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Abstract— The capacity region of the Gaussian multi-antenna
broadcast channel was characterized recently in [19]. It was
shown that a scheme based on Dirty Paper Coding [2] achieves
the full capacity region when the transmitter has perfect channel
state information. However, this scheme potentially involves
considerable amounts of feedback and complex algorithms for
coding and user selection. This has led to a quest for practical
transmission schemes and ways to reduce the amount of channel
state information required. In particular, it has been shown that
when the total number of users is large, the sum capacity can
be closely approached by transmitting to a small subset of near-
orthogonal users.

In order to further quantify the latter observation, we study
a Gaussian broadcast channel with two transmit antennas and
K statistically identical, independent users each with a single
receive antenna. We obtain an exact asymptotic characterization
of the gap between the full sum capacity and the rate that
can be achieved by transmitting to a suitably selected pair
of users. Specifically, we consider various simple schemes for
user-pair selection that take into account the channel norms
as well as the relative orientation of the channel vectors. We
conclude that a scheme that picks the strongest user and selects
a second user to form the best pair, is asymptotically optimal,
while also being attractive in terms of feedback and operational
complexity. Numerical experiments show that the asymptotic
results tend to be remarkably accurate, and that the proposed
scheme significantly outperforms a beam-forming strategy for a
typical number of users.

I. INTRODUCTION

The use of wireless communications continues to experience
tremendous growth. This continual growth creates increasing
pressure to squeeze the most out of the limited amount of
wireless spectrum available. The use of antenna arrays offers
a promising technique for improving spectrum efficiency so as
to achieve higher data rates, larger capacity, better coverage, or
a combination of these. The multi-antenna Broadcast Channel
(BC) has been the subject of much research interest recently,
owing primarily to the substantial capacity benefits that these
systems can potentially offer.

In the present paper we consider the downlink transmission
from a single base station equipped with M > 1 transmit
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antennas to K > 1 independent users each with a single
receive antenna. In information-theoretic terms, this may be
modeled as a multi-antenna BC. The sum capacity for the
Gaussian BC was first obtained for the case of two users with
a single receive antenna by Caire & Shamai [1]. Subsequently,
Viswanath & Tse [16] and Vishwanath et al. [15] extended
the result for the sum capacity to an arbitrary number of users
and receive antennas by exploiting a powerful duality relation
with the multi-access channel which was further explored in
Jindal et al. [9]. Recently, Weingarten et al. [19] provided
a characterization of the entire capacity region. They showed
that a scheme based on Dirty Paper Coding (DPC) [2] achieves
the full capacity region of the multi-antenna BC.

The above capacity results rely on the assumption that
perfect channel state information is available at the transmitter.
However, the amount of overhead involved in feeding back
the channel state information may be prohibitive, especially
when the number of users is large. Further, DPC is quite a
sophisticated technique and challenging to implement in an
actual system.

Motivated by the above issues, extensive efforts have been
made to devise practical transmission and coding schemes and
find ways to reduce the amount of channel state information
required. Hochwald et al. [3], [4] describe an algorithm based
on channel inversion and sphere encoding, and show that it
closely approaches capacity while being simpler to operate
than DPC. Jindal [6] considers a multi-antenna BC with
limited channel feedback information, and shows that the full
capacity gain at high SNR values is achievable as long as the
number of feedback bits grows linearly with the SNR (in dB).

In the case of a single receive antenna, it is known that
multiple transmit antennas yield substantial capacity gains
when several users are served simultaneously. In particular,
Jindal & Goldsmith [7] show that the gain over a TDMA
strategy is approximately min{M,K}, i.e., the minimum of
the number of transmit antennas and the number of users.
Jindal [5] demonstrates that the sum capacity grows with the
SNR at rate min{M,K}. In other words, multiple transmit
antennas provide potentially huge capacity gains, but it is
necessary that at least M users are served simultaneously
in order to reap the full benefits. Transmitting to fewer than

0-7803-9550-6/06/$20.00 © 2006 IEEE



M users falls short of the maximum capacity as it fails to
fully exploit the available degrees of freedom. Transmitting to
more than M users may be necessary to achieve the maximum
capacity in general, but the results in [5], [7] indicate that
transmitting to a suitably selected subset of exactly M near-
orthogonal users is close to optimal. When the total number of
users to choose from is sufficiently large, such a subset exists
with high probability, see [13], [14] for a rigorous asymptotic
characterization.

