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Abstract— We study the maximum throughput properties of
dynamically reconfigurable optical networks having wavelength
and port constraints. Using stability as the throughput perfor-
mance metric, we outline the single-hop and multi-hop stability
regions of the network. We describe throughput-optimal dynamic
algorithms employing joint WDM reconfiguration and electronic
layer routing decisions. Our approach is a generalization of
the BvN decomposition technique that has been so effective
at expressing any stabilizable rate matrix for input-queued
switches as a convex combination of service configurations.
We consider generalized decompositions for physical topologies
with wavelength and port constraints. For the case of a single
wavelength per optical fiber, we link the decomposition prob-
lem to a corresponding Routing and Wavelength Assignment
(RWA) problem. We characterize the stability region of the
reconfigurable network, employing both single-hop and multi-
hop routing, in terms of the RWA problem applied to the
same physical topology. We derive expressions for two geometric
properties of the stability region: maximum stabilizable uniform
arrival rate, and maximum scaled doubly substochastic region.
These geometric properties provide a measure of the performance
gap between a network having a single wavelength per optical
fiber and its wavelength-unconstrained version. They also provide
a measure of the performance gap between algorithms employing
single-hop versus multi-hop electronic routing.

I. INTRODUCTION

We consider an optical networking architecture consisting
of nodes having an electronic router overlaying an opti-
cal interface, with the nodes interconnected by an optical
transport layer. Our architecture consists of electronic edge
nodes interconnected by an optical transport network using
optical fiber links. This constitutes the physical topology of
the network. Optical transceivers, multiplexers/demultiplexers,
wavelength converters, and optical switches allow individual
wavelength signals to be either dropped to the electronic
routers at each node or to pass through the node optically.
The logical topology consists of the lightpath interconnections
between the electronic routers and is determined by the
configuration of the optical interface at each node [1]. Future
optical networks will make use of optical bypass, tunable
transceivers, optical switches, and wavelength converters in
order to harness the full capacity of the optical transport
network. Tunable optical components introduce flexibility to
optical networks by enabling logical topology reconfiguration.
As network traffic changes with time, the optimal logical
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topology varies as well. In this work, we study the ultimate
throughput properties of reconfigurable optical networks. We
determine the performance penalty associated with wavelength
constraints, and we characterize the performance gap between
architectures that employ single-hop versus multi-hop routing
at the electronic layer.

The seminal work of Tassiulas and Ephrimedes underlies
much of the existing literature in the area of stability of
communication networks [2]. Indeed, the network model con-
sidered in this paper easily fits into the framework of Tassiulas
and Ephrimedes, as does much of the switch scheduling litera-
ture. A major accomplishment of our work is a characterization
of the capacity region for single-wavelength optical networks
through a linkage to the Routing and Wavelength Assignment
(RWA) problem for WDM networks. This characterization
allows us to derive fundamental geometric properties of the
maximum stability region for optical networks of arbitrary
topologies. In this work, we focus on single-wavelength optical
networks. The single wavelength topology is commonly used
in traditional metropolitan and access networks operating on
one frequency (e.g. 1.3nm systems). Moreover, our single-
wavelength treatment simplifies the presentation considerably
and can be extended, by appropriate scaling of the stability
region, to multi-wavelength optical networks.

Our work is conceptually related to Birkhoff-von Neumann
(BvN) decompositions, particularly as applied to switching
theory [3]. The set of switch configurations (or service configu-
rations) available to an N×N input-queued switch is typically
represented by the set of permutation matrices of size N . The
result of [2] implies that the convex hull of these service con-
figurations equals the maximum stability region of the input-
queued switch. BvN decompositions draw on these concepts
to express any stabilizable rate matrix as a convex combination
of permutation matrices (service configurations) [3]. Like BvN
decompositions for input-queued switches, our work seeks to
express any stabilizable rate matrix as a convex combination
of service configurations. Unlike input-queued switches, our
optical networking architecture has physical constraints, such
as port and wavelength limitations, that affect the set of service
configurations. For example, the set of service configurations
may not include the full set of permutation matrices, and may
include non-permutation matrices. Thus, while the work of
[2] allows us to express the capacity region as the convex hull
of available service configurations, this description can have



limited value in providing an understanding of the geometric
properties of the capacity region. This is in contrast to the
case of the input-queued switch, where a result of Birkhoff
has been applied to demonstrate that the convex hull of the
service matrices (permutation matrices) equals the doubly
substochastic region [4].

