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Abstract— We designed queue management policies
to enhance the performance of TCP over satellite
networks. Our queue management schemes, Smallest
Window First (SWF) and Smallest Sequence Number
First (SSF) give priority to sessions that have just
opened or traveled across lossy and high delay channels.
Thus, they combat the inherent unfairness of TCP.
Our protocols help slow sessions grow their congestion
windows more rapidly and effectively compete against
other sessions for bottleneck resources. Although our
protocols are useful in other contexts, they are particu-
larly useful in satellite networks. With their high round
trip times (RTTSs), sessions can be severely penalized by
the closure of the TCP congestion window. We show
that our schedulers not only provide increased fairness,
but they also substantially reduce the latency associated
with transmitting short files (e.g., e-mails). SWF doubles
the goodput of lossy sessions over FIFO and provides a
16 % improvement over DRR. It also reduces the latency
of short file transfers up to 40% over DRR.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is to-
day’s most ubiquitous Transport Layer protocols. In
this paper we are interested in enhancing the per-
formance of TCP over satellite networks. Satellite
networks differ from terrestrial networks in a few
significant ways that impact the performance of TCP.
Satellite networks are characterized by high delay,
high bit error rates (BER), and high bandwidth. High
propagation delays slow the growth of the TCP con-
gestion window thus reducing throughput. High BERs
trigger the TCP congestion control apparatus causing
window closures. As a result, TCP performance over
satellite links is typically poor [12].

Many studies relating to TCP have suggested ways
to improve performance in terrestrial and wireless
networks. Some mechanisms by which TCP perfor-
mance can be improved include: split connections [3]

and [20], slow start modifications [2] and [16], and
error handling [4] and [5]. Other researchers have
also considered TCP modification for improving TCP
performance over satellite links; see [1], [7], [11],
[12], and [15]. However, TCP modifications require
a long standardization process and are often slow to
be adopted.

In contrast, rather than modify the TCP protocol,
we attempt to enhance TCP performance by better
engineering the protocols with which TCP interacts.
In particular, we focus on the design of queue man-
agement schemes for improving TCP performance
over shared satellite links (i.e., at the satellite gate-
way). Our queue management policies ensure that all
sessions are treated fairly regardless of their channel
characteristics, despite the fact that TCP is inherently
biased against long delay and lossy sessions.

Queue management is responsible for allocating
bandwidth, bounding delay, and controlling access
to the buffer. We view queue management as being
composed of two independent components: the sched-
uler and the packet admission strategy. The scheduler
selects packets from the queue and passes them to the
physical layer for transmission. The packet admission
strategy controls the admission of packets into the
buffer.

Total latency is comprised of the propagation delay,
the transmission delay, and the queuing delay. The
propagation and the transmission delay characteristics
are largely fixed for a given static network. However,
by controlling which sessions gain access to the
channel, we can control the queuing delay, and thus
the latency, experienced by users. Queue management
policies also play a crucial role in the overall fairness
provided to each session.

By releasing packets to the physical layer, sched-
ulers determine the order in which packets are trans-



mitted. The simplest scheduler is FIFO. It transmits
packets in the order that they are received. Connec-
tions are served in proportion to the share of the
buffer they occupy. Typically, the greediest source,
the source with the lowest RTT and the highest data
rate, receive the lion’s share of the bandwidth. There-
fore, FIFO gateways are not particularly effective at
achieving fairness, unless they are paired with good
packet admission policies. In Fair Queuing (FQ), the
gateway attempts to guarantee each session an equal
or fair share of a bottleneck link. Deficit Round
Robin (DRR) is a particular implementation of a fair
queuing scheme. In DRR, the buffer is sub-divided
into buckets. When a packet arrives, it is hashed into
a bucket based on its source address. These buckets
are then serviced in a round robin fashion [17].

