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Abstract— We consider allocating a set of parallel channels
among multiple users in a satellite network. A novel MAC proto-
col is proposed based on pricing that allocates network resources
efficiently according to users’ demand. In this paper, we first char-
acterize the Pareto efficient throughput region in a single satellite
network. The existence of a equilibrium price is presented. Fur-
thermore, we show that such equilibrium price is unique. In the
multiple satellites case, the Pareto efficient throughput region is
also described. We then show that the equilibrium price exists and
is unique. The resulting throughput at the equilibrium is shown to
be Pareto efficient also.

I. INTRODUCTION

Future satellite communication networks are envisioned to
provide diverse quality of service based on user’s demand.
Hence, it is vital to have a Medium Access Control (MAC) pro-
tocol that provides fair and efficient channel access for each
user. In this paper, we propose a novel MAC protocol based on
pricing that allocates network resources efficiently in response
to users’ demand.

Specifically, we consider a communication network with
multiple satellites, collectively acting as a network manager,
who wish to allocate network uplink capacity efficiently among
a set of users, each endowed with a utility function depending
on their data rate. We assume that each satellite uses a separate
channel for communication, such as using different frequency
band for receiving. Each user has data that needs to be sent to
the satellite network, and there may be multiple satellites that
a user on the ground can communicate with, or switched diver-
sity termed in [1]. Therefore, the data rate for each user here is
the rate at which each user can access the satellite network by
sending its data to any satellite within its view.

Slotted aloha is used here as the multi-access scheme for its
simplicity. Other multi-access schemes can be used in conjunc-
tion with our pricing scheme to provide QoS as well. Due to
different path loss and fading, the channel gain from a user to
different satellites within its view can be different. Therefore,
during a single time slot, a user has to decide not only whether
it should transmit but also to which satellite it will transmit. To
control users’ transmission rates, each satellite will set a price
that may differ from satellite to satellite for each successfully
received packet. Based on the price set by each satellite, a user
determines its target satellite and the transmission probability
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to maximize its net payoff, which is the utility of its received
rate minus the cost.

It is well-known that the throughput of a slotted aloha system
is low. Therefore, to efficiently utilize the available resource is
a reasonable objective for the network manager. In this paper,
we want to explore the use of pricing as a control mechanism
to achieve efficiency. To do so, we need to define the meaning
of efficiency in the context of a slotted aloha system. With a
wire-line, such as optical fiber, of capacity R, an allocation is
efficient as along as the sum of the bandwidth allocated to each
individual user is equal to R, i.e., no waste of bandwidth. With
a collision channel in the aloha system, no simple extension
of the wire-line case exists. We therefore use a concept called
Pareto efficiency for allocating resource in a collision channel.
By definition, a feasible allocation (s1, s2, · · · , sn) is Pareto
efficient if there is no other feasible allocation (s′1, s

′
2, · · · , s′n)

such that s′i ≥ si for all i = 1, · · · , n and s′i > si for some i.
The multiple satellites communication networks considered

here differ from the multichannel aloha networks in only one
aspect–the channel quality associated with the path from user
to the satellite is different in the multiple satellites case. This
difference gives us insight on how to best utilize the multiple
channels available to users. A multichannel aloha network con-
sists of M parallel, equal capacity channels for transmission to
one receiver shared by a set of users. The M channels can be
implemented based on either Frequency Division Multiplexing
or Time Division Multiplexing approaches. When a user has a
packet to send, it will randomly select one channel to transmit.
This random selection of the channel is largely due to the lack
of coordination among competing users. Intuitively, we would
expect that the throughput of the system will be higher if the co-
ordination in channel selection among users was available. As
we show in this paper, in multiple satellite networks, different
prices and channel states are two mechanisms that enable the
coordination in channel selection among the competing users.

The multi-channel slotted aloha problem has been studied by
numerous researchers. In [4], the authors develop a distributed
approach for power allocation and scheduling in a wireless net-
work where users communicate over a set of parallel multi-
access fading channels, as in an OFDM or multi-carrier system.
In [5], the authors shows how to improve the classic multichan-
nel slotted aloha protocols by judiciously using redundant trans-
missions. The use of pricing strategy to control the behavior of
users who are sharing a single channel using aloha medium ac-
cess protocol was investigated in [6]. A game theoretical model
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for users competing for the limited resources is provided. Mul-
tiple channels and the associated channel states for the users are
not considered in their work.

