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A Geometric Approach to Capacity Provisioning in
WDM Networks with Dynamic Traffic

Li-Wei Chen, Eytan Modiano

Abstract—In this paper, we use an asymptotic analysis similar
to the sphere-packing argument in the proof of Shannon’s channel
capacity theorem to derive optimal provisioning requirements for
networks with both static and dynamic provisioning. We consider
an N -user shared-link model where Ws wavelengths are statically
assigned to each user, and a common pool of Wd wavelengths are
available to all users. We derive the minimum values of Ws and
Wd required to achieve asymptotically non-blocking performance
as the number of users N becomes large. We show that it is al-
ways optimal to statically provision at least enough wavelengths
to support the mean of the traffic. We then consider allowing the
shared wavelengths Wd to be switched in groups (or wavebands)
rather than on an individual basis, and show that by employing
waveband switching, a link with only a few switches per user can
achieve the same performance as a link provisioned with unlim-
ited switches per user using only marginally more wavelengths.
We also derive the optimal band size and wavelengths required.
Finally, we discuss adaptation of these results to the case of a finite
and small number of users.

I. INTRODUCTION

OPTICAL networks are a common solution for high-speed
communications. In general, an optical network can con-

sist of nodes connected in arbitrary fashion via many optical
fibers (Figure 1). In this paper, we will focus on provisioning
a single link in a backbone network. Such a link is shared by
traffic between many source-destination pairs in the larger net-
work. Each wavelength on the link can be used to support one
lightpath from one of the incoming fibers on the left side of the
link to one of the outgoing fibers on the right side of the link.

Wavelength provisioning can be done either statically, by
dedicating a wavelength solely to supporting calls from a sin-
gle source-destination pair along a fixed path in the network,
or dynamically, by allowing a wavelength to be switched dy-
namically (either individually or as part of a bundle of multi-
ple wavelengths called a waveband) to serve different source-
destination pairs according to traffic demand. These two ap-
proaches trade off low cost and simplicity against efficiency of
resource usage, respectively.

There has been much investigation of both statically provi-
sioned and dynamically provisioned systems in the literature
[1], [2], [3], [4]. Such approaches are well-suited for cases
where either the traffic is known a priori and can be statically
provisioned, or is extremely unpredictable and needs to be dy-
namically provisioned. However, in practice, a middle ground
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Fig. 1. An example of a mesh optical network consisting of numerous nodes
and links, followed by a shared-link model based on the colored link. The
dotted lines denote different users of the link. Since each pair of input-output
fibers comprises a different user, and there are 4 input fibers and 4 output fibers,
there are a total of 4 · 4 = 16 users in this example.

is usually more common. Traffic reaching high-bandwidth op-
tical networks typically consists of an amalgamation of a large
number of smaller calls, and statistical multiplexing helps re-
duce the variance of the traffic. As a result, it is common to see
traffic demands characterized by a large mean and a small vari-
ance around the mean. A hybrid system is well suited to such
a scenario. In a hybrid system, a sufficient number of wave-
lengths are statically provisioned to support the majority of the
traffic. Then, on top of this, a smaller number of wavelengths
are dynamically provisioned to support the inevitable variation
in the realized traffic. Such an approach takes advantage of
the relative predicability of the traffic by cheaply provisioning
the majority of the wavelengths, but retains sufficient flexibility
through the minority of dynamic wavelengths that significant
wavelength overprovisioning is not necessary.

We will first consider the provisioning of hybrid systems
where each dynamic wavelength is individually switched. We
use a sphere hardening approach [5]: we allow the number of
users to become large, and consider the minimum provisioning
in static and dynamic wavelengths necessary to achieve non-
blocking performance (i.e., to guarantee that the probability of
any call in the snapshot being blocked goes to zero). We will
show that it is always optimal to statically provision enough
wavelengths to support the traffic mean. We also fully char-
acterize the optimal provisioning strategy for achieving non-
blocking performance with minimal wavelength provisioning.

We next consider waveband-switched systems, and again de-
rive a strategy for optimal provisioning. Subsequently, for a
fixed number of switches, we determine the appropriate static
and dynamic partitioning that results in the minimum number
of total wavelengths used. We will show that networks can be
nearly optimal in the total number of wavelengths required with
very few switches per user if the network is allowed to switch
using wavebands. The analysis also provides insight into the
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proper sizing of wavebands and the amount of static provision-
ing required in hybrid waveband-switched systems.

