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Abstract— We consider optimal rate control for energy-efficient
data transmission over time-varying (fading) channels with strict
deadline constraints. Specifically, the scenario consists of a
transmitter with B units of data that must be transmitted by
deadline T over a wireless channel. The transmitter can control
the transmission rate over time by varying the transmission
power subject to expected short-term power limits. The expended
power depends on both the (chosen) transmission rate and the
present channel condition and the objective is to adapt the rate
over time and in response to the changing channel conditions
so that the total energy cost is minimized. We present a novel
continuous-time formulation of the problem; using stochastic
control theory and lagrangian duality, we obtain explicitly the
optimal rate control policy. We then present an illustrative
simulation example comparing the energy costs of the optimal
and the full power policies.

I. INTRODUCTION

Data services in modern communication systems are evolv-
ing from traditional email and web data transfers to more
enhanced services such as video and real-time multime-
dia streaming [1], delay constrained data/file transfers, high
throughput web access, and, Voice-over-IP (VoIP) which
brings voice communication into the realm of data services
(eg. 1xEV-DO, WiMAX). All these advancements require
enhanced Quality of Service (QoS) which translates into
stricter delay and throughput requirements on communication.

Communication over wireless channels adds another di-
mension of complexity associated with time-varying channel
conditions and scarcity of resources. Among other resource
limitations, energy consumption is an important concern in
system design and is an active area of research in wireless
networks [2]. Energy efficiency has numerous advantages
in efficient battery utilization of mobile devices, increased
lifetime of sensor and ad-hoc networks, and superior utilization
of limited energy sources in satellites. As transmission energy
constitutes the bulk of the communication energy expenditure,
it is imperative to minimize this cost to achieve significant
energy savings, henceforth, our focus in this paper will be on
transmission energy cost. In this work, we address the above
two issues under a specific setting and obtain optimal policies
to transmit data with delay constraints over a fading channel.

This work was supported by NSF ITR grant CCR-0325401, by
DARPA/AFOSR through the University of Illinois grant no. F49620-02-1-
0325 and by ONR grant number N000140610064.

Modern wireless devices are equipped with channel mea-
surement and rate adaptive capabilities [3]. Channel measure-
ment allows the transmitter-receiver pair to measure the fade
state using a pre-determined pilot signal while rate control
capability allows the transmitter to adjust the reliable transmis-
sion rate over time. Such a control can be achieved in various
ways that include adjusting the power level, symbol rate,
coding rate/scheme, constellation size and any combination of
these approaches; further, the receiver can detect these changes
directly from the received data without the need for an explicit
rate change control information [4]. With present technology,
transmission rate can be adapted very rapidly in time over
millisecond duration time-slots [3]. These capabilities, thus,
provide a unique opportunity to utilize dynamic rate control
algorithms to optimize system performance.

For a transmitter-receiver pair, the power-rate function de-
fines the relationship that governs the amount of transmission
power required to reliably transmit at a certain rate. Two
fundamental aspects of this function, which are exhibited
by most encoding/communication schemes and hence are
common assumptions in the literature [5]–[10], are as follows.
First, for a fixed bit error probability and channel state,
the required transmission power is a convex function of the
communication rate as shown in Figure 1(a). This implies
(from a straightforward application of Jensen’s inequality)
that transmitting data at low rates over longer duration is
more energy efficient as compared to high rate transmissions.
Second, the wireless channel is time-varying which shifts the
convex power-rate curves as a function of the channel state
as shown in Figure 1(b). As good channel conditions require
less transmission power, exploiting this variability over time
by adapting the rate in response to the channel conditions leads
to reduced energy cost. Thus, utilizing rate control capabilities
and the above two aspects of power-rate curves, we can
minimize energy cost while also satisfying delay constraints.

We consider a transmitter with B units of data that must
be transmitted by deadline T over a wireless channel. The
channel state (fading) is stochastic and modelled as a general
Markov process. The transmitter can control the transmission
rate over time by varying the transmission power subject to
short-term power limits. The expended power depends on both
the chosen transmission rate and the present channel condition
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Fig. 1. Transmission power as a function of the rate and the channel state;
(a) fixed channel state, (b) variable channel state.

(Figure 1(b)). The objective at the transmitter is to dynamically
adapt the rate over time and in response to the changing
channel conditions such that the transmission energy cost is
minimized and the deadline constraint is met. We formulate the
problem in continuous-time; using the stochastic control the-
ory and lagrangian duality, we obtain simple explicit/closed-
form formulas for the optimal transmission rate as a function
of the amount of data remaining, the present time relative to
the deadline and the present channel state.