The organization of this paper is as follows. In section II,
we characterize the Pareto efficient throughput region in a sin-
gle satellite network. The existence of a equilibrium price is
presented. Furthermore, we show that such equilibrium price is
unique. In section III, we describe the Pareto efficient through-
put region in a multi-satellites environment given that coordi-
nation of satellite selection was allowed among users. We then
show that the equilibrium price exists and is unique. The re-
sulting throughput at the equilibrium is shown to be Pareto ef-
ficient also. An multiple satellites example, where the compet-
itive equilibrium is explicitly calculated, is given in Section IV.
Section IV concludes the paper.

II. A SINGLE SATELLITE NETWORK

We consider an uplink communication scenario in a single
satellite network with n users. Each user has unlimited num-
ber of packets in its buffer need to be transmitted. As in
standard slotted ALOHA model, if two or more packets are
transmitted during the same time slot, we assume no pack-
ets will be received at the satellite. Now, let zi denote the
transmission probability of user i. The probability that user
i’s packet is successfully received by the satellite is then de-
noted as si = zi

∏
j �=i(1 − zj). We further denote the con-

stant channel state coefficient from user i to the satellite as ci.
Assume all users transmitting at a constant power P . Given
user i’s transmission during a particular time slot was success-
ful, the throughput of that time slot for user i can be written as
qi = gi(ci, P ), where gi is a concave function (e.g.,Shannon
capacity equation). Thus, the data rate that user i received can
be written as qi · si. User i, therefore, receives a utility equal to
Ui(qi · si), where the utility is measured in monetary units. The
utility function Ui(·) is assumed to be concave, strictly increas-
ing, and continuously differentiable. As mentioned in most lit-
erature, concavity corresponds to the assumption of elastic traf-
fic.

We therefore use a concept called Pareto efficient for allo-
cating resource in a collision channel. By definition, a feasible
allocation (s1, s2, · · · , sn) is Pareto efficient if there is no other
feasible allocation (s′1, s

′
2, · · · , s′n) such that s′i ≥ si for all

i = 1, · · · , n and s′i > si for some i. Here, the allocation is
in terms of the success probability of each packet instead of the
actual data rate qi · si. As we will mention later, it is sufficient
for us to consider si’s only. The following theorem gives the
capacity region (i.e., the pareto efficient allocation) of the aloha
system considered here.

Theorem 1: Given a set of transmission probabilities
(z1, z2, · · · , zn), the resulting allocation (s1, s2, · · · , sn) is
Pareto efficient if and only if z1 + z2 + · · · + zn = 1.

Proof: First, we will find the capacity region or the Pareto
efficient (s1, s2, · · · , sn). We begin by considering the follow-
ing optimization problem:

max
z1,z2,··· ,zn

s1 + s2 + · · · + sn

subj.
s2

s1
= α2, · · · ,

sn

s1
= αn

(1)

The Lagrangian is given by:

L(s1, · · · , sn, λ2, · · · , λn)

= (1 −
n∑

i=2

λiαi)s1 +
n∑

i=2

(1 + λi)si

= β1s1 + β2s2 + · · · + βnsn

(2)

where β1 = (1 − ∑n
i=2 λiαi) and βi = 1 + λi for i =

2, · · · , n. Substituting si = zi

∏
j �=i(1−zj) and differentiating

L(s1, · · · , sn, λ2, · · · , λn) with respect to zi’s, we have

∂L

∂zi
= βi

∏
j �=i

(1 − zj) −
∑
k �=i

βkzk

∏
j �=k,j �=i

(1 − zj) (3)

Next, we claim that the solution to the system of equations
( ∂L
∂z1

= 0, · · · , ∂L
∂zn

= 0) has the following form:

zi =

∑
j �=i βj − (n − 2)βi∑n

i=1 βi
(4)

We will now show that the above solution form indeed solves
the system of equations. Substituting Eq.(4) into Eq.(3), the
first term of Eq.(3) is given by:

βi

∏
j �=i

(1 − zj) = βi

∏
j �=i

(n − 1)βj∑n
k=1 βk

=
(n − 1)n−1

(
∑n

k=1 βk)n−1
β1 · β2 · · ·βn

(5)

Similarly, the second term of Eq.(3) is given by:

∑
k �=i

βkzk

∏
j �=k,j �=i

(1 − zj) =
∑
k �=i

zk

(n − 1)(n−2)
∏

j �=i βj

(
∑n

j=1 βj)(n−2)

=
(n − 1)(n−2)

(
∑n

j=1 βj)(n−1)
(
∏
j �=i

βj)

⎡
⎣∑

k �=i

(
∑
j �=k

βj − (n − 2)βk)

⎤
⎦

=
(n − 1)(n−2)

(
∑n

j=1 βj)(n−1)
(
∏
j �=i

βj)(n − 1)βi

(6)

Comparing the two terms, we see that Eq.(4) is indeed the so-
lution to Eq.(3).

