum total
weight, i.e.,

μ∗(t) ∈ argmax
µ∈M

(∑

e∈E

Q̃e(t)σ(e, t)μe

)
(22)

Using similar analysis as in [10] and following the analy-
sis of the UMW policy, it can be shown Theorem 2 and
Theorem 4 holds and hence, the policy is throughput-optimal.
A simulation result for the performance of the UMW policy in
time-varying network for broadcast traffic has been provided
in Section VIII C.

514 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

VII. DISTRIBUTED IMPLEMENTATION

The UMW policy in its original form, as given in
Algorithm 1, is centralized in nature. This is because the
sources need to know the topology of the network and the
current value of the virtual queues Q̃(t) to solve the shortest
route and the Max-Weight problems at steps (2) and (3) of
the algorithm. With the advent of Software Defined Network-
ing (SDN) technology, where the logically centralized control
plane is separated from the forwarding elements [33], [34],
the optimal centralized UMW policy may indeed be favorable
in some practical setting. In fact, centralization of control
plane functionalities are explicitly favored over the distributed
schemes for enhanced network performance [35].

Nevertheless, it is also possible to devise a distributed
version of the proposed policy. Although the topology of the
network may be obtained efficiently by topology discovery
algorithms [36], keeping track of the virtual queue evolution
(Eqn. (6)) is subtle. Note that, in the special case where all
packets arrive only at a single source node, no information
exchange is necessary and the virtual queue updates (Step 5)
may be implemented at the source locally. In the general case
with multiple sources, it is necessary to periodically exchange
packet arrival information among the sources to implement
Step 5 exactly. To circumvent this issue, we propose the
following class of heuristic UMW policies:

Heuristic UMW: Assign the edge weights to be the
Physical queue lengths Q(t), instead of the virtual queue
lengths Q̃(t), in either step (2) or step (3) or both in the
original UMW Algorithm 1.

Routing based on physical queue lengths still requires
the exchange of queue length information. However, this
can be efficiently implemented using the standard distributed
Bellman-Ford (for shortest path routing), or the distributed
MST algorithm by Gallager et al. [37]. The simulation results
in section VIII-B show that the heuristic policy works well
in practice and its delay performance is substantially better
than the virtual queue based optimal UMW policy in wireless
networks. The affirmative empirical results from the simula-
tion section immediately prompt us to make the following
conjecture:

Conjecture 1: The Heuristic UMW policy is
throughput-optimal.

VIII. NUMERICAL SIMULATION

A. Delay Improvement Compared to the Back Pressure
Policy - The Unicast Setting

To empirically demonstrate the superior performance of
the UMW policy over the Back-Pressure class of policies
in the unicast setting, we consider the wired network shown
in Figure 4 and implement the following policies: (1) UMW
(opt), (2) UMW (heuristic), (3) Backpressure (original [14]),
and (4) Shortest-Path based Backpressure [15].

Fig. 4. The wired network topology used for unicast simulation.

Fig. 5. Comparison of time-averaged queue-lengths under the BP (original
and shortest-path based [15]) and UMW (optimal and heuristic) policies in
the unicast setting of Fig. 4. In terms of performance, we have UMW (opt.)>
UMW (heu.) > BP (SP-based [15]) > BP (original).

All links are assumed to have a unit capacity. We consider
two concurrent unicast sessions with source-destination pairs
given by (s1 = 1, t1 = 8) and (s2 = 5, t2 = 2) respec-
tively. It is easy to see that Max-Flow(s1 → t1) = 2 and
Max-Flow(s2 → t2) = 1 and there exist mutually disjoint
paths to achieve the optimal rate-pair (λ1, λ2) = (2, 1).
Assuming Poisson arrivals at the sources s1 and s2 with
intensities λ1 = 2ρ and λ2 = ρ, 0 ≤ ρ ≤ 1, where ρ denotes
the “load factor”, Figure 5 shows a plot of the total average
queue lengths as a function of the load factor ρ under the
operation of the four policies considered above.