In recent years, tremendous efforts have been made in the
research towards so-called “IP-over-WDM” networks. These
studies aim to improve network performance through increased
electro-optical integration (see for example [5]–[7]). Several
studies consider Optical Burst Switching (OBS) as the mecha-
nism for accessing the optical transport layer [6], [8], [9]. Most
solutions seek to integrate IP and Generalized Multiprotocol
Label Switching (GMPLS) functionality. Finally, we note the
work of [10], where the capacity properties of burst, flow
and packet switching architectures were compared. Our work
differs from existing studies on electro-optical integration in
that we are not tied to a particular protocol suite, but rather
employ a “generic” architecture utilizing electronic packet
switching along with a reconfigurable optical transport layer.
Our approach is to determine the fundamental performance
characteristics achievable in general reconfigurable optical net-
works having varying topology and processing functionalities.
We next provide an example of the effects of such physical
constraints upon an optical network.

II. NETWORK PROPERTIES

We consider a WDM-based packet network with N nodes,
labeled 1, . . . , N , with node i having Pi transceivers. The
physical topology P consists of L fiber links, labeled 1, . . . , L,
with each link having a single wavelength available for trans-
mission of data. The network operates in slotted time, with n
used to represent the time index. Packets are assumed to have
fixed size, with transmission duration of one slot.

Each network node employs virtual output queueing of
packets. We designate VOQi,j as the virtual output queue
containing packets at node i awaiting transmission to node j.
Let Xi,j(n) be the number of packets enqueued in VOQi,j at
time n. The arrival process is modeled as a stochastic process,
with Ai,j(n) representing the cumulative number of arrivals
to VOQi,j up to and including time n. We assume the arrival
processes have a strong law of large numbers property, with
long-term arrival rates given by

lim
n→∞

Ai,j(n)
n

= λi,j w.p.1 ∀i, j.

Above, the term w.p.1 represents the statement ‘with proba-
bility 1’. For convenience, we gather the arrival rates into the
N ×N matrix λ. We define Ui,j(n) as the cumulative service
applied to VOQi,j up to and including time slot n. Note that
this cumulative variable accounts for the packets that exit the
system as well as those that are sent to intermediate nodes of a
multi-hop path toward their destination. We gather the arrival
and departure processes at each time n into the respective
matrices A(n), U(n). Finally, we designate the differential
variable u(n) = (ui,j(n), i, j = 1, . . . , n) as the service

configuration matrix applied at time n. We can then express

X(n + 1) = X(0) + A(n + 1) − U(n).

The N × N non-negative integer matrix v(n) is used to
represent the logical topology enabled over the n-th time slot,
where vi,j(n) is the number of wavelengths configured for
transmission between nodes i and j at time n. This is not to
be confused with the service configuration matrix u(n), which
captures the actual packet flows over the logical topology v(n)
at time n. We define VP as the set of all logical configurations
that can be enabled over the physical topology P .

A. Throughput considerations

The performance metric we study here is the network
throughput, defined according to the stability criterion often
referred to as rate stability. To be precise, rate stability is
given as follows.

Definition 2.1: A system of queues is rate stable if

lim
n→∞

Xi,j(n)
n

= lim
n→∞

Ai,j(n) − Ui,j(n)
n

= 0 w.p.1, ∀i, j.