∑n
i=1 zi = 1 follows trivially. Also, note that

the set zi’s given in Eq. (4) is a stationary point for the function
L(·). It is straight forward to see that the set zi’s given in Eq.(4)
cannot be a minimum point of the function L(·). Hence, the set
of zi’s given in Eq.(4) must maximize L(·).

We have shown that for an Pareto efficient allocation, the
sum of individual transmission probability has to be one. Con-
versely, if the sum of individual transmission probability is one,
we know it is a solution to the optimization problem defined
above for appropriately chosen αi’s. Therefore, the resulted
si’s must be Pareto efficient.

The utility function of each user, Ui(·), is not available to the
satellite in general. Therefore, we consider a pricing scheme
for controlling the transmission probability. We assume that
the satellite, or network manager, treats all users the same (i.e.,
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the satellite does not price discriminate). In our case, the price
per successfully received packet charged by the satellite is the
same for all users.

Given a price p per successfully received packet and other
users’ transmission probability zj for j �= i, user i acts to max-
imize the following payoff function over 0 ≤ zi ≤ 1:

Ui(zi

∏
j �=i

(1 − zj) · qi) − zi

∏
j �=i

(1 − zj) · p

= Ui(si · qi) − si · p
(7)

The first term represents the utility to user i if it receives a data
rate of si ·qi, and the second term represents the price that user i
pays to the network manager. We say a set (s1, · · · , sn, p) with
si = zi

∏
j �=i(1 − zj) for i = 1, · · · , n and p ≥ 0 is a com-

petitive equilibrium if users maximize their payoff as defined in
(7), and the satellite sets a price p so as to make

∑n
i=1 zi = 1

(i.e., network is efficiently utilized).
The following theorem shows the existence of a unique com-

petitive equilibrium for the pricing scheme considered here.
Theorem 2: Assume for each user i, the utility function Ui

is concave, strictly increasing, and continuously differentiable.
Then there exists a unique competitive equilibrium.

Proof: We first provide the condition for users to be in the
equilibrium. At an equilibrium point, user i chooses a transmis-
sion probability zi to maximize its payoff, Ui(si · qi) − si · p
which is equivalent to the following conditions:

U ′
i(qi · zi

∏
j �=i

(1 − zj)) =
p

qi
, if 0 < zi < 1 (8)

U ′
i(0) ≤ p

qi
, if zi = 0 (9)

U ′
i(qi

∏
j �=i

(1 − zj)) ≥ p

qi
, if zi = 1 (10)

Eq.(9) represents the case that the price set by the satellite is
too high; therefore, user i will not transmit anything. Similarly,
Eq.(10) indicates that the price per successfully received packet
is too low; hence, user i will always transmit. We consider the
case that each user’s utility function is strictly concave. Since
the utility Ui is strictly concave, strictly increasing, and con-
tinuously differentiable, U ′

i is a continuous, strictly decreasing
function with its domain [0, qi] and range over the interval [a, b]
where b could be infinity. Consequently, the inverse U ′

i , say Vi,
is also well defined over the interval [a, b], and it is continuous
and strictly decreasing. We can write Eq.(8) as the following:

si =
1
qi

Vi(
p

qi
) (11)

We can think of the si’s as the desired throughput for user i
given the price p, even though the set (s1, · · · , sn) may not
be feasible (i.e., there does not exist a set (z1, · · · , zn) and
0 ≤ zi ≤ 1 such that si = zi

∏
j �=i(1 − zj)). The set

(s1, s2, · · · , sn) forms a strictly decreasing continuous trajec-
tory in Rn from (1, 1, · · · , 1) to (0, 0, · · · , 0) as p increases.
The continuity property of the trajectory is due to the continu-
ity of Vi.