Clearly, the above principle allows for a reduction of the
amount of channel feedback and coding complexity. In partic-
ular, it suggests the use of beamforming schemes that construct
M (random) orthogonal beams and serve the users with the
best channel quality along each of the beams with equal power.
Transmission schemes along these lines are presented in [12]
and [18].

In the present paper we focus on the case of two transmit
antennas and statistically independent, identically distributed
(i.i.d) users. We derive an exact asymptotic characterization of
the gap between the full sum capacity and the rate that can be
achieved by transmitting to a suitably selected pair of users. In
particular, we consider a scheme that picks the user with the
largest channel gain, and then selects a second user from the
L strongest ones to form the best possible pair with it, taking
the orientation of the channel vectors into account as well. We
prove that the rate gap converges to 1/(L− 1) when the total
number of users K tends to infinity. Allowing L to increase
with K, we conclude that the gap asymptotically vanishes,
and that the sum capacity is achievable by transmitting to a
properly chosen pair of users. Numerical results show that
the asymptotics tend to be remarkably accurate, even for a
relatively moderate number of users. The fact that the rate gap
decays as 1/(L− 1) also suggests that a modest value of L is
adequate for most practical purposes. The above results have
significant implications for the design of channel feedback
mechanisms and transmission techniques.

The remainder of the paper is organized as follows. In
Section II we present a detailed model description and review
some known results for the sum capacity of the Gaussian
multi-antenna BC. In Section III, we provide some useful
bounds for the sum capacity and other preparatory results.
Our main asymptotic results are contained in Section IV. In
Section V we present some numerical results to show that
our asymptotic results are quite accurate, even for a moderate
number of users. In Section VI we point out some directions
for future work.

II. SYSTEM MODEL AND KNOWN RESULTS

A. Model

We consider a broadcast channel with M > 1 transmit
antennas and K independent receivers each with a single
antenna, as schematically represented in Figure 1(a).

Let x ∈ C
M×1 be the transmitted vector signal and let

hk ∈ C
1×M be the channel-gain vector of the k-th receiver.

Denote by H = [h†
1h†

2 · · · h†
K ]† the concatenated channel

matrix of all K receivers. For now, the matrix H is arbitrary but

Fig. 1. The multi-antenna broadcast channel (left) and the multiple access
channel (right) have the same capacity region

assumed to be fixed. We further assume that the transmitter has
perfect channel state information, i.e., exact knowledge of the
matrix H. The circularly symmetric complex Gaussian noise
at the k-th receiver is nk ∈ C where nk ∼ CN (0, 1). Thus the
received signal at the k-th receiver is yk = hkxk + nk. The
covariance matrix of the transmitted signal is Σx = E

[
xx†].

The transmitter is subject to a power constraint P , which
means Tr(Σx) ≤ P .

B. Sum capacity

The sum capacity is a key metric of interest for the BC as
it measures the total achievable system throughput. Since it
only considers the aggregate rate, it does not reflect potential
fairness issues that arise when users with widely disparate
channel characteristics obtain vastly different rates. In the
present paper, however, we focus on the case of statistically
identical users, which by symmetry will obtain equal long-
term rate shares.

In case of a single transmit antenna, the sum capacity
is simply equal to the largest single-user capacity in the
system [11], i.e., the sum rate is maximized by transmitting
only to the user with the largest channel gain. However, this
is not true when there are multiple transmit antennas. In that
case, the sum capacity is achieved by using DPC techniques
to simultaneously transmit to several users.

From the results in [1], [15], [16], the sum capacity, denoted
by CBC(H, P ), can be expressed in terms of the following
maximization problem:

CBC(H, P ) = max
K∑

k=1

log
det
(
IM + hk(

∑
j≤k Σj)h

†
k

)
det
(
IM + hk(

∑
j<k Σj)h

†
k

) ,

(1)
where the optimization is performed over the set of all positive
semi-definite covariance matrices Σk, k = 1, . . . ,K , such that
K∑

k=1

Tr(Σk) ≤ P .