The optimal throughput performance of the reconfigurable
optical network is characterized through the maximum sta-
bility region or capacity region of the network. Since it is
of interest in this work to understand the relative throughput
performance of algorithms employing multi-hop electronic-
layer routing and algorithms exclusively employing single-
hop electronic-layer routes, we distinguish two capacity re-
gions: one for achievable rates under multi-hop electronic-
layer routing, and one for achievable rates under exclusively
single-hop electronic-layer routing. The single-hop capacity
region, denoted Λsh

P , is a set of arrival rate matrices that can
be stabilized in the network with physical topology P . Any
process having an arrival rate belonging to the capacity region
can be stabilized by some reconfiguration and routing algo-
rithm employing exclusively single-hop paths. Similarly, the
multi-hop capacity region, denoted Λmh

P , consists of all those
rates such that any arrival process having a rate belonging
to the region can be stabilized by some joint reconfiguration
and routing algorithm (possibly employing multi-hop routes).
An algorithm is called throughput optimal (achieves 100%
throughput) if the set of arrival rates that it can stabilize equals
the multi-hop capacity region.

In [2], Tassiulas and Ephrimedes provided a character-
ization of the capacity properties of a general multi-hop-
capable network. Their algorithmic description for scheduling
in this network setting involves maxweight decisions, where
each network configuration has associated with it a particular
weight, and the maximum weighted configuration is chosen at
each time. Here, we introduce two versions of this algorithm,
specialized to general reconfigurable WDM-based networks.

Algorithm SHMW employs WDM reconfiguration and
single-hop electronic layer routing. In other words, if a di-
rected logical link exists connecting node i to node j at
time n, then that link can only be used at time n to service
packets at node i that are destined for node j. For equally-
sized matrices ν,X , let their inner product be given by



SHMW Single-hop maxweight scheduling algorithm
At time n, select logical topology

v(n) = arg max
ν∈VP

〈ν,X(n)〉.

For this WDM configuration, packet scheduling is performed
by single-hop routing, which implies

ui,j(n) = min{Xi,j(n), vi,j(n)}. (1)

Equation (1) implies that up to vi,j(n) logical links are avail-
able for servicing packets enqueued at node i for destination
j, given sufficient backlog in queue Xi,j .

〈ν,X〉 =
∑

i,j νi,jXi,j . At time n, the algorithm selects a
logical topology matrix from VP whose inner product with
the queue backlog matrix X(n) is maximum. This logical
topology is used for single-hop routing of packets to their
destinations. Algorithm SHMW is detailed above. SHMW
is a generalized version of the maximum weighted matching
(MWM) algorithm for achieving 100% throughput in input-
queued switches [4], and in optical networks with no wave-
length/RWA constraints [11]. It can be shown that the stability
region achieved by SHMW is Λsh

P . For context, note that in the
case of an input-queued switch, algorithm SHMW achieves
100% throughput, with capacity region equal to the doubly
substochastic region:

Λsh
IQ =


λ :

∑
j

λi,j ≤ 1, ∀i,
∑

i

λi,j ≤ 1, ∀j


 . (2)

The second algorithm of interest, algorithm MHMW, em-
ploys WDM reconfiguration and multi-hop electronic layer
routing. MHMW is outlined below. We refer to each packet
destined for a particular destination as a unit of a commodity
that is unique to that destination. The differential backlog of
commodity k at each link consists of the difference between
the number of commodity k packets enqueued at the source
node of the link and the number of commodity k packets
equeued at the destination node of the link. In words, algorithm
MHMW can be described for time n ≥ 0 as follows. For
each link i → j, the maximum differential backlog over all
commodities is calculated and stored as the (i, j) entry of the
N×N matrix Z(n). The logical topology v(n) is chosen from
the set VP to maximize the inner product 〈v(n), Z(n)〉. For
each link of the selected logical topology, a commodity that
maximizes the differential backlog for that link is selected for
electronic routing across the link.