For any Pareto optimal allocation (s1, s2, · · · , sn), we must
have

∑n
i=1 zi = 1. For convenience, we write �z =

(z1, z2, · · · , zn) and �s = (s1, s2, · · · , sn). Then, let A =
{ �z | zi ≥ 0 for i = 1, · · · , n and

∑n
i=1 zi = 1}. More-

over, let fi(�z) = zi

∏
j �=i(1 − zj). Thus, the mapping f of A

into Rn is defined by:

f(�z) = (f1(�z), · · · , fn(�z))

Since each of the functions f1, · · · , fn is continuous, f is con-
tinuous as well. We then have the set B = {f(�z) | �z ∈ A} is
compact because A is compact. Thus, the set B forms a surface
in Rn that separates the point (1, 1, · · · , 1) from the origin. To
see this, we use induction. In the two dimensional case, this is
obviously true. Now, suppose this statement is true for the n-
dimensional case. For the n + 1 dimensional case, let’s look at
the boundary points of the simplex

∑n+1
i=1 zi = 1. The bound-

ary points has dimension n. Thus, the resulting mapping is
closed surface from induction hypothesis. The following figure
illustrate the idea by going from two dimension to three dimen-
sion.

1

1

0 s1

s2

(a)

s1

s2

0
1

1

1

s3 (b)

Pareto optimal
(s1, s2) pair

p increases
Desired (s1, s2) as

Fig. 1. (a) The relationship between a Pareto optimal (s1, s2). (b) The rela-
tionship of a Pareto optimal (s1, s2, s3).

Therefore, for the continuous trajectory (s1, s2, · · · , sn) pa-
rameterized by the price p to go from (1, 1, · · · , 1) to the origin,
it must intersect with the set B at a unique point. That point is
the unique competitive equilibrium in our pricing scheme.

III. MULTI-SATELLITE SYSTEM

A. The Pareto Optimal Throughput Region of A Multi-satellite
System

In a network with multiple satellites, we assume that users
can simultaneously transmit to different satellites using differ-
ent frequencies during the same time slot. The case that a user
can transmit to only one single satellite during a time slot is a
special case of the model where simultaneous transmissions are
allowed. We let z(i,j) denote the transmission probability from
user i to satellite j. Similarly, let q(i,j) denote the quality of the
channel from user i to satellite j. The set of users that transmits
to satellite j is denoted as Aj . The set of satellites that user i
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transmits to is denoted as Bi. The probability of a success trans-
mission from user i to satellite j is denoted as s(i,j). We also
assume that users are backlogged. A graph G = (V, E) can be
used to represent the connections between users and satellites,
where V is a set of nodes representing the users and the satel-
lites; the edge (i, j) is in E if z(i,j) is positive. We first consider
the case where the channels from the users to the satellites are
all identical. The Pareto optimal throughput region of this mul-
tiple satellites system with identical channel quality is given by
the following theorem:

Theorem 3: Given a multi-satellite system represented by a
connected graph G = (V, E), the resulting throughput is Pareto
optimal if and only if the following two conditions are satis-
fied:

1) there is no cycle in the graph G
2)

∑
i z(i,j) = 1 ∀ j

For a multi-satellite system that cannot be represented by a con-
nected graph, we can consider each disconnected part of that
graph separately. The following figure is a graphical represen-
tation of a possible communication scenario.

Sat 1 Sat 2 Sat 1 Sat 2

(a) (b)

Fig. 2. (a) A graphical representation containing no cycle. (b) A graphical
representation containing cycle.

Proof: Condition (2) is straightforward from Theorem
1. We will prove condition (1) here. Suppose that we have m
satellites and n users. The probability of success for user i can
be written as follows:

si =
∑
k∈Bi

z(i,k) ·
∏

j∈Ak

(1 − z(j,k)) (12)

A set of transmission probabilities z(i,j) achieving pareto op-
timality implies that we cannot find a set of small variation
δz(i,j) on z(i,j) such that the throughput can be improved for all
users. Hence, given a set of transmission probability z(i,j), to
see whether such transmission probabilities achieves pareto op-
timality, we need to check whether we can find a set of δz(i,j) to
improve the throughput performance for some users without de-
creasing the throughput for other users. For satellite j, if there
are k users transmitting to this satellite, we can freely vary the
transmission probability by a small amount to only k − 1 users
in order to satisfy the condition

∑
i z(i,j) = 1 (If we change the

transmission probability of all k users by a small amount, the
condition

∑
i z(i,j) = 1 may be violated). In this case, we say

that we have k − 1 degree of freedom in varying the transmis-
sion probabilities. Therefore, for a system with m satellites, the
degree of freedom in varying the transmission probabilities is∑n

i=1 |Bi| − m. For a connected graph, we must have

n∑
i=1

|Bi| ≥ n + m − 1.