From the plot, we conclude that both the optimal and heuris-
tic UMW policies uniformly outperform the BP (original)
and SP-based BP policy in terms of average queue lengths,
and hence (by Little’s Law), end-to-end delay. The primary
reason being, the BP class of policies, in principle, explores
all possible paths to route packets to their destinations. The
UMW policy, on the other hand, transmits all packets along
“optimal” acyclic routes. This results in substantial reduction
in latency.

B. Using the Heuristic UMW Policy for Improved Latency
in the Wireless Networks - The Broadcast Setting

Next, we empirically demonstrate that the heuristic UMW
policy that uses physical queue lengths Q(t) (instead of
virtual queues Q̃(t) as in the optimal UMW policy) not only
achieves the full broadcast capacity but yields better delay
performance in this particular wireless network. As discussed
earlier, the heuristic policy is practically easier to implement in
a distributed fashion. We simulate a 3×3 wireless grid network
shown in Figure 6, with primary interference constraints [20].

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 515

Fig. 6. The wireless topology used for broadcast simulation.

Fig. 7. Comparison of the Avg. Queue lengths as a function of the arrival
rate for the optimal (in blue) and the heuristic (in red) UMW Policy for the
grid network in Figure 6 in the broadcast setting.

The broadcast capacity of the network is known to be
λ∗ = 2

5 [8]. The ENTO policy is used for packet scheduling.
The average queue length is plotted in Figure 7 as a function
of the packet arrival rate λ under the operation of the (a) UMW
(optimal) and (b) UMW (heuristic) policies. The plot shows
that the heuristic policy results in much smaller queue lengths
than the optimal policy. The reason being that physical queues
capture the network congestion “more accurately” for proper
link activations.

C. Performance of the Optimal and Heuristic UMW Policy
in Time-Varying Networks - The Broadcast Setting

In this section, we take a closer look at the wireless grid
network in Figure 6 by numerically evaluating the broadcast-
ing performance of the proposed policies, when the network
is time-varying. In particular, we assume that at each slot a
link is ON with probability pON, and is OFF w.p. 1 − pON,
independent of everything else. Packets can be transmitted
only over the ON links at a given slot. Using similar analysis
that we did for the static network, it can be easily shown
that the proposed UMW policy remains throughput-optimal
when the Max-Weight link activation at each slot is done with
respect to the ON links at that slot. The packet routing policy
remains the same as in the original UMW policy. The per-
formance of the optimal and heuristic UMW policy is shown
in Figure 8 for two different values of the parameter pON.
It can be seen from the plot that the heuristic policy incurs
substantially smaller queue lengths, compared to the optimal
policy, especially in the low-load regime. Also, from the nearly
identical vertical asymptotes in the queue length vs arrival rate

Fig. 8. Comparison of the time-averaged total queue lengths under the
optimal (solid line) and heuristic (dashed line) UMW policy in the time-
varying grid network (with parameter pON), for the broadcast problem.

plots, we conclude that the heuristic policy is also throughput-
optimal in this case.

IX. CONCLUSION

In this paper, we have proposed a new, efficient
and throughput-optimal policy, named Universal Max-
Weight (UMW), for the Generalized Network Flow problem.
The UMW policy can simultaneously handle a mix of Unicast,
Broadcast, Multicast, and Anycast traffic in arbitrary networks
and is empirically shown to have superior performance com-
pared to the existing policies. The next step would be to
investigate whether the UMW policy still retains its optimality
when implemented with physical queue lengths, instead of the
virtual queue lengths. An affirmative answer to this question
would imply a more efficient implementation of the policy.

APPENDIX

A. Proof of Converse of Theorem 1

Proof: Consider any admissible arrival rate vector
λ ∈ Λ(G, C). By definition, there exists an admissible policy
π ∈ Π which supports the arrival vector λ in the sense
of Eqn. (1). Without any loss of generality, we may assume
the policy π to be stationary and the associated DTMC to
be ergodic. Let A

(c)
i (t) denote the total number of packets

from class c that have finished their routing along the route
T

(c)
i ∈ T (c) up to time t. Note that, each packet is routed

along one admissible route only. Hence, if the total number
of arrival to the source s(c) of class c up to time t is denoted
by the random variable A(c)(t), we have

A(c)(t)
(a)

≥
∑

T
(c)
i ∈T (c)

A
(c)
i (t)

(b)
= R(c)(t). (23)

In the above, the inequality (a) follows from the observation
that any packet p which has finished its routing along some
route T

(c)
i ∈ T (c) by the time t, must have arrived at the source

by the time t. The equality (b) follows from the observation
that any packet p which has finished its routing by time t along
some route T

(c)
i ∈ T (c), has reached all of the destination

nodes D(c) of class c by time t and vice versa.