Unfortunately, the objective function in the above problem
is non-concave, which makes it hard to deal with analytically
as well as numerically. However, in [15], a duality is shown to



exist between the BC and the Gaussian multiple access channel
(MAC) with a sum-power constraint P . That is, the dual MAC
which is formed by reversing the roles of transmitters and
receivers, as represented in Figure 1(b), has the same capacity
region as the BC.

Using this duality, the sum capacity of the BC can be written
in terms of the dual MAC sum capacity as

CBC(H, P ) = max
KP

k=1
Pk≤P

log det

(
IM +

K∑
k=1

Pkh†
khk

)
, (2)

where Pk ≥ 0 denotes the power allocated to the k-th receiver.
Note that the objective function in (2) is indeed concave in the
values of the Pk’s. Specialized algorithms for calculating the
BC sum capacity have been developed in [8].

III. PRELIMINARY RESULTS

A. Bounds for the sum capacity

We now present some useful upper and lower bounds for
the BC sum capacity. Denote by h(i) the channel vector of the
receiver with the i-th largest norm, i.e., ||h(1)||2 ≥ ||h(2)||2 ≥
· · · ≥ ||h(K)||2. The next upper bound for the sum capacity is
established in [7].

CBC(H, P ) ≤ M log
(

1 +
P

M
||h(1)||2

)
. (3)

Observe that the above upper bound can be achieved when
there are M receivers with orthogonal channel vectors tied
for the maximum norm ||h(1)||2.

Next, we obtain a simple lower bound for the sum capacity
for the case of M = 2 transmit antennas.

CBC(H, P ) ≥ C(hi, hj , P ) (4)

:= log det
(

I2 +
P

2
(h†

i hi + h†
jhj)

)
.

Observe that the above lower bound corresponds to scheduling
any two users i and j with equal power.

We now present a lemma that will be useful in simplifying
the expression for the BC sum capacity in (2) as well as the
lower bound in expression (4).

Lemma 3.1: For any K, M ,

det

(
IM +

K∑
k=1

Qkh†
khk

)
= det(IK + J),

with Jkl :=
√

QkQlhkh†
l , k, l = 1, . . . ,K .

Proof: Define the K ×M matrix H by Hkm :=
√

Qkhkm,
k = 1, . . . ,K , m = 1, . . . ,M . The proof then follows easily
from the determinant identity det(IM + H†H) = det(IK +

HH†). Indeed,

det(IM +
K∑

k=1

Qkh†
khk)

= det

⎛
⎜⎝IM +

⎡
⎣

√
Q1h1

. . .√
QKhK

⎤
⎦
† ⎡
⎣

√
Q1h1

. . .√
QKhK

⎤
⎦
⎞
⎟⎠

= det(IM + H†H)
= det(IK + HH†)

= det

⎛
⎜⎝IK +

⎡
⎣

√
Q1h1

. . .√
QKhK

⎤
⎦
⎡
⎣

√
Q1h1

. . .√
QKhK

⎤
⎦
†⎞⎟⎠

= det(IK + J).

�

Using Lemma 3.1, we can simplify the lower bound in (4)
to obtain

CBC(H, P ) ≥ log det
(

I2 +
P

2
(h†

i hi + h†
jhj)

)
=

log
(

1 +
P

2
(||hi||2 + ||hj ||2

)
+

P 2

4
||hi||2||hj ||2Uij

)
,

where Uij := 1 − |<hi,hj>|2
||hi||2||hj ||2 .

The above lower bound reflects the fact that the sum
capacity for two users crucially depends on the norms of the
respective channel vectors, and their degree of orthogonality.
In particular, the sum capacity is large when the two users are
nearly orthogonal and have large channel gains.

B. Random channel vectors

So far, we have assumed the channel vectors to be arbitrary
but fixed. In order to derive meaningful asymptotic results,
we henceforth assume the channel vectors to be random,
and primarily consider the expected sum capacity. To be
specific, we assume that the various components of the channel
vector of a user are independent and identically distributed
according to CN (0, 1), which corresponds to independent
Rayleigh fading.