A. System Model

In the shared link context, we can consider each incoming-
outgoing pair of fibers to be a different user of the link. Each
lightpath request (which we will henceforth term a call) can
therefore be thought of as belonging to the user corresponding
to the incoming-outgoing fiber pair that it uses. We can sim-
ilarly associate each static wavelength with the corresponding
user. Under these definitions, a call belonging to a given user
cannot use a static wavelength belonging to a different user – it
must either use a static wavelength belonging to its own user,
or employ a dynamic wavelength.

When a user requests a new call setup, the link checks to
see if a static wavelength for that user is free. If there is a free
static wavelength, it is used. If not, then the link checks to
see if any of the shared dynamic wavelengths are free – if so,
then a dynamic wavelength is used. If not, then no resources
are available to support the call, and it is blocked. There have
been several approaches developed in the literature for blocking
probability analysis of such systems under Poisson traffic mod-
els [6], including the Equivalent Random Traffic (ERT) model
[7], [8] and the Hayward approximation [9]. These approxi-
mations, while often able to produce good numerical approxi-
mations of blocking probability, are purely numerical in nature
and do not provide good intuition for guiding the dimensioning
of the wavelengths. Furthermore, they assume that the dynamic
wavelengths must be individually switched, and do not consider
waveband switching.

In this paper, we adopt a snapshot traffic model that leads
to closed-form asymptotic analysis and develop guidelines for
efficient dimensioning of hybrid networks. We consider ex-
amining a “snapshot” of the traffic demand at some instant in
time. The snapshot is composed of the vector c = [c1, . . . , cN ],
where ci is the number of calls that user i has at the instant of
the snapshot, and N is the total number of users.

We model each variable ci as a Gaussian random variable
with mean µi and variance σ2

i . This is reasonable since each
“user” actually consists of a collection of source-destination
pairs in the larger network that all use the link from the same
source fiber to the same destination fiber. In this paper, we will
assume that each user has the same mean µ and variance σ2;
the results are extensible to general µi and σi but the exten-
sion is beyond the scope of this paper (see [10]). Although the
traffic for each individual source-destination pair for the user
may have some arbitrary distribution, as long as the distribu-
tions are well-behaved, the sum of each traffic stream will ap-
pear Gaussian by the Central Limit Theorem.

II. WAVELENGTH-GRANULARITY SWITCHING

In this section, we consider a shared link, and assume that
there are N users that are the source of calls on the link. Each
user is statically provisioned Ws wavelengths for use exclu-
sively by that user. In addition to this static provisioning, we
will also provide a total of Wd dynamically switched wave-
lengths. These wavelengths can be shared by any of the N
users.

As previously described, we will use a snapshot model of
traffic. The traffic is given by a vector c = [c1, . . . , cN ], where
each ci is independent and identically distributed as N(µ, σ2).
We assume that the mean µ is significantly large relative to σ
that the probability of “negative traffic” (a physical impossibil-
ity) is low, and therefore does not present a significant modeling
concern. We will primarily be concerned with a special block-
ing event that we call overflow. An overflow event occurs when
there are insufficient resources to support all calls in the snap-
shot and at least one call is blocked. We will call the probability
of this event the overflow probability. An overflow event occurs
if the total number of calls exceeds the ability of the static and
dynamic wavelengths to support. This can be expressed mathe-
matically as

N∑
i=1

max {ci − Ws , 0} > Wd (1)

where max {ci − Ws , 0} is the amount of traffic from each
user that exceeds the static provisioning; if the total amount
of excess from each user exceeds the available pool of shared
dynamic wavelengths, a blocking event occurs.

If we consider the N -dimensional vector space occupied by
c, the constraint given by (1) represents a collection of hyper-
planes bounding the admissible traffic region:

ci ≤ Ws + Wd

ci + cj ≤ 2Ws + Wd , i �= j

ci + cj + ck ≤ 3Ws + Wd , i �= j �= k

...

Each constraint reflect the fact that the sum of the traffic from
any subset of users clearly cannot exceed the sum of the static
provisioning for those users plus the entire dynamic provision-
ing available. Note that there are a total of N sets of constraints,
where the nth set consists of C(N,n) = N !