516 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Dividing both sides of equation (23) by t and taking limit
as t→∞, we have w.p. 1

λ(c) (d)
= lim

t→∞

A(c)(t)
t

≥ lim inf
t→∞

1
t

∑

T
(c)
i ∈T (c)

A
(c)
i (t)

= lim inf
t→∞

R(c)(t)
t

(f)
= λ(c),

where equality (d) follows from the SLLN, and equality (f)
follows from the Definition (1).

From the above inequalities, we conclude that w.p. 1

lim
t→∞

1
t

∑

T
(c)
i ∈T (c)

A
(c)
i (t) = λ(c), ∀c ∈ C (24)

Now we use the fact that the policy π is stationary and the
associated DTMC is ergodic. Thus the time-average limits
exist and they are constant a.s.. For all T

(c)
i ∈ T c and c ∈ C,

define

λ
(c)
i

def= lim
t→∞

1
t
A

(c)
i (t) (25)

Hence, from the above, we get

λ(c) =
∑

T
(c)
i ∈T (c)

λ
(c)
i (26)

Now consider any edge e ∈ E in the graph G. Since the
variable A

(c)
i (t) denotes the total number of packets from

class c, that have completely traversed along the tree T
(c)
i ,

the following inequality holds good for any time t

∑

(i,c):e∈T
(c)
i ,T

(c)
i ∈T (c)

A
(c)
i (t) ≤

t∑

τ=1

μe(τ), (27)

where the left-hand side denotes a lower-bound on the number
of packets that have crossed the edge e and the right-hand side
denotes the amount of service that has been provided to the
edge e up to time t by the policy π.

Dividing both sides by t and taking limits of both side,
and noting that the limit on the left-hand side exists w.p. 1,
we have

∑

(i,c):e∈T
(c)
i ,T

(c)
i ∈T c

λ
(c)
i ≤ μe, (28)

where μ = limt→∞
1
t

∑t
τ=1 μ(τ). Since μ(τ) ∈ M, ∀τ and

the set conv(M) is closed, we conclude that μ ∈ conv(M).
Eqns. (26) and (28) concludes the proof of the theorem. �

B. Proof of the Skorokhod Map Representation in Eqn. (18)

Proof: From the dynamics of the virtual queues in
Eqn. (6), we have for any t ≥ 1

Q̃e(t) ≥ Q̃e(t− 1) + Ae(t− 1)− μe(t− 1). (29)

Iterating (29) τ times 1 ≤ τ ≤ t, we obtain

Q̃e(t) ≥ Q̃e(t− τ) + Ae(t− τ, t)− Se(t− τ, t),

where Ae(t1, t2) =
∑t2−1

τ=t1
Ae(τ) and Se(t1, t2) =

∑t2−1
τ=t1

μe(τ), as defined before. Since each of the virtual-queue
components are non-negative at all times (viz. (6)), we have
Q̃e(t− τ) ≥ 0. Thus,

Q̃e(t) ≥ Ae(t− τ, t)− Se(t− τ, t).

Since the above holds for any time 1 ≤ τ ≤ t and the queues
are always non-negative, we obtain

Q̃e(t) ≥
(

sup
1≤τ≤t

(
Ae(t− τ, t)− Se(t− τ, t)

))

+

(30)

To show that Eqn. (30) holds with equality, we consider
two cases.

Case I (Q̃e(t) = 0): Since the RHS of Eqn. (30) is
non-negative, we immediately obtain equality throughout
in Eqn (30).