Transmission power/rate control is an active area of research
in communication networks in various different contexts.
Adaptive network control and scheduling has been studied
in the context of network stability [13], average throughput
[14], average delay [5], [10] and packet drop probability [15].
This literature considers “average metrics” that are measured
over an infinite time horizon and hence do not directly ap-
ply for delay constrained/real-time data. Further, transmission
adaptation simply based on steady state distributions does not
suffice and to consider strict deadlines one needs to take into
account the system dynamics over time, thus, introducing new
challenges and complexity into the problem. Recent work in
this direction includes [6]–[9], [11], [12]. The work in [6]
studied offline formulations under non-causal knowledge of
future channel states and devised heuristic online policies
using the optimal offline solution. The works in [8], [9], [11]
studied formulations without fading and in particular our work
in [11] used a calculus approach to obtain minimum energy
policies with general arrival curves and QoS constraints. This
paper is an extension of the work in [12] where we considered
the same problem without explicit expected power constraints.
The additional complexity arising due to the power limit
constraints is addressed using a lagrangian duality approach.

II. PROBLEM SETUP

We consider a continuous-time model of the system. Clearly,
such a model is an approximation of the actual system but the
assumption is justified since in practice the communication
slot durations (on the order of 1 msec) are much smaller
than packet delay requirements (on the order of 100’s of
msec); thus, one can view the system as virtually operating
in continuous-time. Such a model makes the problem mathe-
matically tractable and yields simple solutions. To apply the
results obtained here, one would then simply discretize the
solution as done for the simulations in Section IV.

A. Transmission Model

Let ht denote the channel gain, P (t) the transmitted signal
power and P rcd(t) the received signal power at time t. We
make the common assumption [5], [6], [8]–[10] that the
required received signal power for reliable communication
(with a certain fixed bit-error probability) is convex in the
rate, i.e. P rcd(t) = g(r(t)). Since the received signal power
is given as P rcd(t) = |ht|2P (t), the required transmission
power to achieve rate r(t) is given by,

P (t) =
g(r(t))

c(t)
(1)

where c(t)�=|ht|2 and g(r) is a non-negative convex increasing
function for r ≥ 0. The quantity c(t) is referred to as the
channel state at time t. Its value at time t is assumed known
either through prediction or direct channel measurement but
evolves stochastically in the future. It’s worth emphasizing that
the relationship in (1) includes much more generality than
discussed above. For example, c(t) could in fact represent
a combination of stochastic variations in the system and
(uncontrollable) interference from other transmitter-receiver
pairs, as long as the power-rate relationship in (1) holds.

We further assume that g(r) belongs to the class of mono-
mial functions, namely, g(r) = krn, n > 1, k > 0 (n, k ∈ R).
While this assumption restricts the theoretical generality of the
problem, it serves several purposes. First, it leads to simple
closed form solutions that can be applied in practice. Second,
for most practical transmission schemes, g(·) is described
numerically and its exact analytical form is unknown. In
such situations, one can obtain the best approximation of
that function to a monomial function and apply the results
thus obtained. Third, monomials form the first step towards
studying a polynomial g(·) which would then apply to a
general g(·) using the polynomial expansion. Also, note that
for values of n close to 1, g(r) models a linear power-rate
curve which is a widely studied model. Finally, without loss
of generality throughout the paper we take the constant k = 1,
since, as will be evident, any other value of k simply scales
the problem without affecting the results.

B. Channel Model

We consider a general continuous time discrete state space
Markov model for the channel state process. Markov pro-
cesses constitute a large class of stochastic processes that
exhaustively model a wide set of fading scenarios and there
is substantial literature on these models [16], [17] and their
applications to communication networks [17], [18]. Denote
the channel state process as C(t) and the state space as C. Let
c(t) denote a sample path and c = c(t), c ∈ C be a particular
realization at time t. Starting from state c, let Jc be the set of
all states (�= c) to which the channel can transition when the
state changes. Let λcc̃ denote the channel transition rate from
state c to c̃, then, the sum transition rate at which the channel
jumps out of state c is, λc =

∑
c̃∈Jc

λcc̃. Clearly, the expected
time that C(t) spends in state c is 1/λc and one can view 1

λc

as the coherence time of the channel in state c.