(N−i)!n! equations,
each involving the sum of n elements of the traffic vector c. If
the traffic snapshot c falls within the region defined by the hy-
perplanes, all calls are admissible; otherwise, an overflow event
occurs. The bolded lines in Figure 2 show the admissible region
for N = 2 in two dimensions.

A. Asymptotic Analysis

We will consider the case where the number of users N be-
comes large, and use the law of large numbers to help us draw
some conclusions. We can rewrite the call vector in the form

c = µ · 1 + c′

where 1 is the length-N all-ones vector, and c′ ∼ N(0, σ21)
is a zero-mean Gaussian random vector with i.i.d. components.
Conceptually, we can visualize the random traffic vector as a
random vector c′ centered at µ1. The length of this random
vector is given by

‖c′‖ =

√√√√ N∑
n=1

c2
i
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Fig. 2. The admissible traffic region, in two dimensions, for N = 2. Three
lines form the boundary constraints represented by (1). There are two lines each
associated with a single element of the call vector c, and one line associated
with both elements of c. The traffic sphere must be entirely contained within
this admissible region for the link to be asymptotically non-blocking.

We will use an approach very similar to the sphere packing
argument used in the proof of Shannon’s channel capacity the-
orem in information theory [5]. We will show that asymptot-
ically as the number of users becomes large, the traffic vector
falls onto a sphere centered at the mean, and the provisioning
becomes a problem of choosing the appropriate number of sta-
tic and dynamic wavelengths so that this traffic sphere is com-
pletely contained within the admissible region. From the law of
large numbers, we know that

1
N

N∑
n=1

c2
i → σ2

as N → ∞. This implies that asymptotically, as the number of
users becomes large, the call vector c becomes concentrated on
a sphere of radius

√
Nσ centered at the mean µ1. Therefore, in

order for the overflow probability to converge to zero, a neces-
sary and sufficient condition is that the hyperplanes described
by (1) enclose the sphere entirely (Figure 2).

B. Minimum Distance Constraints

Next, we will derive necessary and sufficient conditions for
the admissible traffic region to enclose the traffic sphere. Our
goal is to ensure that we provision Ws and Wd such that the
minimum distance from the center of the traffic sphere to the
boundary of the admissible region is at least the radius of the
sphere, therefore ensuring that all the traffic will fall within the
admissible region.

Due to the identical distribution of the traffic for each user,
the mean point µ1 will be equidistant from all planes whose
description involves the same number of elements of c. We
define a distance function f(n) such that f(n) is the minimum
distance from the mean µ1 to any hyperplane whose description
involves n components of c.

Lemma 1: The distance function f(n) from the traffic mean
to a hyperplane involving n elements of the traffic vector c is
given by

f(n) =
√

n

(
Ws +

Wd

n
− µ

)
, n = 1, . . . , N (2)

Proof: The geometric proof is essentially a simplified
version of the proof of Lemma 2 and omitted for brevity.

We define the minimum boundary distance to be

Fmin = min
n=1,...,N

f(n)

A necessary and sufficient condition for the overflow prob-
ability to go to zero asymptotically with the number of users
is

Fmin ≥
√

Nσ

We would like to determine the index n such that f(n) is
minimized. Unfortunately, this value of n turns out to depend
on the choice of provisioning Ws. Let us consider the derivative
of the distance function f ′(n):

f ′(n) =
1

2
√

n

(
Ws − Wd

n
− µ

)

We can divide Ws into three regimes of interest, corre-
sponding to different ranges of values for Ws and Wd, and
characterize f(n) in each of these regions:

Regime 1: If Ws ≤ µ:

In this region, f ′(n) < 0 for all n. This implies that f(n) is a
decreasing function of n, and Fmin = f(N), giving a minimum
distance of

Fmin =
√

N

(
Ws +

Wd

N
− µ

)

Regime 2: If µ < Ws ≤ µ + Wd:

In this region, f ′(n) starts out negative and ends up positive
over 1 ≤ n ≤ N . This implies that f(n) is convex and has a
minimum. Neglecting integrality concerns, this minimum oc-
curs when f ′(n) = 0, or

n∗ =
Wd

Ws − µ

Therefore Fmin = f(n∗) in this regime. Substituting the ap-
propriate values, it can be shown that the minimum distance is
given by

Fmin = 2
√

Wd(Ws − µ)

Regime 3: If Ws > µ + Wd:

In this region, f ′(n) > 0 for all n. This implies that f(n) is an
increasing function of n, and Fmin = f(1), giving a minimum
distance of

Fmin = Ws + Wd − µ

C. Optimal Provisioning

In the preceding section, we derived the minimum distance
criteria for the hybrid system. Given a fixed number of sta-
tically allocated wavelengths Ws, we can use the equation
Fmin ≥ √

Nσ to calculate the minimum number of dynamic
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wavelengths Wd to achieve asymptotically non-overflow per-
formance. We can also draw a few additional conclusions about
provisioning hybrid systems.