Case II (Q̃e(t) > 0): Consider the latest time t − τ ′, 1 ≤
τ ′ ≤ t, prior to t, at which Q̃e(t − τ ′) = 0. Such a time
t − τ ′ exists because we assumed the system to start with
empty queues at time t = 0. Hence Qe(z) > 0 throughout
the time interval z ∈ [t − τ ′ + 1, t]. As a result, in this time
interval the system dynamics for the virtual-queues (6) takes
the following form

Q̃e(z) = Q̃e(z − 1) + Ae(z − 1)− μe(z − 1),

Iterating the above recursion in the interval z ∈ [t− τ ′ + 1, t],
we obtain

Q̃e(t) = Ae(t− τ ′, t)− Se(t− τ ′, t) (31)

We conclude the proof upon combining Eqns. (30)
and (31). �

C. Proof of Lemma 1

Proof: We will establish this result by appealing to the
Strong Stability Theorem (Theorem 2.8) of [29]. For this,
we first consider an associated system {Q̂(t)}t≥0 with a
slightly different queueing recursion, as considered in [29]
(Eqn. 2.1, pp-15). For a given sequence {A(t), μ(t)}t≥0,
define the following recursion for all e ∈ E,

Q̂e(t + 1) = (Q̂e(t)− μe(t))+ + Ae(t),
Q̂e(0) = 0. (32)

Recall the dynamics of the virtual queues (Eqn. (6)):

Q̃e(t + 1) = (Q̃e(t) + Ae(t)− μe(t))+,

Q̃e(0) = 0. (33)

The following proposition is easy to establish.
Proposition 5: For all e ∈ E

Amax + Q̃e(t)
(∗)
≥ Q̂e(t)

(∗∗)
≥ Q̃e(t), ∀t ≥ 0. (34)

Taking expectation throughout the first inequality (*) of
Eqn. (34) for any e ∈ E, we have for each t ≥ 0

E(Q̂e(t)) ≤ E(Q̃e(t)) + Amax

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 517

Thus,

lim sup
T→∞

1
T

T−1∑

t=0

E(Q̂e(t)) ≤ lim sup
T→∞

1
T

T−1∑

t=0

E(Q̃e(t)) + Amax

(a)
< ∞,

where (a) follows from the strong stability of the virtual queues
under UMW. This shows that, the associated queue process
{Q̂(t)}t≥0 is also strongly stable under UMW.

Since the total external arrival A(t) =
∑

e Ae(t) at slot t
is assumed to be bounded w.p. 1, applying Theorem 2.8,
part (b) of [29], we conclude that for any e ∈ E

lim
t→∞

Q̂e(t)
t

= 0, w.p. 1

Using the second inequality (**) of Proposition 5 and the
non-negativity of the virtual queues, we conclude that for
any e ∈ E

lim
t→∞

Q̃e(t)
t

= 0, w.p. 1

Finally, using the union bound, we conclude that

lim
t→∞

Q̃e(t)
t

= 0, ∀e ∈ E w.p. 1.

�

D. Proof of Theorem 3

Throughout this proof, we will fix a sample point ω ∈ Ω,
giving rise to a sample path satisfying the condition (19). All
random processes7 will be evaluated at this sample path. For
the sake of notational simplicity, we will drop the argument ω
for evaluating any random variable X at the sample point ω,
e.g., the deterministic sample-path X(ω, t) will be simply
denoted by X(t). We now establish a simple analytical result
which will be useful in the main proof of the theorem:

Lemma 2: Consider a non-negative function
{F (t), t ≥ 1} defined on the set of natural numbers,
such that F (t) = o(t) . Define M(t) = sup0≤τ≤t F (τ).
Then
1. M(t) is non-decreasing in t.
2. M(t) = o(t)

Proof: That M(t) is non-decreasing follows directly from
the definition of M(t) = sup0≤τ≤t F (t). We now prove the
claim (2).

Case I (The Function F (t) Is Bounded): In this case,
the function M(t) is also bounded and the claim follows
immediately.