932



T

B

0
timeda

ta
 in

 b
uf

fe
r

x(t)
B

queue

server

c(t)

Fig. 2. Schematic description of the system.

Now, define λ�=supc λc and a random variable, Z(c), as,

Z(c)�=

{
c̃/c, with prob. λcc̃/λ, c̃ ∈ Jc

1, with prob. 1 − λc/λ
(2)

With this definition, we obtain a compact description of the
process evolution as follows. Given a channel state c, there is
an Exponentially distributed time duration with rate λ after
which the channel state changes. The new state is a random
variable which is given as C = Z(c)c. Clearly, from (2) the
transition rate to state c̃ ∈ Jc is unchanged at λcc̃, whereas
with rate λ − λc there are indistinguishable self-transitions.
Note that there is no generality lost with this new description
as it yields a stochastically identical scenario and the self-
transitions are indistinguishable over any sample path. The
representation simply helps in notational convenience

Example: Consider the standard Gilbert-Elliott channel
model [17] that has two states b and g denoting the “bad”
and the “good” channel conditions respectively. The two states
correspond to a two level quantization of the channel gain. If
the measured channel gain is below some value, the channel
is labelled as “bad” and c(t) is assigned an average value cb,
otherwise c(t) = cg for the good condition. Let the transition
rate from the good to the bad state be λgb and from the bad
to the good state be λbg . Let γ = cb/cg , and using the earlier
notation, λ = max(λbg, λgb). For state cg we have,

Z(cg) =

{
γ, with prob. λgb/λ

1, with prob. 1 − λgb/λ
(3)

To obtain Z(cb), replace γ with 1/γ and λgb with λbg in (3).

C. Problem Formulation

As mentioned earlier, the transmitter has B units of data
and a deadline T by which the data needs to be sent. Let
x(t) denote the amount of data left in the queue and c(t)
be the channel state at time t. The system state can be
described as (x, c, t), where the notation means that at time
t, we have x(t) = x and c(t) = c. Let r(x, c, t) denote the
chosen transmission rate for the corresponding system state
(x, c, t). Since the underlying process is Markov, it’s sufficient
to restrict attention to transmission policies that depend only
on the present system state [21]. Clearly then, (x, c, t) is a
Markov process. The system is depicted in Figure 2.

Given a policy r(x, c, t), the system evolves in time as
a Piecewise-Deterministic-Process (PDP) as follows. We are
given x(0) = B and c(0) = c0. Until τ1, where τ1 is the
first time instant after t = 0 at which the channel changes,

the buffer is reduced at the rate r(x(t), c0, t). Hence, over the
interval [0, τ1], x(t) satisfies the ordinary differential equation,

dx(t)
dt

= −r(x(t), c0, t) (4)

Equivalently, x(t) = x(0) − ∫ t

0
r(x(s), c0, s)ds , t ∈ [0, τ1].

Now, starting from the new state (x(τ1), c1, τ1), the above
procedure repeats until t = T is reached. At time T , the
data that missed the deadline (amount x(T )) is assigned a
penalty cost of τg(x(T )/τ)

c(T ) for some τ > 0. This peculiar cost
can be viewed in the following two ways. First, it simply
represents a specific penalty function where τ can be adjusted
and in particular made small enough1 so that the data that
misses the deadline is small. This will ensure that with good
source-channel coding, the entire data can be recovered even
if x(T ) misses the deadline. Second, note that τg(x(T )/τ)

c(T ) is
the amount of energy required to transmit x(T ) data in time
τ with the channel state being c(T ). Thus, τ is the small time
window in which the remaining data is completely transmitted
out assuming that the channel state does not change over that
period. In fact, viewing T + τ as the actual deadline, τ then
models a small buffer window in which unlimited power can
be used to meet the deadline, albeit at an associated cost.

Let the interval [0, T ] be partitioned into L equal pe-
riods2 and denote P as the short-term expected power
constraint at the transmitter. Then, over each partition the
power constraint requires that the expected energy cost,
E

[∫
1

c(s)g(r(x(s), c(s), s))ds
]
, is less than P (T/L). Note

that T/L is the duration of each partition interval. Clearly, by
varying L, the time scale of the partition can be varied and the
power constraint can be made either more or less restrictive.