Theorem 1: A minimum of µ static wavelengths should al-
ways be provisioned per user.

Proof: For Ws ≤ µ, we know from Case 1 above that the
minimum distance constraint is

Fmin =
√

N

(
Ws +

Wd

N
− µ

)
≥

√
Nσ

⇒ Wtot = NWs + Wd ≥ (µ + σ)N

Note that the total number of wavelengths Wtot = NWs +
Wd is independent of Ws and Wd in this regime, suggesting that
the same total number of wavelengths are required regardless of
the partitioning between static and dynamic wavelengths. Since
static wavelengths are less expensive to provision than dynamic
wavelengths, this shows that there is never any reason to provi-
sion less than Ws = µ wavelengths.

An interesting corollary to this theorem follows from the ob-
servation that the case where Ws = 0 (i.e. all wavelengths
are dynamic) also falls in this regime (i.e. Regime 1). Since
fully dynamic provisioning is obviously the least-constrained
version of this system, we can use it as a bound on the min-
imum number of wavelengths required by any asymptotically
overflow-free system.

Corollary: For non-overflow operation, a lower bound on the
number of wavelengths required is given by

Wtot ≥ (µ + σ)N

We can also consider a system that is fully static, with no
dynamic provisioning. This is the most inflexible wavelength
partitioning, and provides us with an upper bound on the num-
ber of wavelengths required by any hybrid system.

Theorem 2: For a fully static system with no dynamic provi-
sioning, the minimum number of wavelengths required is given
by

Wtot = (µ + σ)N +
(√

N − 1
)

Nσ

Proof: Let Wd = 0. Then, for overflow-free operation,
we obviously need Ws > µ. This puts us in Regime 3 where
Ws > µ + Wd, and the minimum distance condition gives us

Fmin = Ws + Wd − µ >
√

Nσ

Wtot = NWs = (µ + σ)N +
(√

N − 1
)

Nσ

Note that this exceeds the lower bound on the minimum num-
ber of wavelengths by (

√
N − 1)Nσ. We can therefore re-

gard this quantity as the maximum switching gain that we can
achieve in the hybrid system. This gain is measured in the max-
imum number of wavelengths that could be saved if all wave-
lengths were dynamically switched. Combining the upper and
lower bounds, we can make the following observation:

Corollary: For efficient overflow-free operation, the to-
tal number of wavelengths required by any hybrid system is
bounded by

(µ + σ)N ≤ Wtot ≤ (µ + σ)N + (
√

N − 1)Nσ
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Fig. 3. Curves show decrease in overflow probability with increasing num-
ber of users N . The mean has been statically provisioned. The curve with
the circles shows a link provisioned with the theoretical minimum number of
wavelengths Wtot needed to achieve asymptotically non-overflowing opera-
tion. Note that if fewer than Wtot wavelengths are provisioned, the overflow
probability no longer converges to zero as the number of users increases.

D. Numerical Example

Simulations were conducted to verify the accuracy of the pro-
visioning results derived. Figure 3 verifies the results of the
preceding discussion for the case of µ = 100 and σ = 10. The
rapidly descending curve shows that if the theoretical minimum
of Wtot = (µ + σ)N wavelengths are provisioned, then as the
number of users N increases, the overflow probability drops
off quickly and eventually the system becomes asymptotically
non-blocking. The other two curves show that if less than Wtot

wavelengths are provisioned, the overflow probability no longer
converges to zero as the number of users increases.

Note also that the convergence occurs fairly rapidly if the
Wtot wavelengths calculated in the preceding sections are pro-
visioned. In a system with just 30 users, the overflow probabil-
ity has already decreased to the order of 10−5. Since the num-
ber of users is equal to the number of input-output fiber pairs,
this corresponds to a link with as few as 5 input fibers and 6
output fibers, for example. Therefore, the results are useful in
designing for good network performance even when N is finite
and small.