Case II (The Function F (t) Is Unbounded): Define the
subsequence {rk}k≥1, corresponding to the time of maximums

7Recall that, a discrete-time integer-valued random process X(ω; t) is
a measurable map from the sample space Ω to the set of all integer-
sequences Z

∞ [38], i.e., X : Ω → Z
∞.

of the function M(t) up to time t. Formally the sequence
{rk}k≥1 is defined recursively as follows,

r1 = 1 (35)

rk = {min t > rk−1 : F (t) > max
τ≤t−1

F (τ)} (36)

Since the function F (t) is assumed to be unbounded, we have
rk → ∞ as k → ∞. In the literature [39], the sequence
{rk} is also known as the sequence of records of the function
F (t). With this definition, for any t ≥ 1 and for rk ≤ t
corresponding to the latest record up to time t, we readily
have M(t) = F (rk). Hence,

M(t)
t

=
F (rk)

t

(a)

≤ F (rk)
rk

, (37)

where Eqn. (a) follows from the fact that rk ≤ t. Thus for any
sequence of natural numbers {ti}∞1 , we have a corresponding
sequence {rki}∞i=1 such that for each i, we have

M(ti)
ti

=
F (rki)

t

(a)

≤ F (rki)
rki

This implies,

lim sup
t→∞

M(t)
t
≤ lim sup

t→∞

F (t)
t

(b)
= 0, (38)

where Eqn (b) follows from our hypothesis on the function
F (t). Also since M(t) ≥ F (t), from Eqn. (38) we conclude
that

lim
t→∞

M(t)
t

= 0 (39)

�
As a direct consequence of Lemma 2 and the property of

the sample-point ω under consideration, we have:

Ae(t0, t) ≤ Se(t0, t) + M(t), ∀e ∈ E, ∀t0 ≤ t, (40)

for some non-decreasing non-negative function M(t) =
o(t). Equipped with Eqn. (40), we return to the proof of the
Theorem 3.

Proposition 6: ENTO is rate-stable.

Proof: We generalize the argument by Gamarnik [32] to
prove the proposition. Recall that we are analyzing the time-
evolution of a fixed sample point ω ∈ Ω, satisfying Eqn. (40).

Let Re(0) denote the total number of packets waiting to
cross the edge e at time t = 0. Also, let Rk(t) denote the
total number of packets at time t, which are exactly k hops
away from their respective sources. Such packets will be called
“layer k” packets in the sequel. If a packet is duplicated along
its assigned route T (which is, in general, a tree), each copy
of the packet is counted separately in the variable Rk(t), i.e.,

Rk(t) =
∑

T∈T
R(eT

k ,T)(t), (41)

518 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

where the variable R(e,T)(t) denotes the number of packets
following the routing tree T , that are waiting to cross the
edge e ∈ T at time t. The edge eT

k is an edge located kth hop
away from the source in the tree T . If there are more than
one such edge (because the tree T has more than one branch),
we include all these edges in the summation (41). We show by
induction that Rk(t) is almost surely bounded by a function,
which is o(t).

Base Step k = 0: Fix an edge e and time t. Let t0 ≤ t be
the largest time at which no packets of layer 0 (packets which
have not crossed any edge yet) were waiting to cross e. If no
such time exists, set t0 = 0. Hence, the total number of layer 0
packets waiting to cross the edge e at time t0 is at most Qe(0).
During the time interval [t0, t], as a consequence of the UMW
control policy (40), at most Se(t0, t)+M(t) external packets,
that want to cross the edge e in future, have been admitted to
the network. Also, by the choice of the time t0, the edge e
was always having packets to transmit during the entire time
interval [t0, t]. Since ENTO scheduling policy is followed,
layer 0 packets have priority over all other packets. Hence,
it follows that the total number of packets at the edge e at
time t satisfies

∑

T :e∈eT
0

R(e,T)(t) ≤ Re(0) + Se(t0, t) + M(t)− Se(t0, t)

≤ Re(0) + M(t) (42)

As a result, we have R0(t) ≤
∑

e Re(0) + |E|M(t), for all

t. Let B0(t)
def=

∑
e Re(0) + |E|M(t). Since M(t) = o(t),

we have B0(t) = o(t). Note that, since M(t) is monotonically
non-decreasing by definition, so is B0(t).

Induction Step: Suppose that, for some monotonically non-
decreasing functions Bj(t) = o(t), j = 0, 1, 2, . . . , k − 1,
we have Rj(t) ≤ Bj(t), for all time t. We next show that
Rk(t) ≤ Bk(t) for all t, where Bk(t) = o(t).