The stability region of MHMW under the rate stability
criterion can be expressed as the closed convex hull of the
available multi-hop service configurations. A result of [2] is
that MHMW achieves the capacity region Λmh

P .

B. The RWA problem

The routing and wavelength assignment (RWA) problem
takes as input a physical topology P and the integer traffic

MHMW Multi-hop maxweight scheduling algorithm
At time n, calculate for each source-destination pair l = i → j
and commodity k the differential backlog, dl,k(n):

dl,k(n) = Xi,k(n) − Xj,k(n).

Define the N × N matrix of maximum differential backlogs,
Z(n), by selecting for each link l a commodity k that
maximizes the differential backlog across that link:

Zi,j(n) � max
k

{dl,k(n)}.

Select the logical topology v(n) ∈ VP to maximize the inner
product 〈v(n), Z(n)〉. Electronic routing on v(n) is performed
by transmitting along each active logical link a packet whose
destination maximizes the differential backlog along that link.
Thus, if logical link l = i → j is active, we transmit along l
a packet destined for node k∗

l ∈ arg maxk dl,k(n).

matrix T , corresponding to wavelength demands that are to
be fully satisfied by a static lightpath configuration on P . The
output of the RWA problem is an integer W , which is the
minimum number of wavelengths required to service T on
physical topology P . We consider two versions of the RWA
problem: RWA with no wavelength conversion capability and
RWA with full wavelength conversion capability.

In the case of no wavelength conversion capability, the
RWA is subject to the wavelength continuity constraint, which
requires that no lightpath makes use of more than a single
color from its source to its destination. In this case, for the
particular physical topology P , let W nc

P (T ) be the minimum
number of wavelengths required to service traffic T with no
wavelength conversion.

A network node having full wavelength conversion capa-
bility can transform any pass-through lightpath, in the optical
domain, from its incident wavelength to any other wavelength.
In this case, we define W c

P(T ) to be the minimum number
of wavelengths required to service traffic T with wavelength
conversion on physical topology P . Since using a single color
per lightpath is accommodated by the RWA with wavelength
conversion, it is clear that for any physical topology P ,
W c

P(T ) ≤ W nc
P (T ) for all T . For the trivial case of T = 0 (the

zero matrix), we define (for technical reasons) that W nc
P (0) =

W c
P(0) = 1.

III. CAPACITY REGIONS FROM RWA DECOMPOSITIONS

In this section, we will demonstrate that the single-hop
and multi-hop capacity regions for single-wavelength optical
networks can be fully described by the RWA functions W nc

P
and W c

P , respectively. In the RWA problem, multiple single-
wavelength logical configurations are multiplexed through the
use of frequency division (WDM). In our reconfigurable
network setting, restricted to a single wavelength per optical
fiber, multiple single-wavelength logical configurations are
multiplexed through the use of time division (by enabling
logical reconfiguration and adjustable electronic-layer routing



over time). Through careful interchange of time and frequency,
we can link the RWA problem to the stability issue in our
reconfigurable network. Consequently, this enables us to draw
on the rich RWA literature to understand the throughput
properties of particular physical topologies.

We begin by considering the single-hop capacity region.
For integer traffic matrix T , the RWA function provides the
minimum number of wavelengths required to satisfy the wave-
length demands of T : W nc

P (T ) in the case of no conversion.
An RWA decomposition of T consists of W nc

P (T ) N × N
matrices (in the case of no conversion), with each matrix
associated with a different wavelength of the RWA for T . Thus
the i-th matrix contains the number of lightpaths established
between each source-destination pair in the RWA for T on
the i-th wavelength. The concept of a RWA decomposition
provides key intuition for the results of this section. Additional
details can be found in [12].