A transmission policy r(x, c, t) must also satisfy the fol-
lowing additional requirements,

(a) 0 ≤ r(x, c, t) < ∞, (non-negativity)
(b) r(x, c, t) = 0, if x = 0 (no data left to transmit)3.

Let Φ denote the set of r(x, c, t) that satisfy the above
requirements. We say that a policy r(x, c, t) is admissible if
r(x, c, t) ∈ Φ and it satisfies the power constraint on all the
partition intervals.

Denote the optimization problem as (P); it can now be
summarized as follows,

(P) inf
r(·)∈Φ

E

[∫ T

0

1
c(s)

g(r(x(s), c(s), s))ds +
τg(x(T )

τ )
c(T )

]

subject to E

[∫ T
L

0

1
c(s)

g(r(x(s), c(s), s))ds

]
≤ PT

L

...

E

[∫ T

T (L−1)
L

1
c(s)

g(r(x(s), c(s), s))ds

]
≤ PT

L

1Since g(·) is strictly convex, making τ smaller increases the penalty cost.
2Extensions to arbitrary sized partitions is fairly straightforward and such

a generality is omitted for mathematical simplicity.
3Additional technical requirements are, r(·) be locally lipschitz in x (x >

0) and piecewise continuous in t, to ensure that (4) has a unique solution.
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The expectations above are conditioned on (x0, c0)4, the
starting values at t = 0. For the analysis, we will keep the
general notation x0 but its value in our case is simply, x0 = B.

III. OPTIMAL POLICY

We consider a lagrangian duality approach to solve the
problem in (P). The basic steps involved in such an ap-
proach are to form the lagrangian, obtain the dual function
that depends on the lagrange multipliers, maximize the dual
function with respect to the lagrange multipliers and show that
there is no duality gap; that is, maximizing the dual function
gives the optimal cost for the constrained problem. However,
there are important subtleties in problem (P) which make it
non-standard. First, the domain of the rate functions r(·) is
a functional space which makes (P) an infinite dimensional
optimization, and, second, (P) is a stochastic optimization and
by this we mean that there is a probability space involved over
which the expectation is taken. In this section, we delve into
the solution details proceeding along the steps outlined above.

A. Dual Function

The inequality constraints in (P) can be written as,

E

[∫ kT
L

(k−1)T
L

g(r(·))
c(s)

ds

]
− PT

L
≤ 0, k = 1, . . . , L (5)

Let ν̄ = (ν1, . . . , νL) be the lagrange multipliers for these
power constraints corresponding to the L partitions of [0, T ].
Since these are inequality constraints, the lagrange multipliers
must be non-negative, i.e. ν1 ≥ 0, . . . , νL ≥ 0. The lagrangian
is then given as,

H(r(·), ν̄) =E

[∫ T

0

g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]

+
L∑

k=1

νk

(
E

[∫ kT
L

(k−1)T
L

g(r(·))
c(s)

ds

]
− PT

L

)
(6)

Re-arranging the above equation, it can be written in the form,

H(r(·), ν̄) =E

[∫ T

0

(1 + ν(s))g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]

−(ν1 + . . . + νL)(PT )/L (7)

where ν(s) takes value νk over the kth partition interval, i.e.
ν(s) = νk, s ∈ [ (k−1)T

L , kT
L ). As is the case in duality theory,

the dual function is the infimum of H(r(·), ν̄) over Φ. The
point to note here is that the r(·) over which this minimization
is considered do not have to satisfy the power constraints,
though other requirements still apply. This is because the short
term power constraints (violation) have been added as a cost
in the objective function of the dual problem. Denoting the
dual function as L(ν̄), we thus have,

L(ν̄) = inf
r(·)∈Φ

H(r(·), ν̄) (8)

4To avoid being cumbersome on notation, we will, throughout, represent
conditional expectation without an explicit notation but rather mention the
conditioning parameter when there is ambiguity.

One of the interesting properties of the dual function is that it
gives a lower bound to the optimal cost in (P). This standard
property is referred to as weak duality and it applies in our
case as well. It’s summarized in the lemma below; the proof
is direct and omitted for brevity.

Lemma 1: Let (x0, c0) be the starting state at t = 0 and
denote J(x0, c0) as the optimal cost for (P). Then, for all
ν̄ ≥ 0, we have, L(ν̄) ≤ J(x0, c0)

Before we proceed to strong duality which involves max-
imizing L(ν̄) over ν̄ ≥ 0, we solve the minimization in (8)
and obtain the dual function.