Similarly, for the connected graph to contain a cycle, we must
have

n∑
i=1

|Bi| ≥ n + m.

Therefore, for a connected graph contains no cycle, we have

n∑
i=1

|Bi| = n + m − 1.

To satisfy the pareto optimality, from the first order condition,
we need to check whether we can find a set of δz(i,j) such that

∑
i,j

∂si

∂z(i,j)
· δz(i,j) ≥ 0 ∀ i (13)

and ∑
i,j

∂si

∂z(i,j)
· δz(i,j) > 0 for some i. (14)

If we can find a set of δz(i,j) satisfying the above equation, the
set of transmission probability z(i,j) cannot be pareto optimal
transmission probabilities. Since there is a total of n users, we
will have n linear equations. The variables in these linear equa-
tions are the small variation δz(i,j) . The number of variable is
the degree of freedom in varying the transmission probabili-
ties, which is

∑n
i=1 |Bi| − m. For a graph with cycle, we have∑n

i=1 |Bi| − m ≥ n. In this case, since we have n positive
linear equations and k ≥ n variables, we can certainly find a
set of δz(i,j) of dimension k that satisfies Eq.(13) and Eq.(14).

Now suppose that a connected graph G satisfies both condi-
tions of this theorem. If we increase the transmission probabil-
ity of one link, we must also decrease the transmission probabil-
ity of some other link due to the constraint that

∑
i z(i,j) = 1∀j

and the fact that there is no cycle in the graph. Hence, the re-
sulting throughput is pareto optimal.
In the case that there is a channel state q(i,j) associated with
each channel, the above theorem provides a necessary condition
for obtaining the Pareto optimal throughput region.

Now, let’s consider a network consisting of only two satel-
lites for simplicity. We investigate how these two satellites can
each set their own prices, p1 and p2 respectively, to achieve
Pareto optimal throughput region. The objective for user i is to
maximize the following function:

Ui(s(i,1) · q(i,1) + s(i,2) · q(i,2)) − s(i,1)p1 − s(i,2)p2 (15)

where
s(i,k) = z(i,k) ·

∏
j∈Ak

(1 − z(j,k)) (16)

The term s(i,1) · q(i,1) + s(i,2) · q(i,2) denotes the throughput of
user i. We first assume that the transmission probability z(i,1)

is independent of the transmission probability z(i,2) for user i.
That is, user i can transmit to both satellites during the same
time slot. The case that user i can send to only one satellite
during a time slot is the same as the case which allows simul-
taneous transmission when z(i,1) + z(i,2) ≤ 1. To increase the
utility function in Eq.(15) by a small amount, user i can in-
crease either s(i,1) or s(i,2). The marginal costs are p1/q(i,1)
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and p2/q(i,2) respectively. Thus, if p1/q(i,1) is strictly less than
p2/q(i,2), user i will transmit to satellite 1 only. To maximize
Eq.(15), the following equation must be satisfied:

∂

∂s(i,1)
Ui(s(i,1) · q(i,1)) =

p1

q(i,1)
(17)

Likewise, if p2/q(i,2) is strictly less than P1/q(i,1), user i will
transmit to satellite 2 only. The following equations must be
satisfied to maximize Eq.(15):

∂

∂s(i,2)
Ui(s(i,2) · q(i,2)) =

p2

q(i,2)
(18)

In the case that p1/q(i,1) = p2/q(i,2), user i can transmit to
either satellite, and the following equation holds:

U ′
i(s(i,1) · q(i,1) + s(i,2) · q(i,2)) =

p1

q(i,1)
=

p2

q(i,2)
(19)

Following the single satellite case, in the m satellites case
we say a set (s(1,1), s(1,2), · · · , s(n,1), s(n,2), p1, · · · , pm) with
s(i,k) defined in Eq.(16) and pj ≥ 0 for j = 1, · · · ,m
is a competitive equilibrium if users maximize their payoff,
and satellites set a price vector (p1, · · · , pm) so as to make∑n

i=1 z(i,j) = 1 for j ∈ {1, · · · ,m}. To test for equilibrium,
given the price set by the satellite, we ask whether a particular
user has the desire to change its transmission strategy. That is,
a user will take the price as fixed, and decide the optimal ac-
tion based on this price. We also make the following channel
diversity assumptions:

1) There does not exist i and j such that q(i,k) = q(j,k) for
all k.