Again, fix an edge e and an arbitrary time t. Let t0 ≤ t
denote the largest time before t, such that there was no layer k
packet waiting to cross the edge e. Set t0 = 0 if no such
time exists. Hence, the edge e was always having packets to
transmit during the time interval [t0, t] (packets in layer k
or lower). The layer k packets that wait to cross edge e
at time t are composed only of a subset of packets which
were in layers 0 ≤ j ≤ k − 1 at time t0 or packets that
arrived during the time interval [t0, t] and have edge e as
one of their kth edge on the route followed. By our induction
assumption, the first group of packets has a size bounded by∑k−1

j=0 Bj(t0) ≤
∑k−1

j=0 Bj(t), where we have used the fact
(from our previous induction step) that the functions Bj(·)’s
are monotonically non-decreasing. The size of the second
group of packets is given by

∑
T :e∈eT

k
AT (t0, t). We next

estimate the number of layer k packets that crossed the edge e
during the time interval [t0, t]. Since ENTO policy is used,
layer k packets were not processed only when there were
packets in layers up to k−1 that wanted to cross e. The number
of such packets is bounded by

∑k−1
j=0 Bj(t0) ≤

∑k−1
j=0 Bj(t),

which denotes the total possible number of packets in layers
up to k − 1 at time t0, plus

∑k−1
j=0

∑
T :e∈eT

j
AT (t0, t), which

is the number of new packets that arrived in the interval [t0, t]

and intend to cross the edge e within first k − 1 hops. Thus,
we conclude that at least

max
{

0, Se(t0, t)−
k−1∑

j=0

Bj(t)−
k−1∑

j=0

∑

T :e∈eT
j

AT (t0, t)
}

(43)

packets of layer k crossed e during the time interval [t0, t].
Hence,

∑

T :e∈eT
k

R(e,T)(t)

≤
k−1∑

j=0

Bj(t) +
∑

T :e∈eT
k

AT (t0, t)

−
(
Se(t0, t)−

k−1∑

j=0

Bj(t)−
k−1∑

j=0

∑

T :e∈eT
j

AT (t0, t)
)

= 2
k−1∑

j=0

Bj(t) +
k∑

j=0

∑

T :e∈eT
j

AT (t0, t)− Se(t0, t)

(a)

≤ 2
k−1∑

j=0

Bj(t) + M(t),

where Eqn. (a) follows from the arrival bound (40). Hence,
the total number of layer k packets at time t is bounded by

Rk(t) ≤ 2|E|
k−1∑

j=0

Bj(t) + M(t)|E| (44)

Define Bk(t) to be the RHS of the above equation, i.e.

Bk(t)
(def)
= 2|E|

k−1∑

j=0

Bj(t) + M(t)|E| (45)

Using our induction assumption and Eqn. (45), we conclude
that Bk(t) = o(t) and it is monotonically non-decreasing. This
completes the induction step.

To conclude the proof of the proposition, notice that the
total size of the physical queues at time t may be written as

∑

e∈E

Qe(t) =
n−1∑

k=1

Rk(t) (46)

Since the previous inductive argument shows that for all k,
we have Rk(t) ≤ Bk(t) where Bk(t) = o(t) a.s., we conclude

lim
t→∞

∑
e∈E Qe(t)

t
= 0, w.p. 1, (47)

This implies that the physical queues are rate stable [29],
jointly under the operation of UMW and ENTO. �

REFERENCES

[1] A. Sinha and E. Modiano, “Optimal control for generalized network-
flow problems,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9. [Online]. Available: http://bit.ly/infocom17Sinha

[2] R. Rustin, Combinatorial Algorithms. Toronto, ON, Canada:
Algorithmics Press, 1973.

[3] A. Czumaj and W. Rytter, “Broadcasting algorithms in radio networks
with unknown topology,” in Proc. 44th Annu. IEEE Symp. Found.
Comput. Sci., Oct. 2003, pp. 492–501.

SINHA AND MODIANO: OPTIMAL CONTROL FOR GENERALIZED NETWORK-FLOW PROBLEMS 519

[4] J. Widmer, C. Fragouli, and J.-Y. Le Boudec, “Low-complexity energy-
efficient broadcasting in wireless ad-hoc networks using network cod-
ing,” in Proc. 1st Workshop Netw. Coding, Theory, Appl., 2005, pp. 1–6.