Evaluating the dual function: The approach we adopt to
evaluate the dual function is to view the problem in L stages
corresponding to the L partitions and solve for the optimal rate
functions in each of the partition interval with the necessary
boundary conditions at the edges. An immediate observation
from (7) shows that the effect of the lagrange multipliers is
to multiply the instantaneous power function g(r(·))

c(s) with a
time-varying function (1 + ν(s)). Thus, the difference over
the various intervals is in a different multiplicative factor to
the cost function, which for the kth interval is, 1+ν(s) = νk.

Since (8) involves a minimization over r(·) for fixed la-
grange multipliers ν̄, the second term in (7), i.e. (ν1+...+νL)PT

L ,
is irrelevant for the minimization and we will neglect it for
now. Define,

Hr
ν (x, c, t) = E

[∫ T

t

(1 + ν(s))g(r(·))
c(s)

ds +
τg(x(T )

τ )
c(T )

]
(9)

Hν(x, c, t) = inf
r(·)∈Φ

Hr
ν (x, c, t) (10)

where the expectation in (9) is conditioned on the state
(x, c, t). Stated simply, Hr

ν (x, c, t) is the cost-to-go function
for policy r(·), starting from state (x, c, t) and Hν(x, c, t) is
the optimal cost-to-go function starting from state (x, c, t).
Relating back to (7), Hr

ν (x0, c0, 0) is the expectation term in
(7) and Hν(x0, c0, 0) is the minimization of this term over Φ.
Clearly from (7) and (8), having solved for Hν(x, c, t), we then
obtain the dual function as simply, L(ν̄) = Hν(x0, c0, 0) −
(ν1+...+νL)PT

L . In the process of obtaining Hν(x, c, t), we
will also obtain the optimal rate functions for the lagrange
multiplier ν̄.

Now, focus on the kth partition interval so that t ∈
[ (k−1)T

L , kT
L ) and consider a small interval [t, t+h), within this

partition. Let some policy r(·) be followed over [t, t + h) and
the optimal policy thereafter, then using Bellman’s principle
[19] we have,

Hν(x, c, t)=min
r(·)

{
E

∫ t+h

t

(1 + νk)g(r(x(s), c(s), s))
c(s)

ds

+EHν(xt+h, ct+h, t + h)
}

(11)

where xt+h is short-hand for x(t + h) and the expectation
is conditioned on (x, c, t). The left side above is the optimal
cost if the optimal policy is followed right from the starting
state (x, c, t), whereas on the right side, the expression within
the minimization bracket is the total cost with policy r(·)
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being followed over [t, t+h] and the optimal policy thereafter.
Removing the minimization gives the inequality,

Hν(x, c, t) ≤ E

∫ t+h

t

(1 + νk)g(r(x(s), c(s), s))
c(s)

ds

+ E [Hν(xt+h, ct+h, t + h)] (12)

Rearranging, dividing by h and taking the limit h ↓ 0 gives,

ArHν(x, c, t) +
(1 + νk)g(r)

c
≥ 0 (13)

The above follows since
E

∫ t+h
t

(
(1+νk)g(r(·))

cs

)
ds

h → (1+νk)g(r)
c

where r is the value of the transmission rate at time
t, i.e. r = r(x, c, t), and, ArHν(x, c, t) is defined as
ArHν(x, c, t) = limh↓0

EHν(xt+h,ct+h,t+h)−Hν(x,c,t)
h . The

quantity ArHν(x, c, t) is called the differential generator of
the Markov process (x(t), c(t)) for policy r(·) and intuitively,
it’s a natural generalization of the ordinary time derivative
for a function that depends on a stochastic process. An
elaborate discussion on this topic can be found in [19]–[21].
For our case, using the time evolution as in (4), the quantity
ArHν(x, c, t) can be evaluated as,

ArHν(x, c, t)=
∂Hν

∂t
− r

∂Hν

∂x
+λ(Ez[Hν(x,Z(c)c, t)] − Hν(x, c, t)) (14)

where Ez is the expectation with respect to the Z variable.
Now, in the above steps from (12)-(13) if policy r(·) is
replaced with the optimal policy r∗(·), there is equality
throughout and we get,

Ar∗
Hν(x, c, t) +

(1 + νk)g(r∗)
c

= 0 (15)

Hence, for a given system state (x, c, t), the optimal trans-
mission rate, r∗, is the value that minimizes (13) and the
minimum value of the expression equals zero. Thus, over
the kth partition interval with t ∈ [ (k−1)T