III. WAVEBAND-GRANULARITY SWITCHING

A. Asymptotic Analysis

In this section, we also consider a shared link, but now we
allow for waveband switching. Again, each user is statically
provisioned Ws wavelengths for its own use. Additionally, we
assume there are b wavebands, each of size Wb. Each waveband
can be assigned to serve calls from any user, but all Wb wave-
lengths within the same waveband must serve the same user.

This banded approach is interesting because, compared to
wavelength switching, it allows for more wavelengths to be dy-
namically allocated, at the cost of coarser switching granularity.
For example, given the same number of switches, a waveband
approach with bands of Wb = 2 wavelengths will have twice
the total number of dynamic wavelengths as a wavelength-
switched network. However, these dynamic wavelengths are
less flexible in the banded case, since two dynamic wavelengths
must be assigned to a user at a time.

Note that the wavelength-switched network is a special case
of the waveband-switched network where Wb = 1. In such a
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Fig. 4. The admissible region for a link with N = 2 users. The traffic sphere
must be entirely enclosed within the admissible region in order for the link to
be asymptotically non-blocking.

case, Wd = b · Wb = b. In this section, we will analyze the
performance of banded networks in general, and make some
comparisons about the performance improvement gained over
wavelength-switched networks by allowing waveband switch-
ing.

Again, we assume that the traffic vector c is composed of
normally distributed i.i.d. entries with mean µ and variance
σ2. An overflow event occurs if there exists at least one call
that is blocked due to insufficient wavelengths being available
to service it. This can be written mathematically as

N∑
i=1

max
{⌈

ci − Ws

Wb

⌉
, 0

}
> b (3)

(3) can be written as N sets of boundary constraints, where
the nth set consists of C(N,n) = N !

(N−i)! n! equations, each
involving n elements of the traffic vector c:⌈

ci − Ws

Wb

⌉
≤ b , ∀ i

⌈
ci − Ws

Wb

⌉
+

⌈
cj − Ws

Wb

⌉
≤ b , ∀ i �= j

...

Figure 4 illustrates an example of the admissible traffic region
for N = 2 users.

We will next determine the distance from the mean of the
traffic vector to each boundary, and derive a sufficient math-
ematical condition for the traffic vector to be admissible (i.e.
not in overflow). Consider the nth set of boundary constraints,
and suppose that the first n elements of c are active. Then we
require

n∑
i=1

⌈
ci − Ws

Wb

⌉
≤ b (4)

We observe that since all the terms in the summation are inte-
gers, and b is an integer, (4) holds if and only if

c1 − Ws

Wb
+

n∑
i=2

⌈
ci − Ws

Wb

⌉
≤ b (5)

Therefore we can equivalently consider provisioning Ws and
Wb to satisfy (5), and (4) will follow. Using the inequality
�x� < x + 1, we observe that

n∑
i=2

⌈
ci − Ws

Wb

⌉
≤

n∑
i=2

(
ci − Ws

Wb
+ 1

)

from which we can conclude that (5) holds if we choose Ws

and Wb such that

c1 − Ws

Wb
+

n∑
i=2

(
ci − Ws

Wb
+ 1

)
≤ b (6)

This is equivalent to

c1 − Ws

Wb
+

n∑
i=2

ci − Ws

Wb
≤ b − (n − 1)

Rearranging the above, we obtain:

n∑
i=1

ci ≤ nWs + (b − (n − 1)) Wb (7)

By the above reasoning, we have that (7) → (6) → (5) → (4).
Therefore (7) is a sufficient condition for the traffic vector being
admissible.

Recall that we derived this expression assuming that the first
n elements of c were active. In general, for n active elements,
the sum on the left of (7) will involve the sum of those active
elements. We also point out here that by using the upper bound
�x� < x + 1 as the basis for our provisioning, we have been
more conservative in our estimate of the traffic. We therefore
expect that this will result in a small amount of overprovision-
ing of the link.

B. Minimum Distance Constraints

We define the minimum distance from the traffic mean to any
boundary involving n active constraints to be f(n). This min-
imum distance expression will later be useful in determining
sufficient provisioning for overflow-free operation.