For each non-negative integer traffic matrix T , consider the
sequence of arrival rates created by dividing T by all integers
W ≥ W nc

P (T ). In this section we consider all such arrival
rates, gathered over all possible integer traffics T in the RWA
problem. Let Rnc

P be the set of all such arrival rates,

Rnc
P =

{
λ =

1
W

T : T ∈ Z
M
+ ,W ∈ Z+,W ≥ W nc

P (T )
}

,

where Z+ is the set of non-negative integers, Z
M
+ is the M -

fold Cartesian product of Z+, and M = N(N−1). Recall also
that we are restricting attention to joint optical reconfiguration
and electronic layer routing algorithms where the optical layer
has only a single wavelength available in each optical fiber.
Consequently, Λsh

P is the single-hop capacity region on P ,
subjected to the single-wavelength constraint. For the set R,
let cl(R) represent the closure of R. The following theorem
is proved in [12].

Theorem 3.1: For physical topology P , Λsh
P = cl(Rnc

P ).
For the multi-hop case, we gather all possible arrival rates

generated by multi-hop RWA decompositions over all possible
traffic demand matrices T into the set Rc

P ,

Rc
P =

{
λ =

1
W

T : T ∈ Z
M
+ ,W ∈ Z+,W ≥ W c

P(T )
}

.

Through similar steps as in the single-hop case, we can
establish the following theorem (proved in [12]).

Theorem 3.2: For physical topology P , Λmh
P = cl(Rc

P).

IV. GEOMETRIC PROPERTIES OF THE STABILITY REGION

While the stability properties of our dynamically reconfig-
urable electronic-over-optical network are well characterized
in the single-hop and multi-hop cases through Theorems 3.1
and 3.2, these expressions do not easily yield simple geometric
properties of the stability regions. This is in contrast to the
characterization of the input-queued switch stability region
of equation (2), which provides the wavelength-unconstrained
capacity region as the set of doubly substochastic matrices.

The remainder of this paper is dedicated to extracting
geometric properties of the single-hop and multi-hop capacity

regions in our wavelength-constrained reconfigurable network
setting. Unlike the wavelength-unconstrained case, the physi-
cal topology P has an effect on the stability properties.

A. Maximum uniform (all-to-all) arrival rate matrices

In this section, we make use of RWA decompositions to
establish geometric properties of the single-hop and multi-hop
capacity regions. Define J as the N ×N matrix having (i, j)
entry equal to 1 if i �= j and equal to 0 otherwise. We then
seek to determine the maximum values θsh

P , θmh
P such that θsh

P J
belongs to the single-hop capacity region, and θmh

P J belongs
to the multi-hop capacity region.

Theorem 4.1: For physical topology P , the maximum val-
ues θsh

P , θmh
P such that θsh

P J ∈ Λsh
P and θmh

P J ∈ Λmh
P ,

respectively, are given by

θsh
P = sup

l∈Z+

l

W nc
P (lJ)

, θmh
P = sup

l∈Z+

l

W c
P(lJ)

. (3)

The equations in (3) essentially capture the maximum ratio
of the uniform traffic load l to the number of wavelengths
needed to support that traffic demand. These values are a
measure of the most efficient way that the uniform traffic
demand l can be packed over topology P , with or without
multi-hop capability. Theorem 4.1 is proved in [12].

Theorem 4.1 allows us to draw on the literature regarding
all-to-all RWA properties for various physical topologies to
obtain geometric properties of the single-hop and multi-hop
stability regions [13]–[16].

B. Maximum scaled doubly substochastic region

In this section, we take advantage of RWA decompositions
to derive bounds on the maximum scaling that can be applied
to the set of doubly substochastic matrices, such that every
matrix in the scaled set is contained within the capacity region.
For a mathematical description of this property we require the
following definitions.

Definition 4.1: For matrix A, let the maximum row/column
sum of A be given by ‖A‖max:

‖A‖max = max
{

maxi

∑
j Ai,j ,maxj

∑
i Ai,j

}
.

Definition 4.2: Let the set Ds denote the doubly sub-
stochastic region, scaled by factor s,

Ds =
{
λ ∈ R

M : λi,j ≥ 0∀i, j, ‖λ‖max ≤ s
}

.