2) q(i,k1) �= q(i,k2) for all k1 and k2.
Assumption 1 implies that no two users have identical channel
to both satellites. Assumption 2 implies that, for each user, the
channel states to different satellites are different. The following
theorem shows the existence of a competitive equilibrium in a
multi-satellites environment.

Theorem 4: With the channel diversity assumption, given
that each user’s utility function Ui is concave, strictly increas-
ing, and continuously differentiable, there exists a unique com-
petitive equilibrium in this network with n users and m satel-
lites.

Proof: We first consider the case that m = 2 and
n = 3 for illustration. Because Vi = U ′

i is strictly decreas-
ing, as the price pj increases, the desired throughput for each
user also decreases, moving closer to a feasible point (i.e.,∑

i∈Aj
z(i,j) = 1). Eventually, the desired throughput meet a

feasible point. This part is the same as the single satellite part.
However, as one satellite decreases or increases the price p1, it
may cause a user, say user 1, to start transmitting to the other
satellite. This happens when p1/q(1,1) = p2/q(1,2). If the user’s
desired throughput is r, it can choose s(1,1) and s(1,2) such that
s(1,1) ·q(1,1) +s(1,2) ·q(1,2) = r. For fixed r, s(1,1) is a continu-
ous function of s(1,2). If p1 is too high, user 1 could start trans-
mitting to satellite 2, thus forcing satellite 2 to change its price
to meet the Pareto operating point. In case that two prices are
decoupled, we have two desired operating points, one for each

satellite, with two control parameters. In case that prices are
coupled, we can control one price and one transmitting proba-
bility to get the two desired operating points. In both cases, we
have two control parameters, thus are able to get to the equilib-
rium point.

For the general n-users case, we know that user i should send
to satellite 2 if the following holds:

q(i,1)

q(i,2)
<

p1

p2
.

Also, from our channel diversity assumption, there can be only
one user such that q(i,1)

q(i,2)
=

p1

p2
.

This implies that at most one user can transmit to both satellites.
Now, we show that the equilibrium is indeed

unique. Assuming there exists two equilibrium points:
(s(1,1), · · · , s(n,2), p1, p2) and (s′(1,1), · · · , s′(n,2), p

′
1, p

′
2), we

will show that there is a contradiction. At a equilibrium point,
we know that two scenarios are possible: 1) no user transmits
to both satellites; 2) there is exactly one user transmitting
to both satellites. First, we consider the case that no user
transmits to both satellites at both equilibriums. Without loss
of generality, we number users such that the following order
holds: q(1,1)

q(1,2)
>

q(2,1)

q(2,2)
> · · · >

q(n,1)

q(n,2)
.

If both equilibrium points have the same graphical representa-
tion (i.e., user transmits to the same satellite in both equilib-
rium), the two equilibrium points have to be identical from the
derivation in the single satellite case. Let’s now consider the
case that two equilibriums points have different graphical rep-
resentations. Specifically, users 1 to k transmit to satellite one,
and users k +1 to n transmit to satellite two for the equilibrium
(s(1,1), · · · , s(k,1), s(k+1,2), · · · , s(n,2), p1, p2). For the equi-
librium (s′(1,1), · · · , s′(l,1), s

′
(l+1,2), · · · , s′(n,2), p

′
1, p

′
2), users 1

to l transmit to satellite one and users l + 1 to n transmit to the
second satellite, where l > k. Since l > k, we have

p1

p2
>

p′1
p′2

.

If p1 < p′1, we have p2 < p′2 from the above equa-
tion. With price p2, the desired throughput at satellite
two is (s(k+1,2), · · · , s(n,2)). Similarly, with price p′2, the
desired throughput at satellite two is (s′(l+1,2), · · · , s′(n,2)).
Since p2 < p′2, we have the desired throughput s(i,2) >
s′(i,2) for all i ∈ {l + 1, · · · , n}. We know that
(s′(l+1,2), · · · , s′(n,2), p

′
2) is at equilibrium in satellite two.