L , kT
L ), we get the

following optimality condition,

min
r∈[0,∞)

[
(1 + νk)g(r)

c
+ ArHν(x, c, t)

]
= 0 (16)

Substituting ArHν(·) from (14), we see that (16) is a partial
differential equation in Hν(x, c, t), also referred to as the
Hamilton-Jacobi-Bellman (HJB) equation.

min
r∈[0,∞)

{ (1 + νk)g(r)
c

+
∂Hν

∂t
− r

∂Hν

∂x

+λ(Ez[Hν(x,Z(c)c, t)] − Hν(x, c, t))
}

= 0 (17)

In summary, the above arguments state that if Hν(·) is
sufficiently smooth, it satisfies the optimality condition in (17)
over all the partition intervals k = 1, . . . , L and the optimal
rate functions are the corresponding r values that minimize
(17). The boundary conditions for Hν(·) are as follows. At
t = T , Hν(x, c, T ) = τg( x

τ )

c , since starting in state (x, c) at
time T , the optimal cost simply equals the penalty cost. Over
each partition interval, we require that Hν(·) is continuous

at the edges, so that the functions evaluated for the various
intervals are consistent. An important caveat to note is that
the optimality condition alone doesn’t suffice and we need
sufficiency arguments to verify that a solution of the PDE in
(17) is the optimal solution. This is indeed the case, but, the
verification theorems are very detailed and omitted for brevity.

We now present the results for the function, Hν(x, c, t), and
the corresponding optimal rate function, denoted as r∗ν(x, c, t),
where the subscript ν is used to indicate explicit dependence
on the lagrange multipliers, ν̄. Theorem I gives the solution
which is further explained later, but first, we need some
additional notation regarding the channel process. Let there be
m channel states in the Markov model and denote the various
states c ∈ C as c1, c2, . . . , cm. Given a channel state ci, the
values taken by the random variable Z(ci) (defined in (2))
are denoted as {zij}, where zij = cj/ci. The probability that
Z(ci) = zij is denoted as pij . Clearly, if there is no transition
from state ci to cj , pij = 0.

Theorem I: Consider the minimization in (10) with
g(r) = rn, (n > 1, n ∈ R). For k = 1, . . . , L and t ∈
[ (k−1)T

L , kT
L ) (kth partition interval),

Hν(x, ci, t) =
(1 + νk)xn

ci(fk
ci(t))n−1

, i = 1, . . . , m (18)

r∗ν(x, ci, t) =
x

fk
ci(t)

, i = 1, . . . ,m (19)

where over the kth interval, {fk
ci(t)}m

i=1 is the solution of the
following ODE system,

(fk
c1(t))′=−1 − λfk

c1(t)
n − 1

+
λ

n − 1

m∑
j=1

p1j

z1j

(fk
c1(t))n

(fk
cj (t))n−1

(20)

...

(fk
cm(t))′=−1 − λfk

cm(t)
n − 1

+
λ

n − 1

m∑
j=1

pmj

zmj

(fk
cm(t))n

(fk
cj (t))n−1

(21)

The following boundary conditions apply; if k = L, fL
ci(T ) =

τ(1 + νL)
1

n−1 ,∀i (at the deadline) and if k = 1, .., L − 1,

fk
ci

(
kT
L

)
=

(
1+νk

1+νk+1

) 1
n−1

fk+1
ci

(
kT
L

)
,∀i (at the partition

boundaries). The dual function in (8) is then given as,

L(ν̄) =
(1 + ν1)xn

0

c0(f1
c0

(0))n−1
− (ν1 + . . . + νL)PT

L
(22)

Proof: The proof is omitted for length considerations
but it can be checked that the solution satisfies the optimality
condition.