Packet admission policies are vital to the overall
fairness of queue management policies. If packets
from certain sessions are refused entry into the buffer,
these packets cannot be scheduled for transmission.
The simplest packet entry policy, DropTail, admits
packets into the buffer until the buffer is full and
drops those packets that arrive at a full buffer. In
heterogeneous networks, the DropTail policy penal-
izes connections that have high RTTs. These sessions
experience a greater number of packet drops [8].

Random Early Detection (RED) is a popular
packet admission policy designed to reduce conges-
tion within networks [9]. RED drops packets proba-
bilistically based on the average number of packets
in the buffer. RED uses the same drop probability
on all flows. When heterogeneous traffic shares the
same link, using the same drop probability on all flows
can lead to unfair bandwidth allocation. Flow Random
Early Detection (FRED) is a modified version of RED
designed to be fair [14]. FRED is similar to RED
except the drop probability is determined on a per-
flow basis. Flows with a lower average occupancy
have a smaller drop probability than flows with higher
average occupancy rates. Longest Queue Drop (LQD)
is another packet dropping policy [19]. In the case
of LQD, if a packet encounters a full buffer, it is
not necessarily dropped. Instead, a packet from the
flow occupying the greatest share of the buffer is
dropped. LQD policies effectively favor flows with
long propagation delays and penalize those with short
propagation delays.

In this paper we consider queue management

schemes for improving TCP performance over satel-
lite links. Our queue management schemes attempt to
give priority to sessions that have either just started
transmission or have a small window size. In doing so,
our queue management schemes allow these sessions
to open-up their windows more rapidly. In the next
section we describe our queue management schemes,
and in subsequent sections we evaluate their perfor-
mance through NS-2 simulations.

II. THE SWF AND SSF SCHEDULERS

Our queue management policies called Shortest
Window First (SWF) and Smallest Sequence Number
First (SSF) are designed to give priority to pack-
ets from slow sessions. SWF schedules and admits
packets into the buffer based on the source window
size of the packets. Packets arriving from sessions
with smaller source window sizes are considered
to be slower. A session may have a small window
for a variety of reasons, the connection only just
opened, is lossy, or has an especially high RTT. To
assist slow sessions in gaining a fair share of the
bottleneck bandwidth, SWF prioritizes packets from
slow sessions. These packets are sorted to the front
of the queue. Thus, packets from slow sessions are
transmitted without lengthy queuing delays. Schedul-
ing packets based on window size ensures SWF is
sensitive to sessions that suffer from timeout events.
It also allows sessions to initially rapidly open their
congestion windows.

The notion of preemption alone is not enough to
ensure fairness. The buffer’s packet admission policy
must be considered as well. The packet admission
strategy we use is a close approximation of Longest
Queue Drop (LQD). If the buffer is full, the packet
at the end of the queue is dropped to make room for
the newly arriving packet. Since the router’s queue
is fully sorted, the packet that is dropped is the
packet that comes from the source with the largest
window size. It is likely that the source with the
largest window size occupies the largest share of the
buffer, hence, the LQD-like policy. Using window
size, as an indicator of slowness, is useful, especially
in light of studies that maintain TCP connections with
large windows are much more robust to packet losses
than those with small windows [14]. All references
to the SWF scheduler, unless otherwise specified, are
implemented with an LQD-type drop policy.



The SSF scheduler is very similar to the SWF
scheduler, except that with SSF scheduling, packet
sequence numbers are used to determine priority. The
sequence number can be used as an indicator of slow-
ness. Small sequence numbers suggest a connection
has just opened, is traversing a lossy link, or has
a large propagation delay. In an environment with
many non-homogenous sessions, slow sessions simply
cannot transmit packets as fast or as successfully
as their competitors. Like the SWF scheduler, the
SSF scheduler assists slow sessions by aggressively
growing their TCP congestion window. This is ac-
complished by sorting packets with small sequence
numbers to the front of the queue. As before, we
use an approximate LQD policy. When a packet drop
is necessary, the packet with the highest sequence
number is dropped.