Lemma 2: The distance f(n) from the traffic mean to any
hyperplane involving n elements of the traffic vector c is given
by:

f(n) =
√

n

(
Ws +

b − (n − 1)
n

Wb − µ

)
(8)

Proof: For a fixed n, the hyperplane has a normal vector
consisting of n unity entries and N − n zero entries. Since by
symmetry the mean of the traffic is equidistant from all hyper-
planes with the same number of active constraints, without loss
of generality, assume that the first n constraints that are active.
Then the closest point on the hyperplane has the form

[µ + x, . . . , µ + x, µ, . . . , µ]

where the first n entries are µ+x, and the remainder are µ. The
value of x is obtained applying (7), which requires that
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n∑
i=1

(µ + x) = nWs + (b − (n − 1))Wb

⇒ x = Ws +
b − (n − 1)

n
Wb − µ

The distance from the point [µ, . . . , µ] to this point on the
hyperplane is

√
n x, where, after substituting for x, we obtain

f(n) =
√

n

(
Ws +

b − (n − 1)
n

Wb − µ

)

By the same law of large numbers reasoning as in the pre-
vious section, we observe that asymptotically as the number of
users N becomes large, the traffic will converge to a sphere
of radius

√
Nσ centered at the mean. Let the minimum dis-

tance from the mean to the closest hyperplanar boundary be
Fmin = minn f(n). Then the system will be asymptotically
non-blocking if Fmin >

√
Nσ.

In the preceding wavelength-switched networks, fixing the
number of switches b was equivalent to fixing Wd. This left
only 1 free parameter, Ws, and uniquely determined the op-
timal provisioning for asymptotically non-blocking operation.
However, in this section, if b is fixed, two parameters remain to
be chosen: the number of static wavelengths Ws and the wave-
band size Wb. Therefore, the choice of these parameters is not
unique unless we specify additional optimization criteria.

If in addition we require that the optimal provisioning also
minimize the total number of wavelengths Wtot = NWs+bWb

for a fixed b, there will exist a unique choice of Ws and Wb for
each b. We now proceed to derive this optimal choice.

We would like to first determine the index n that minimizes
f(n). We consider the first derivative of f(n):

f ′(n) =
1

2
√

n

[
Ws −

(
b + 1

n
+ 1

)
Wb − µ

]
(9)

From (9), we observe that the behavior of f(n) can be char-
acterized in three regimes corresponding to different ranges
of values for Ws and Wb. By analysis very similar to Section
II-B, the minimum number of wavelengths required in each
regime, along with the choice of Ws and Wb that achieves this,
is listed in Table I.

C. Optimal Provisioning

For a given number of switches b, Section III-B gives the
total number of wavelengths in each of three regimes. To de-
termine the optimal operating regime, these expressions should
be evaluated for the particular values of b, µ, and σ, and the
regime that requires the fewest total wavelengths Wtot should
be chosen as the operating regime. The results in Section III-B
for that regime will then provide the optimal choice of Ws and
Wb to achieve asymptotically non-blocking operation.

Figure 5 plots the dropoff in overflow probability as the num-
ber of users N increases. The different curves show the effect
of underprovisioning the total number of wavelengths relative
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Fig. 5. Dropoff in overflow probability as the number of users N increases.
In this example, two switches per user are available. The different curves show
the effect of underprovisioning the total number of wavelengths relative to the
theoretical minimum. Note that if less than 94% of the calculated wavelengths
are provisioned, the overflow probability does not decrease even as the number
of users increases.
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Fig. 6. A plot of the number of wavelengths required as a function of the
number of switches. Note that the initial wavelength savings is significant, but
the marginal gain in wavelength savings decreases rapidly as the number of
switches gets larger. Theorem 1 gives a lower bound on the number of wave-
lengths required as µ + σ = 110 wavelengths per user in this example.

to the predicted Wtot. As expected, Wtot slightly overestimates
the total number of wavelengths required, but not by much. To
see this, observe that if only 0.94Wtot is provisioned (the curve
with the square points), the overflow probability stays constant
at a high value even as the number of users increases and does
not diminish.