Therefore, (s(k+1,2), · · · , s(l,2), · · · , s(n,2), p2) cannot be in
equilibrium. That is, there does not exist (z(k+1,2), · · · , z(n,2))
such that

s(i,2) = z(i,2)

∏
j �=i,j∈A2

(1 − z(j,2)) ∀i = {k + 1, · · · , n}

and
∑n

i=k+1 z(i,2) = 1. Hence, we have a contradiction here.
If p1 > p′1, we get a similar contradiction.
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Thus far, we have discussed the case that no user transmits to
both satellites for both equilibrium points. If there is exactly
one user transmits to both satellites for the two equilibrium
points, a similar contradiction can be derived. For the other
cases (i.e., one user transmits to both satellites in one equi-
librium while no user transmits to both satellites in the other
equilibrium), we can get similar contradiction. Therefore, the
equilibrium is unique.

Corollary 1: The equilibrium throughput obtained using the
pricing scheme is Pareto optimal.

Proof: From the proof of the Theorem 3, we see there
cannot be any cycle in the graph even when users having dif-
ferent channel qualities. Let the set of users transmitting to
satellite one and satellite two be denoted as A1 and A2 respec-
tively. Since q(i,1)/q(i,2) ≥ q(j,1)/q(j,2) for all i ∈ A1 and
j ∈ A2, thus switching the receiving satellite cannot expand
the throughput region. Hence, the equilibrium throughput is
Pareto optimal.

IV. EXAMPLE

In this example, we consider a communication scenario with
two satellites and three users and try to obtain an exact expres-
sion of the equilibrium point. The channel conditions are given
as follows:

q(1,1) = 0.8, q(2,1) = 0.5, q(3,1) = 0.5
q(1,2) = 0.3, q(2,2) = 0.4, q(3,2) = 0.7

The utility function for user i is given by the following:

Ui(x) = ai · xbi (20)

where a1 = 1, a2 = 2, a3 = 1.5 and b1 = b2 = b3 = 0.5. We
first make the assumption that user 2 transmits to both satellites;
user 1 only transmits to satellite 1 while user 3 transmits to
satellite 2 only. If we can find an equilibrium, we know that our
assumption is correct. Therefore, the following equations must
hold:

U ′
1(s(1,1) · q(1,1)) =

p1

q(1,1)

U ′
2(s(2,1) · q(2,1) + s(2,2) · q(2,2)) =

p1

q(2,1)
=

p2

q(2,2)

U ′
3(s(3,2) · q(3,2)) =

p2

q(3,2)

(21)

We have the following after simplification:

s(1,1) · 0.8 = α1 · p
1

b1−1

1

s(2,1) · 0.5 + s(2,2) · 0.4 = α2 · p
1

b2−1

2

s(3,2) · 0.7 = α3 · p
1

b3−1

2

(22)

where

α1 = (
1

q(1,1)a1b1
)

1
b1−1

α2 = (
1

q(2,2)a2b2
)

1
b2−1

α3 = (
1

q(3,2)a3b3
)

1
b3−1

The set of s(1,1) and s(2,1) such that z(1,1) + z(2,1) = 1 are
related by the following equation:

s(1,1) = (1 −√
s(2,1))2. (23)

Similar relation holds for s(2,2) and s(3,2). Hence, we have the
following equation:

(1 −√
s(1,1))2 · 0.5 + (1 −√

s(3,2))2 · 0.4 = α2 · p
1

b2−1

2 (24)

Since user 2 is transmitting to both satellites, the equation
p1/q(2,1) = p2/q(2,2) holds. We can write s(1,1) and s(3,2) as a
function of p2 only. Substituting s(1,1) and s(3,2) into Eq. (24),
we can solve for p2. From p2, we can get the unique competi-
tive equilibrium for this example, which is given below:

p1 = 1.097, s(1,1) = 0.166, s(2,2) = 0.081
p2 = 0.877, s(2,1) = 0.351, s(3,2) = 0.511

The transmission probability is given as the following:

z(1,1) = 0.407, z(2,2) = 0.285
z(2,1) = 0.593, z(3,2) = 0.715

V. CONCLUSION

In this paper, we investigate how to better utilize the multiple
channels available in a satellite network. Specifically, we use
pricing as a mechanism to control users’ transmission probabil-
ities and exploit different channel qualities to coordinate trans-
mission among users. Hence, the throughput performance of
the system is improved. We also characterize the Pareto op-
timal throughput region for both single satellite network and
multiple satellites network. We show that users’ throughput is
Pareto optimal at the equilibrium price. The characterization of
the Pareto optimal throughput region for multiple channels with
time varying channel states can be a possible direction for the
future research.
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