[5] E. Kranakis, D. Krizanc, and A. Pelc, “Fault-tolerant broadcasting in
radio networks,” J. Algorithms, vol. 39, no. 1, pp. 47–67, 2001.

[6] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proc. 26th IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2007, pp. 1073–1081.

[7] D. Towsley and A. Twigg, “Rate-optimal decentralized broadcasting:
The wireless case,” in Proc. ACITA, 2008, pp. 323–333.

[8] A. Sinha, G. Paschos, and E. Modiano, “Throughput-optimal multi-
hop broadcast algorithms,” in Proc. 17th ACM Int. Symp. Mobile Ad
Hoc Netw. Comput. (MobiHoc), New York, NY, USA, 2016, pp. 51–60.
[Online]. Available: http://doi.acm.org/10.1145/2942358.2942390

[9] A. Sinha, G. Paschos, C.-P. Li, and E. Modiano, “Throughput-optimal
broadcast on directed acyclic graphs,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 1248–1256.

[10] A. Sinha, L. Tassiulas, and E. Modiano, “Throughput-optimal broadcast
in wireless networks with dynamic topology,” in Proc. 17th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), New York,
NY, USA, 2016, pp. 21–30. [Online]. Available: http://doi.acm.org/10.
1145/2942358.2942389

[11] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing Steiner trees,”
in Proc. 14th Annu. ACM-SIAM Symp. Discrete Algorithms, 2003,
pp. 266–274.

[12] S. Sarkar and L. Tassiulas, “A framework for routing and congestion
control for multicast information flows,” IEEE Trans. Inf. Theory,
vol. 48, no. 10, pp. 2690–2708, Oct. 2002.

[13] L. Bui, R. Srikant, and A. Stolyar, “Optimal resource allocation
for multicast sessions in multi-hop wireless networks,” Phil. Trans.
Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 366, no. 1872,
pp. 2059–2074, 2008.

[14] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[15] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 841–854, Jun. 2011.

[16] M. Zargham, A. Ribeiro, and A. Jadbabaie, “Accelerated backpressure
algorithm,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2013, pp. 2269–2275.

[17] A. Sinha, P. Mani, J. Liu, A. Flavel, and D. A. Maltz, “Distributed
load management in anycast-based CDNs,” in Proc. 53rd Annu. Allerton
Conf. Commun., Control, Comput. (Allerton), Sep./Oct. 2015, pp. 74–82.

[18] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and algorithms
for delay reduction in back-pressure scheduling and routing,” in Proc.
IEEE INFOCOM, Apr. 2009, pp. 2936–2940.

[19] A. Sinha and E. Modiano, “Throughput-optimal broadcast in wireless
networks with point-to-multipoint transmissions,” in Proc. 18th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput. (Mobihoc), New York, NY,
USA, 2017, pp. 3:1–3:10. [Online]. Available: http://doi.acm.org/10.
1145/3084041.3084064

[20] C. Joo, X. Lin, and N. B. Shroff, “Greedy maximal matching: Per-
formance limits for arbitrary network graphs under the node-exclusive
interference model,” IEEE Trans. Autom. Control, vol. 54, no. 12,
pp. 2734–2744, Dec. 2009.

[21] D. B. West et al., Introduction to Graph Theory, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[22] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[23] M. J. Neely, “Energy optimal control for time-varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934,
Jul. 2006.

[24] J. K. Lenstra and A. H. G. R. Kan, “Complexity of scheduling under
precedence constraints,” Oper. Res., vol. 26, no. 1, pp. 22–35, 1978.

[25] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing. New York, NY, USA:
Springer, 1996, pp. 153–181.

[26] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “An improved LP-
based approximation for Steiner tree,” in Proc. 42nd ACM Symp. Theory
Comput., 2010, pp. 583–592.

[27] T. H. Cormen, Introduction to Algorithms. Cambridge, MA, USA:
MIT Press, 2009.

[28] L. X. Bui, S. Sanghavi, and R. Srikant, “Distributed link scheduling
with constant overhead,” IEEE/ACM Trans. Netw., vol. 17, no. 5,
pp. 1467–1480, Oct. 2009.