The above solution can be understood as follows. There is a
set of functions {fk

ci(t)} for the L partitions and the m channel
states; i.e. for each partition interval, k, there are m functions
{fk

ci(t)}m
i=1 for the corresponding channel states. The subscript

refers to the channel state while the superscript refers to the
partition interval. Now, given that the present time t lies in
the kth interval, the rate function has the simple closed form
expression x

fk
ci (t)

as given in (19) while Hν(·) is as given in

(18). The functions {fk
ci(t)}m

i=1 for the kth interval are the
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solution of the system of ODE in (20)-(21) with the boundary
condition at the right edge of the interval given as, fk

ci

(
kT
L

)
=(

1+νk

1+νk+1

) 1
n−1

fk+1
ci

(
kT
L

)
. This ensures that Hν(x, c, t) is con-

tinuous at the partition edge, t = kT
L . For the Lth interval

the boundary condition is, fL
ci(T ) = τ(1 + νL)

1
n−1 ; this

ensures that at t = T , Hν(x, ci, T ) = τg( x
τ )

ci = xn

ciτn−1 . Now,
the functions {fk

ci(t)} can be evaluated starting at the Lth

interval to obtain {fL
ci(t)}m

i=1 and then {fL−1
ci (t)}m

i=1 using
the boundary condition above and proceeding backwards to
the first interval.

In complete generality, a closed form solution for the system
of ODE as given above is difficult to obtain, however, there is a
special case which can be solved in closed form as discussed
next. Nevertheless, in the general case, the system of ODE
can be easily solved numerically using standard techniques
with minimal computational requirement. An important point
to note is that this computation needs to be done offline
before the system operation. Once the {fk

ci(t)} are known,
the closed form structure of the policy in (19) warrants no
further computation.

Constant Drift Channel Model: Under a special structure in
the Markov channel model which we refer to as the constant
drift channel, the functions fk

ci(t) are independent of the chan-
nel state (i.e. fk

ci(t) = fk(t), ∀i) and the common functions
{fk(t)}L

k=1 can be obtained in closed form. The particular
assumption on the channel model is that the expected value of
1/Z(c) is independent of the channel state, i.e. E[1/Z(c)] = β
(a constant). Since c̃ = Z(c)c, starting in state c, the next

transition state satisfies E
[
1
c̃

]
= E

[
1

Z(c)

]
1
c = β/c. Thus, if

we look at the process 1/c(t), the above assumption means
that over the interval of interest, the expected value of the next
state (given the present state 1/c) is a constant multiple of the
present state. We refer to β as the “drift” parameter of the
channel process. If β > 1, the process 1/c(t) drifts upwards
in an expected sense, if β = 1, there is no expected drift
and if β < 1, the drift is downwards. In practice, this could
be a good model for slow fading channels which over the
deadline interval are drifting towards improving or worsening
conditions.

Theorem II: Consider the minimization in (10) with
g(r) = rn and the constant drift channel model with parameter
β. For k = 1, . . . , L, t ∈ [ (k−1)T

L , kT
L ),

Hν(x, c, t) =
(1 + νk)xn

c(fk(t))n−1
(23)

r∗ν(x, c, t) =
x

fk(t)
(24)

Let η = λ(β−1)
n−1 , then,

fk(t) = τ(1 + νk)
1

n−1 e−η(T−t) +
1
η

{ L−k−1∑
j=0

(
1 + νk

1 + νL−j

)
(
e−η(T (L−j−1)

L −t) − e−η(T (L−j)
L −t)

) }
+

1
η

(
1 − e−η( kT

L −t)
)

B. Lagrange Duality

From Lemma 1, we see that given a lagrange vector ν̄ ≥ 0,
the dual function is a lower bound to the optimal cost of the
constrained problem, P . Thus, it makes sense to maximize
L(ν̄) over ν̄ ≥ 0. Theorem III below, states that strong duality
holds or that maximizing L(ν̄) over ν̄ ≥ 0 gives the optimal
cost of P , and, that if P has an optimal policy, then the optimal
rate function is the same as that obtained in Theorem I with
ν̄ = ν̄∗, the maximizing lagrange vector.

As in Lemma 1, let J(x0, c0) be the optimal cost of (P)
starting at t = 0 in state (x0, c0), where x0 ∈ [0,∞), c0 ∈ C.
Note that for (P), the starting state is known and hence is
fixed for the optimization. Problem (P) is feasible since a
policy that does not transmit any data and simply incurs the
penalty cost is an admissible policy. Its cost is finite and hence
J(x0, c0) is finite.

Theorem III: (Strong Duality) Consider the dual function
defined in (8) for ν̄ ≥ 0, then, we have,

J(x0, c0) = max
ν̄≥0

L(ν̄) (25)

and the maximum on the right is achieved by some ν̄∗ ≥ 0. If
(P) has an optimal solution, which we denote as r∗(x, c, t),
then, r∗(x, c, t) is the minimizing r(·) in (8) for ν̄ = ν̄∗.