Remark 3.1: The randomness in the channel vectors may
be interpreted as variations resulting from fast fading due to
multi-path propagation effects. The impact of distance-related
path loss and slow fading (shadow fading due to obstacles) is
supposed to be reflected in the mean signal-to-noise ratio P .
The expected sum capacity then represents the long-term
system throughput. Implicitly, we make here the usual block
fading assumption, where the frame length is short enough for
the channel to remain (nearly) constant over the duration of
a frame, yet sufficiently long to achieve a transmission rate
close to the theoretical capacity.

The next two lemmas characterize the distribution of the
squared-normalized inner product of two arbitrary channel
vectors, and the order statistics of the norms respectively,



under the independent Rayleigh fading assumption. We first
deal with the squared-normalized inner product.

Lemma 3.2: For any two users i, j = 1, . . . ,K , i �= j, the
squared-normalized inner product |<hi,hj>|2

||hi||2||hj ||2 of the respective
channel vectors is distributed as the minimum of (M−1) i.i.d.
uniform random variables in [0,1]. In particular, when M = 2,
the above quantity is uniform in [0,1]. The above statement
also applies when the two users are selected based on their
channel norms, since the norms and phases of the channel
vectors are independent.

Proof: We prove the result for M = 2. The result can
be proved for arbitrary values of M using similar arguments.
Since the phase between the vectors is independent of the
norms, we may assume without loss of generality that hi =
[1 0] and hj = [X1 + iY1 X2 + iY2]. Here X1,X2, Y1, and
Y2 are i.i.d. normal variables. We are thus concerned with the
behavior of the ratio X2

1+Y 2
1

X2
1+Y 2

1 +X2
2+Y 2

2
. Using the fact that the

square of a Gaussian variable is a Chi-squared variable and that
the sum of two i.i.d. Chi-squared variables is exponential, we
see that the squared-normalized inner product has the same
distribution as A

A+B , where A and B are i.i.d. exponential
variables. This is also the ratio of the first and second event
times in a Poisson process; therefore, this quantity is seen to
be uniform in [0,1]. In general, the squared-normalized inner
product can be interpreted as the ratio of the first event time
to the M -th event time in a Poisson process, and the result
follows readily. �

Next, we turn our attention to the order statistics of the
channel norms. The next lemma shows that the difference
between the L-th largest and the maximum channel norm is
asymptotically negligible in a certain sense compared to the
L-th largest norm itself, as long as L grows sufficiently slowly
with K.

Lemma 3.3: Let L(K) be a sequence such that L(K) =
o(Kδ) for any 0 < δ < 1 as K → ∞ and A,B,Q > 0
positive constants. Then

lim
K→∞

E
[
log
(
A + Q||h(1)||2

)]−E
[
log
(
B + Q||h(L)||2

)]
= 0.

Proof: See Appendix B. �

Remark 3.2: It is worth observing that the Rayleigh fad-
ing assumptions are not essential, and that with appropriate
modifications the asymptotic results extend to a wider range
of distributions of the channel vectors, as long as the phases
between users are independent. We briefly mention a few
important special cases. First of all, our results can be readily
generalized to the case of Ricean fading. A second important
case is the class of Increasing Failure Rate (IFR) distributions,
with positive densities, for which the Erlang distribution is
just a special case. (A distribution function F (·) with density
f(·) is said to be IFR when f(x)/(1 − F (x)) is increasing.)
Although the lognormal distribution is not IFR, its extremal
behavior can be understood from that of the Gaussian, and it
can be shown that in this case too our results apply.

IV. ASYMPTOTICS

As mentioned earlier, the upper bound in (3) for M = 2
can be achieved when there is a pair of orthogonal users, each
with the maximum channel norm ||h(1)||2. Intuitively, when
the number of users is large, there exists with high probability
a pair of users which are nearly orthogonal and have norms
close to the maximum. This suggests that the sum rate can be
closely approached by transmitting to a pair of ‘good’ users
and allocating equal power to each of them. We are now ready
to formalize this assertion.