We seek the maximum values αsh
P , αmh

P such that the regions
Dαsh

P
,Dαmh

P
are respectively subsets of the single-hop and

multi-hop capacity regions.
Definition 4.3: The integer matrix T ∈ Z

M is called k-
allowable if it satisfies

Ti,j ∈ Z+, ∀i, j, ‖T‖max ≤ k.

We denote by Kk the set of all k-allowable matrices.

Let the minimum number of wavelengths required to service
any k-allowable traffic in the RWA with no conversion be
Wnc

P (k) = maxT∈Kk
W nc

P (T ). Similarly, let the correspond-
ing value with wavelength conversion be Wc

P(k).



The following theorem (proved in [12]) establishes for each
physical topology P the quantity αsh

P as a scale factor on the
substochastic region, such that the scaled region is contained
within the single-hop capacity region. The analogous result for
the multi-hop case is also provided.

Theorem 4.2: Dαsh
P

⊆ Λsh
P and Dαmh

P
⊆ Λmh

P , where

αsh
P = lim sup

k→∞

k

Wnc
P (k)

, αmh
P = lim sup

k→∞

k

Wc
P(k)

. (4)

The equations in (4) provide the limiting ratios of k to the
worst-case number of wavelengths required to support any k-
allowable traffic, in their respective RWA problems. This is
a measure of the most efficient way that the worst-case k-
allowable traffic can be packed over topology P , in the limit
of large k.

The following theorem (proved in [12]) is the converse to
Theorem 4.2, by demonstrating for each physical topology P ,
that the quantity αsh

P is an upper bound on the maximum scale
factor on the substochastic region, such that the scaled region
is contained within the single-hop capacity region. For the
multi-hop case, we also provide the analogous result.

Theorem 4.3: For α > αsh
P , there exists λ ∈ Dα such that

λ /∈ Λsh
P . Similarly, for α > αmh

P , there exists λ ∈ Dα such
that λ /∈ Λmh

P .
Applying Theorems 4.2 and 4.3, we can use results from

the recent RWA literature on k-allowable traffic [13]–[17] to
characterize the values αsh

P , αmh
P for various physical topology

configurations.

V. CONCLUSIONS

In this paper, we have studied the optimal throughput
performance properties of reconfigurable WDM-based packet
networks. We considered networks having arbitrary physical
topologies, and general node architectures. Our architectural
assuptions were deliberately made general to admit a variety
of network features that can emerge in a future agile Terabit
optical-based communication network, including wavelength
conversion capability, tunable transceivers, optical switches,
and multiplexers/demultiplexers.

Under our general network setting, we have presented opti-
mal throughput-achieving algorithms for networks employing
single-hop and multi-hop electronic routing. These on-line
algorithms make use of queue backlog information at network
nodes to simultaneously schedule packet routing at the elec-
tronic layer as well as WDM layer reconfiguration. In general,
the stability region of arrival rates that can be supported in a
particular network is described as a convex combination of
available service configurations in that network.

In this work, we used RWA decompositions to establish the
entire stability region under any physical topology in terms of
the RWA properties of the same physical topology graph. The
RWA problem with no conversion was tied to the single-hop
capacity region of the reconfigurable network, while the RWA
problem with conversion was tied to the multi-hop capacity
region. This characterization enabled us to exactly determine

certain geometric properties of the stability region under any
physical topology, restricted to a single-wavelength per optical
fiber: the maximum all-to-all arrival rate and maximum doubly
substochastic region that can be supported by the network.

These geometric properties provide a measure of the op-
timal achievable throughput under any physical topology.
For example, we have exactly demonstrated the throughput
performance gap between wavelength-limited and wavelength-
unconstrained networks having particular physical topologies.
Additionally, we have exactly characterized the throughput
performance gap between networks employing exclusively
single-hop routing and those employing multi-hop routing.
Many additional details as well as the proofs of all theorems
presented here can be found in [12].
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