Proof: The proof follows from the lagrange duality result
in [22] and is omitted here for length considerations.

Interestingly, the dual function is concave [22] which makes
the maximization in (25) much simpler as there are no issues
of local maxima and a direct gradient search algorithm would
numerically yield ν̄∗. For our case, the dual functions for
a general ν̄ ≥ 0, are given in Theorems I (general markov
channel) and II (constant drift channel). While a closed form
solution of ν̄∗ is difficult to obtain, one can easily obtain ν̄∗

numerically using standard techniques.

C. Optimal Policy for (P)

The optimal policy for problem (P) can now be obtained
by combining Theorems I and III and is given as follows. For
k = 1, . . . , L and t ∈ [ (k−1)T

L , kT
L ) (kth partition interval),

r∗(x, ci, t) = r∗ν∗(x, ci, t) =
x

fk
ci(t)

, i = 1, . . . , m (26)

where the functions {fk
ci(t)} are evaluated with ν̄ = ν̄∗.

As mentioned earlier in Section III-A, the computation for
ν̄∗ and {fk

ci(t)} needs to be done offline before the data
transmission. In practice, if the transmitter has computational
capabilities, these computations can be carried out at t = 0
for the given problem parameters, otherwise, the ν̄∗ and
{fk

ci(t)} can be pre-determined and stored in a table in the
transmitter memory. Having known {fk

ci(t)}, the closed form
structure of the optimal policy as given in (26) warrants no
further computation and is simple to implement. At time t, the
transmitter looks at the amount of data in the buffer, x, the
channel state, c, the partition interval k in which t lies and
computes the rate for the communication slot as simply x

fk
c (t)

.
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Fig. 3. Total cost comparison of the optimal and the full power policy.

IV. SIMULATION RESULTS

In this section, we consider an illustrative example and
present energy cost comparisons for the optimal and the Full
Power (FullP) policy. In FullP policy, the transmitter always
transmits at full power, P , and so given the system state
(x, c, t) the rate is chosen as, r(x, c, t) = g−1(cP ) = (cP )1/n,
for g(r) = rn. The simulation setup is as follows. The channel
model is the GE model as described earlier in Section II-B,
with parameters λbg = 1, λgb = 3/7, cg = 1 and cb = 0.2;
thus, λ = max(λbg, λgb) = 1 and γ = cb/cg = 0.2. It can be
easily checked that with the above parameters, in steady state
the fraction of time spent in the good state is 0.7 and 0.3 in
the bad state. The deadline is taken as T = 10 and the number
of partition intervals as L = 20. The power-rate function is,
g(r) = r2 and the value of τ in the penalty cost function
is taken as 0.01 which is 0.1% of the deadline; thus, a time
window of 0.1% is provided at T . To simulate the process,
communication slot duration is taken as dt = 10−3 implying
that there are T/10−3 = 10000 slots over the deadline interval.
For each slot, the transmission rate is computed as given by
the corresponding policy and the total cost is obtained as the
sum of the energy costs in the slots plus the penalty cost.
Expectation is then taken as an average over the sample paths.

Figure 3 is a plot of the expected total cost of the two
policies with the initial data amount B varied from 1 to 10. The
value of P is chosen such that at B = 5, even with bad channel
condition over the entire deadline interval, the entire data can
be served at full power. This implies, P = 1

γ (5/T )2 = 1.25
(5/T is the rate required to serve 5 units in time T ). Thus,
B ≤ 5 gives the regime in which full power always meets the
deadline and B > 5 is the regime in which data is left out
which then incurs the penalty cost. It’s evident from the plot
that the optimal policy gives a significant gain in the total cost
(note that the y-axis is on a log scale) and at around B = 1
FullP policy incurs almost 10 times the optimal cost. Thus,
dynamic rate adaptation can yield significant energy savings.

V. CONCLUSION

We considered energy efficient transmission of data over a
fading channel with deadline and power constraints. Specifi-

cally, we addressed the scenario of a wireless transmitter with
short-term power limit constraints, having B units of data that
must be transmitted by deadline T over a fading channel.
Using a novel continuous-time formulation and lagrangian
duality, we obtain in closed form the optimal transmission
policy that dynamically adapts the rate over time and in
response to the time-varying channel variations to minimize
the transmission energy cost. This work opens various in-
teresting research directions which include data transmission
with multiple deadlines and extensions to scenarios involving
control of multiple transmitters having deadline constraints.
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