We will consider three heuristic selection schemes.
Scheme I selects two arbitrary users among the L strongest
ones. Scheme II selects an arbitrary user among the L strongest
ones, and a second one from the same group such that the sum
rate achieved by the pair is maximized. Scheme III picks the
best pair among the L strongest users, i.e., it picks the pair
that maximizes the sum rate. Note that scheme II dominates
scheme I and that scheme III in turn dominates scheme II, and
that all three schemes coincide when L = 2. In all the three
schemes, the selected users are scheduled with equal power.

A. Rough large-K asymptotics

The next theorem considers ratio-asymptotics for scheme I.
Specifically, it shows that the ratio of the rate obtained by
using scheme I to the upper bound in (3) converges to unity
as K grows large.

Theorem 4.1: For any fixed value of L ≥ 2,

lim
K→∞

E
[
C(h(i), h(j), P )

]
E
[
2 log

(
1 + P

2 ||h(1)||2
)] = 1, (5)

for all i, j ≤ L, i �= j.

Proof: It follows from Equation (3) and (4) that the ratio is
smaller than one for any fixed K and L. Thus, it suffices to
show that the liminf of the ratio is larger than one as K → ∞.
It follows from Lemma 1.1 in Appendix A that

C(h(i), h(j), P ) ≥ 2 log
(

1 +
P

2
||h(L)||2

)
+ log(Uij),

with Uij := 1 − |<h(i),h(j)>|2
||h(i)||2||h(j)||2 .

Now, Lemma 3.2 implies

E [log(Uij)] =
∫ 1

x=0

log(x)dx = [x(log(x) − 1)]1x=0 = −1.

The proof is then completed using Lemma 3.3 with A =
B = 1, Q = P/2, and noting that E

[
log
(
1 + P

2 ||h(1)||2
)]→

∞ as K → ∞. �

The above results shows that scheme I (and consequently
all the schemes) are asymptotically optimal in the ratio sense.
However, it should be noted that this asymptotic result is
too crude to capture the relative importance of the degree
of orthogonality versus the magnitude of the channel vectors.
Thus the ratio-asymptotics provide no indication of the relative
performance of the various schemes and little guidance as to



what a suitable choice of L might be for a given finite value
of K. Also, it is possible that there is a gap between the sum
rate achieved by any of these schemes and the capacity limit,
which cannot be discerned using ratio-asymptotics.

B. Refined large-K asymptotics

In order to discriminate among the various selection
schemes and gain a better sense of the performance impact
of the parameter L, we now proceed to consider finer asymp-
totics. In particular, we consider the difference between the
sum rate and the upper bound for the capacity in (3).

Theorem 4.2: For any fixed value of L ≥ 2, l ≤ L, the
difference

E

[
2 log

(
1 +

P

2
||h(1)||2

)]
−E

[
max

k=1,...,L,k �=l
C(h(l), h(k), P )

]
approaches 1/(L − 1) as K → ∞.

Proof: We first prove that the limsup of the difference is
no larger than 1/(L − 1).

Using Lemma 1.1 in Appendix A, we obtain

max
k=1,...,L,k �=l

C(h(l), h(k), P )

≥ max
k=1,...,L,k �=l

2 log
(

1 +
P

2
||h(L)||2

)
+ log(Ulk)

= 2 log
(

1 +
P

2
||h(L)||2

)
+ max

k=1,...,L,k �=l
log(Ulk),

with Ulk := 1 − |<h(l),h(k)>|2
||h(l)||2||h(k)||2 .

For compactness, denote

∆(L) := log
(

1 +
P

2
||h(L)||2

)
− log

(
1 +

P

2
||h(1)||2

)
.

Then,

2E

[
log
(

1 +
P

2
||h(1)||2

)]
−E

[
max

k=1,...,L,k �=l
C(h(l), h(k), P )

]

≤ −2E [∆(L)] − E

[
max

k=1,...,L,k �=l
log(Ukl)

]
.

Taking A = B = 1, Q = P/2 in Lemma 3.3, it follows
that lim sup

K→∞
−E [∆(L)] = 0.