Figure 6 shows an example of the number of wavelengths per
user required as a function of the number of switches per user
for a 1000-user network. Recall from Theorem 1 that a strict
lower bound on the number of wavelengths required is µ + σ
wavelengths per user, achieved using full switching requiring
µ + σ switches per user. From the figure, we observe that with
a relatively small number of switches per user, we can come
close to this lower bound – that is, the minimum number of
µ + σ = 110 wavelengths can be approached very closely with
only 3 to 5 switches per user instead of 110 switches per user.

D. Typical Operating Regimes

In this section, we seek a closed-form, approximate expres-
sion for the total number of wavelengths required Wtot and the
static and dynamic provisioning Ws and Wb that applies in typ-
ical network operating regimes. This will give us an intuitive
sense of the relationship between these quantities and the net-
work parameters such as the traffic mean µ and variance σ2 and
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TABLE I
WAVELENGTH REQUIREMENTS FOR ASYMPTOTICALLY NON-BLOCKING WAVEBAND-SWITCHED NETWORKS

Regime 1: Ws ≤ µ +
(

b+1
N

+ 1
)

Wb

b Wtot Ws Wb

b ≤ Nσ
2

− 1 Nµ + Nσ +
[

N(N−1)
2(b+1)

]
σ µ + 1

2

(
1 + N

b+1

)
σ 1

2

(
N

b+1

)
σ

Nσ
2

− 1 < b ≤ N(µ + σ + 1) − 1 N
[
µ + σ + N−1

N

]
µ + σ + 1 − b+1

N
1

b > N(µ + σ + 1) − 1 b 0 1

Regime 2: µ +
(

b+1
N

+ 1
)

Wb < Ws ≤ µ + (b + 2)Wb

b Wtot Ws Wb

b ≤ Nσ Nµ + N
[

b+N√
(b+1)(b+N)

]
σ µ +

[
(b+2N)

2
√

(b+1)(b+N)

]
σ

[
N

2
√

(b+1)(b+N)

]
σ

b > Nσ N
(
µ + N

4(b+1)
σ2

)
+ b µ + N

4(b+1)
σ2 1

Regime 3: Ws > µ + (b + 2)Wb

b Wtot Ws Wb

b ≤
√

N
2

σ − 1 N
(
µ + b+2

b+1

√
N
2

σ
)

+ b
√

N
2(b+1)

σ µ + b+2
b+1

√
N
2

σ 1
b+1

√
N
2

σ

b >
√

N
2

σ − 1 N
(
µ +

√
Nσ

)
µ +

√
Nσ 0

the number of switches b.
We will assume that in a typical environment, b/N ≤ σ/2.

From Figure 6, we see that this is a reasonable assumption,
since we can approach the minimum number of wavelengths re-
quired with a relatively small number of switches per user. We
also assume that N is large. We next consider the three regimes
to determine which regime is optimal under these assumptions.

In Regime 1, we have b/N ≤ σ/2, and the total number of
wavelengths required is

W
(1)
tot = Nµ + Nσ +

[
N(N − 1)
2(b + 1)

]
σ

≈ Nµ + N

[
1 +

N2

2b

]
σ

In Regime 2, it follows from our assumptions that b/N < σ
and we have

W
(2)
tot = Nµ + N

[
b + N√

(b + 1)(b + N)

]
σ

≈ Nµ + N

[√
1 +

N

b

]
σ

Since 1
2
√

N
approaches zero as N increases, for sufficiently

large N we must have b/N > 1
2
√

N
σ in Regime 3 and

W
(3)
tot = Nµ + N

√
Nσ

By inspection, we observe that the minimum number of wave-
lengths is achieved in Regime 2:

Wtot ≈ Nµ + N

[√
1 +

N

b

]
σ

with

Ws ≈ µ +
b + 2N

2
√

b(b + N)
σ , Wb ≈ N

2
√

b(b + N)
σ

Comparing the total number of static wavelengths NWs with
the total number of dynamic wavelengths bWb, we observe that

NWs ≈ Nµ +
N2√

b(b + N)
+ bWb

which gives a sense of the optimal relative amounts of static
and dynamic provisioning that is appropriate. Note that we can
take advantage of the predictability of the traffic to provision
significantly more wavelengths statically.