[29] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures Commun.
Netw., vol. 3, no. 1, pp. 1–211, 2010.

[30] S. Meyn, Control Techniques for Complex Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[31] M. Andrews et al., “Universal-stability results and performance bounds
for greedy contention-resolution protocols,” J. ACM, vol. 48, no. 1,
pp. 39–69, 2001.

[32] D. Gamarnik, “Stability of adaptive and non-adaptive packet routing
policies in adversarial queueing networks,” in Proc. 31st Annu. ACM
Symp. Theory Comput., 1999, pp. 206–214.

[33] C. E. Rothenberg et al., “Revisiting routing control platforms with
the eyes and muscles of software-defined networking,” in Proc. 1st
Workshop Hot Topics Softw. Defined Netw. (HotSDN), New York,
NY, USA, 2012, pp. 13–18. [Online]. Available: http://doi.acm.org/10.
1145/2342441.2342445

[34] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and
J. van der Merwe, “The case for separating routing from routers,”
in Proc. ACM SIGCOMM Workshop Future Directions Netw.
Archit. (FDNA), New York, NY, USA, 2004, pp. 5–12. [Online].
Available: http://doi.acm.org/10.1145/1016707.1016709

[35] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: A survey,” IEEE Commun. Mag.,
vol. 51, no. 11, pp. 24–31, Nov. 2013.

[36] R. Chandra, C. Fetzer, and K. Hogstedt, “A mesh-based robust topology
discovery algorithm for hybrid wireless networks,” in Proc. AD-HOC
Netw. Wireless, 2002, pp. 1–25.

[37] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm
for minimum-weight spanning trees,” ACM Trans. Program. Lang. Syst.,
vol. 5, no. 1, pp. 66–77, 1983.

[38] R. Durrett, Probability: Theory and Examples. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[39] N. Glick, “Breaking records and breaking boards,” Amer. Math. Monthly,
vol. 85, no. 1, pp. 2–26, 1978.

Abhishek Sinha received the B.E. degree in elec-
tronics and telecommunication engineering from
Jadavpur University, Kolkata, India, in 2010,
the M.E. degree in telecommunication engineering
from the Indian Institute of Science, Bangalore,
India, in 2012, and the Ph.D. degree from the Massa-
chusetts Institute of Technology in 2017, where
he is involved in the Laboratory for Information
and Decision Systems. He is currently a Senior
Engineer with Qualcomm Research, San Diego, CA,
USA. His research interests include network control,

information theory, optimization, and applied probability. He was a recipient
of several awards, including the Best Paper Award in ACM MobiHoc 2016,
the Prof. Jnansaran Chatterjee Memorial Gold Medal and the T.P. Saha
Memorial Gold Centered Silver Medal from Jadavpur University, and Jagadis
Bose National Science Talent Search Scholarship.

Eytan Modiano (F’12) received the B.S. degree in
electrical engineering and computer science from the
University of Connecticut, Storrs, CT, USA, in 1986,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Maryland, College
Park, MD, USA, in 1989 and 1992, respectively.
He was a Naval Research Laboratory Fellow from
1987 to 1992 and a National Research Council Post-
Doctoral Fellow from 1992 to 1993. He was with the
MIT Lincoln Laboratory from 1993 to 1999. Since
1999, he has been a Faculty Member with MIT,

where he is currently a Professor and an Associate Department Head with
the Department of Aeronautics and Astronautics, and the Associate Director
of the Laboratory for Information and Decision Systems.

His research interests include communication networks and protocols with
emphasis on satellite, wireless, and optical networks. He is an Associate
Fellow of the AIAA, and served on the IEEE Fellows Committee. He was a
co-recipient of the MobiHoc 2016 Best Paper Award, the Wiopt 2013 Best
Paper Award, and the Sigmetrics 2006 Best Paper Award. He was the
Technical Program Co-Chair for the IEEE Wiopt 2006, the IEEE Infocom
2007, the ACM MobiHoc 2007, and the DRCN 2015. He is Editor-in-Chief
of the IEEE/ACM TRANSACTIONS ON NETWORKING, and served as an
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY

and the IEEE/ACM TRANSACTIONS ON NETWORKING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