Using Lemma 3.2, a straightforward calculation yields

E

[
max

k=1,...,L,k �=l
log(Ukl)

]
=
∫ 1

x=0

log(x)(L − 1)xL−2dx

=
[
xL−1

(
log(x) − 1

L − 1

)]1
x=0

= − 1
L − 1

.

We now show that the liminf of the difference is no smaller
than 1/(L − 1).

Using Lemma 1.4 in Appendix A, we obtain

max
k=1,...,L,k �=l

C(h(l), h(k), P )

≤ max
k=1,...,L,k �=l

2 log
(

1
ε

+
P

2
||h(1)||2

)
+ log(max{ε, Ukl})

≤ 2 log
(

1
ε

+
P

2
||h(1)||2

)
+ log(max{ε, max

k=1,...,L,k �=l
Ukl}).

Thus,

2E

[
log
(

1 +
P

2
||h(1)||2

)]
−E

[
max

k=1,...,L,k �=l
C(h(l), h(k), P )

]

≥ 2E

[
log
(

1 +
P

2
||h(1)||2

)]
− 2E

[
log
(

1
ε

+
P

2
||h(1)||2

)]

−E

[
log
(

max{ε, max
k=1,...,L,k �=l

Ukl}
)]

.

Taking A = 1, B = 1
ε , Q = P/2 in Lemma 3.3, it follows

that for any ε > 0,

lim sup
K→∞

[
E

[
log
(

1 +
P

2
||h(1)||2

)]
−

E

[
log
(

1
ε

+
P

2
||h(1)||2

)]]
= 0.

Using Lemma 3.2, a straightforward computation yields

E

[
log
(

max{ε, max
k=1,...,L,k �=l

Ukl}
)]

=
∫ 1

x=ε

log(x)(L − 1)xL−2dx + εL−1 log(ε)

=
[
xL−1

(
log(x) − 1

L − 1

)]1
x=ε

+ εL−1 log(ε)

=
εL−1 − 1

L − 1
.

Letting ε ↓ 0, the result follows. �

The above theorem shows that the asymptotic performance
gap of scheme II decays as 1/(L − 1), which suggests
that a relatively moderate value of L may be adequate for
most practical purposes. The next corollaries follow as direct
consequences from Theorem 4.2.

Corollary 4.1: For any fixed value l and sequence L(K)
with lim

K→∞
L(K) = ∞,

E [CBC(H, P )] − E

[
max

k=1,...,L(K),k �=l
C(h(l), h(k), P )

]
→ 0

as K → ∞.
The above corollary shows that scheme II is asymptotically

optimal when sufficiently many users are considered. Because
of the dominance relationship, it immediately follows that
scheme III is asymptotically optimal as well. As a by-product,
we conclude that the upper bound (3) is asymptotically tight.

Corollary 4.2:

E [CBC(h1, . . . , hK , P )] − E
[
C(h(1), h(2), P )

]→ 1

as K → ∞.
The above corollary corresponds to a special case of

scheme I, i.e., L = 2. We see that simply selecting the two
strongest users leaves a performance gap of 1 nats/symbol.

In conclusion, the above results show that scheme II is
asymptotically optimal in the sense that the absolute gap with



the sum capacity vanishes to zero provided L(K) → ∞
as K → ∞. Thus, transmitting to a suitably selected pair
of users is asymptotically optimal, where one of the users
may in fact be arbitrarily chosen from a fixed short list. The
gain from considering all pairs of users, as in scheme III, is
asymptotically negligible. However, picking an arbitrary pair
of users, as in scheme I, is not optimal even the users are the
two strongest ones.

V. NUMERICAL RESULTS

Fig. 2. (a) Comparison of various user selection heuristics with TDMA,
K = 10 users. (b) Absolute sum rate in nats vs SNR, K = 10 users.

In this section, we compare the sum rate obtained by the
various user selection schemes with the TDMA rate. We also
make a comparison with a beam-forming (BF) scheme along
the lines described in [12] and [18].