IV. PROVISIONING FOR SMALL NUMBERS OF USERS

The analysis in the preceding sections is asymptotic in the
number of users. Recall that each “user” in our shared-link
context corresponds to an input-output fiber pair. In practi-
cal networks, we rarely have an infinite number of such users.
However, we also rarely need to have strictly non-blocking net-
works – typically, we will have a target overflow probability
that we consider to be sufficiently low to deliver good service.
We would therefore also like to know how to use the results
from our asymptotic approach in the preceding sections to net-
works with a small number of users in which we may allow a
target overflow probability. In this section, we discuss how to
adapt our results to this scenario.

A. Statistics of the Traffic Vector Length

Consider the distance R of the traffic vector c from its mean
point µ1:

R = ‖c − µ1‖ =

√√√√ N∑
n=1

(ci − µ)2
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Define a new quantity X = R2. For a fixed N , X is a random
variable with mean and variance given by

E[X] = E

[
N∑

n=1

(ci − µ)2
]

= Nσ2

var(X) = var

[
N∑

n=1

(ci − µ)2
]

= 2Nσ4

where the central moments of a Gaussian random variable can
be found in most probability texts (e.g. [11]). Note that X
is the sum of N squared Gaussian random variables and by
the Central Limit Theorem can itself be approximated by a
Gaussian random variable with mean Nσ2 and standard devia-
tion

√
2Nσ2. We can observe that the standard deviation of X

as a fraction of the mean decreases with increasing N as
√

2Nσ2

Nσ2
=

√
2
N

B. Practical Network Provisioning

In practical network provisioning, it is often not necessary to
achieve totally non-blocking operation – it suffices if the block-
ing probability is sufficiently low. Suppose Q is the target over-
flow probability for the network (i.e. we wish to design the
network so that the probability of overflow is at most Q).

The probability that the traffic vector falls within a sphere of
radius r centered at the mean is P (R ≤ r). We choose r to
satisfy

P (R ≤ r) = Q ⇒ P (X ≤ r2) = Q

P

(
X

σ2
≤ r2

σ2

)
= Q ⇒ P

(
Y ≤ r2

σ2

)
= Q

where Y is defined as X/σ2. Observe that since Y is the sum of
N zero-mean unit variance Gaussian random variables, it is it-
self a chi-squared random variable with N degrees of freedom.
Then:

r = σ
√

chi2inv(Q,N)

where chi2inv(Q,N) is the inverse CDF of a chi-squared ran-
dom variable with N degrees of freedom at the point Q.

Since r is now the radius of a traffic sphere within which
the realized traffic vector will be found with desired probability
Q, the wavelength provisioning should be chosen so that the
minimum distance from the traffic mean to the nearest boundary
constraint hyperplane Fmin exceeds r. This will ensure that an
overflow event happens with probability no greater than Q.

C. Numerical Example

Recall that Table I was calculated assuming that the mean
point needed to be a minimum distance of

√
Nσ from all

boundary hyperplanes, while for finite N we now require the
minimum distance to be at least r. We can therefore conclude
that the expressions for each regime in Table I hold for finite N
also, as long as σ in the table is replaced with r/

√
N . Figure 7

shows the total number of wavelengths required for a link with
µ = 100, σ = 10, and 2 switches per user for both a 1% over-
flow probability and the asymptotic minimum Wtot. Note that
even for a small number of users, the number of extra wave-
lengths required (compared to the asymptotic minimum) is not
large, and diminishes rapidly as the number of users increases.
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Fig. 7. A shared link with the mean statically provisioned targeting 1% over-
flow probability. The total number of wavelengths required for a link with
µ = 100, σ = 10, and 2 switches per user is shown both for 1% overflow
probability and the asymptotic minimum Wtot.

V. CONCLUSION

We examined wavelength provisioning for a shared link in
a backbone network, and considered networks with both static
and dynamically provisioned wavelengths. Using a geometric
argument, we obtained asymptotic results for the optimal wave-
length provisioning on the shared link. We proved that the num-
ber of static wavelengths should be sufficient to support at least
the traffic mean. We derived in closed form expressions for the
optimal provisioning of the shared link given the mean µ and
variance σ2 of the traffic. We also showed that by allowing the
dynamic wavelengths to be switched in bands of multiple wave-
lengths rather than individually, very efficient networks can be
achieved while using a very small number of switches per user.
We again derive the optimal static and dynamic provisioning as
well as the optimal waveband size given the traffic characteri-
zation. Finally, we showed that the results could be adapted for
networks with a small, finite number of users with a fixed target
overflow probability.
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