We present numerical results for a system with two transmit
antennas and K = 10 users in Figure 2. The corresponding
results for a system with K = 25 users are shown in Figure 3.
In Figures 2(a) and 3(a), we plot the ratio of the sum rate
obtained by the various schemes to the TDMA sum rate,

Fig. 3. (a) Comparison of various user selection heuristics with TDMA,
K = 25 users. (b) Absolute sum rate in nats vs SNR, K = 25 users.

versus the SNR (in dB). The results shown here were average
over 100 channel realizations. The solid line corresponds to
the optimal DPC scheme. The dotted line just underneath
the solid line corresponds to a special case of scheme II.
Specifically, we schedule the user with the largest channel
norm, and the second user to form the best possible pair with
it (i.e., L(K) = K). It is clear that even for this moderate
value of K, scheme II performs very well, in addition to
being asymptotically optimal. The broken line corresponds to
a special case of scheme I, where the two strongest users
are scheduled with equal power. It is clear that scheme II
dominates scheme I quite significantly. It is also interesting to
note that the upper bound in (3) (shown in the Figures 2(a)
and 3(a) with diamonds), although asymptotically tight, is
quite loose for practical values of K and SNR. We finally
observe that TDMA is optimal in the very low SNR regime.
The absolute sum rate (in nats) for the two scenarios are
graphed as a function of SNR in Figures 2(b) and 3(b).

The BF scheme proposed in [12] selects two users



which have the best Signal-to-Interference-and-Noise Ratio
(SINR) on each of the antennas. In particular, the trans-
mitter forms random beams along the direction of two or-
thonormal vectors φ1 and φ2, and selects two users k∗

m :=
arg maxk=1,...,K SINRk,m, m = 1, 2, where

SINRk,m :=
| < hk, φm > |2

2/P + | < hk, φ3−m > |2 .

The expected sum rate obtained (ignoring potential complica-
tions when k∗

1 = k∗
2), is therefore

RBF := E
[
log(1 + SNRk∗

1 ,1) + log(1 + SNRk∗
2 ,2)
]
.

The lower curves in Figures 2 and 3 plot the sum rate of this
BF scheme compared with the other schemes. We observe that
transmitting along two pre-determined beams without using
actual phase information performs poorly, even though it is
known to be asymptotically optimal in the limit of a large
number of users. However, a plot of the quantity C(hk∗

1
, hk∗

2
)

(not shown in the figure) revealed that this particular scheme
does well in terms of selecting a pair of users.

Note that as P ↓ 0, we have

RBF ≈ P

2
E
[| < hk∗

1
, φ1 > |2 + | < hk∗

2
, φ2 > |2] =

PE
[| < hk∗

1
, φ1 > |2] ≤ PE

[||h(1)||2
] ≈ RTDMA.

Denoting gij := | < hk∗
i
, φj > |2, we find that RBF

approaches

E

[
log
(

1 +
g11

g12

)
+ log

(
1 +

g22

g21

)]
= 2E

[
log
(

1 +
g11

g12

)]
.

as P → ∞. This shows that for any fixed number of users,
the sum rate of the BF scheme saturates at a finite value as
the transmit power becomes large, as is shown in Figures 2(b)
and 3(b). In contrast, the TDMA sum rate RTDMA grows
without bound, albeit slowly.

VI. FUTURE WORK

Several natural topics for further investigation present them-
selves. First of all, the above results have evident implica-
tions for the design of channel feedback mechanisms and
transmission techniques. It would be interesting to address
these aspects in more detail. A second major avenue that
would be worth pursuing is to generalize the results to an
arbitrary number of transmit antennas, and possibly several
receive antennas. A further challenging subject that is under
ongoing investigation, concerns the extension to a scenario
with heterogeneous users and maximizing a weighted sum rate
or achieving an optimal fair operating point of the capacity
region. Some interesting results along the latter lines may be
found in [10], [17].

ACKNOWLEDGMENT

The authors wish to express their gratitude to Gerhard
Kramer and Hanan Weingarten for many helpful suggestions
and interesting discussions. The second author also gratefully
acknowledges insightful comments of Nihar Jindal and Harish
Viswanathan.

APPENDIX

A. Bounds for the sum capacity

Here, we gather a few further bounds for the sum capacity
that are useful in proving Theorems 4.1 and 4.2.

We first prove a lower bound.

Lemma 1.1: For any i, j,

C(hi, hj , P ) ≥ 2 log
(

1 +
P

2
||hi∧j ||2

)
+ log(Uij),

with ||hi∧j ||2 := min{||hi||2, ||hj ||2}.

Proof: By definition,

C(hi, hj , P )

= log
(

1 +
P

2
(||hi||2 + ||hj ||2

)
+

P 2

4
||hi||2||hj ||2Uij

)

≥ log
[(

1 +
P

2
||hi||2

)(
1 +

P

2
||hj ||2

)
Uij

]

≥ 2 log
(

1 +
P

2
||hi∧j ||2

)
+ log Uij .

�

We now turn to some upper bounds. Define

F (hi, hj , P ) := 1 + P ||hi∨j ||2 +
P 2

4
||hi∨j ||4Uij ,

with ||hi∨j ||2 := max{||hi||2, ||hj ||2}.

Lemma 1.2: For any i, j,

CBC(hi, hj , P ) ≤ log(F (hi, hj , P )).

Proof: Using Equation (2) and Lemma 3.1,

CBC(hi, hj , P )
= max

Pi+Pj≤P
log
(
1 + Pi||hi||2 + Pj ||hj ||2 + PiPj ||hi||2||hj ||2Uij

)
≤ max

Pi+Pj≤P
log
(
1 + (Pi + Pj)||hi∨j ||2 + PiPj ||hi∨j ||4Uij

)
= log

(
1 + P ||hi∨j ||2 +

P 2

4
||hi∨j ||4Uij

)
.

�

Lemma 1.3: For any i, j, ε ∈ (0, 1),

F (hi, hj , P ) ≤
(

1
ε

+
P

2
||hi∨j ||2

)2

max{ε, Uij}.

Proof: By definition, for any ε ∈ (0, 1),

F (hi, hj , P ) = 1 + P ||hi∨j ||2 +
P 2

4
||hi∨j ||4Uij

≤
(

1
ε

+
P

2
||hi∨j ||2

)2

max{ε, Uij}.
�

Lemma 1.4: For any i, j, ε ∈ (0, 1),

C(hi, hj , P ) ≤ 2 log
(

1
ε

+
P

2
||hi∨j ||2

)
+ log(max{ε, Uij}).

Proof: Follows from (4) and Lemmas 1.2 and 1.3. �



B. Proof of Lemma 3.3

Proof: First note that the difference is bounded from below
by

E

[
log
(

1 +
A − B

B + Q||h(1)||2
)]

,

so the liminf is non-negative since ||h(1)||2 → ∞ a.s. as K →
∞.

We now show that the limsup is non-positive. Denoting
mK := E

[||h(1)||2
]

and applying Jensen’s inequality, we
obtain

E
[
log
(
A + Q||h(1)||2

)] ≤ log(A + QmK).

For any ε > 0,

E
[
log
(
B + Q||h(L)||2

)] ≥ log(B)+

log (B + mK(1 − ε)) − log(B)]P{||h(L)||2 ≥ mK(1 − ε)}.
Since L(K) = o(Kδ) for any δ > 0, it follows that

lim inf
K→∞

P{||h(L)||2 ≥ mK(1 − ε)} ≥

lim inf
K→∞

P{||h(Kε/4)||2 ≤ mK(1 − ε)}.

It can be shown (proof omitted for brevity) that there exists
a constant Cε/4,ε such that

P{||h(Kε/4)||2 ≤ mK(1 − ε)} ≤ Cε/4,ε

(log(K))2
.

Combining the above inequalities and observing that log(1+
Qmk(1− ε)) = o((log(K))2) as K → ∞, we deduce that the
limsup is bounded from above by

lim sup
K→∞

log(A + QmK) − log(B + QmK(1 − ε)).

The latter quantity is no larger than

lim
K→∞

log
(

1 +
A − B

B + QmK

)
− log(1 − ε) = − log(1 − ε),

because mK → ∞ as K → ∞.
Letting ε ↓ 0, the result follows. �
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