There are implementation issues associated with
both SWF and SSF that warrant explanation. The use
of the SWF scheduler necessitates an adjustment to
the TCP header. The TCP header contains a field for
the window size that stores the advertised window size
of the receiver, for flow control purposes. However,
SWF requires a field for the current window size of
the transmitter. Since the size of the advertised win-
dow is only needed when the connection is initiated,
one possibility is to overwrite the window size field
in the header. The other possibility is to create a new
field within the header for maintaining the current
sequence number.

With SSF sequence numbers for persistent sessions
can exceed the length allotted to them in the TCP
header field, at which point, they wrap around. In
addition, in practice, sequence numbers never start at
zero as a security precaution. One possible solution
is for the scheduler to keep track of the number of
packets it has seen from each session and use this
information for scheduling and admissions.

III. THROUGHPUT AND FAIRNESS PERFORMANCE

We perform simulations using the Network Sim-
ulator, NS — 2. In our simulations, we assume that
all sessions use TCP Reno. We consider the perfor-
mance of our schedulers over a variety of different
traffic patterns. The performance of SWF and SSF is
compared to that of DRR with LQD and FIFO with
DropTail. We are most interested in understanding
the behavior of our scheduler in terms of bandwidth

fairness and link utilization. If link utilization is low,
providing a high level of fairness is inconsequential.
Link utilization is simply the system throughput over
the bottleneck bandwidth.

A. Performance with lossy sessions

Here we study the performance of our schedulers
in the presence of a mix of lossy (i.e., high error
rate) sessions and lossless sessions. We consider ten
sessions attempting a persistent file transfer over a
shared 1Mbps bottleneck link. At the end of a 2000
second interval, we measure both aggregate and indi-
vidual session throughput. With ten sessions, ideally,
each session would obtain 10% of the bottleneck
bandwidth. While neither the SWF nor the SSF sched-
uler can guarantee a completely equitable division of
scarce resources, they perform much better than either
FIFO or DRR. See Tables I and II for results when
one of the ten sessions has a packet loss rate of 10%
and 1% respectively. (Our packet size is 1000 bytes
which implies the packet error rates correspond to bit
error rates of at least 10~° and 1075, respectively.)

Notice from Tables I and II that the highest aggre-
gate throughput is obtained by the FIFO scheduler.
However, the throughput of the lossy session using
SWF and SSF is more than double that of FIFO and
5% - 20% greater than that of DRR. This increased
performance for lossy sessions comes at a minimal
decrease to overall throughput.

Lossy sessions perform poorly when FIFO is used
due to the DropTail policy. Packets from lossy ses-
sions are unable to gain entry into the buffer. However,
the reason for FIFO’s unfairness is also the reason for
its higher throughput. The DropTail policy disregards
lossy sessions, which can only transmit a limited
number of packets successfully, and gives priority
to lossless sessions instead, which allows them to
continue increasing their window size and push data
through the network. DRR is relatively more fair to
lossy sessions. If packets from lossy sessions are
awaiting transmission, they will be transmitted in
round robin fashion. Part of the reason DRR performs
well is due to its use of the LQD policy. Under this
policy, lossy sessions always have access to the buffer.

There is a slight decrease in overall throughput
when using the SWF scheduler. SWF gives priority
to lossy sessions that continue to lose packets due to
physical channel characteristics. The losses due to the



Scheduler Total Goodput Goodput of Lossy Avg Goodput
(bps) Session (bps) of Lossless
Session (bps)
SWF 926216 31094 99458
SSF 947261 31331 101770
DRR 951041 26534 102723
FIFO 953099 13453 104405
TABLE I
TEN SESSIONS. ONE SESSION HAS A PACKET LOSS RATE OF
10%.
Scheduler Total Goodput Goodput of Avg Goodput
(bps) Lossy Session of Lossless
(bps) Session (bps)
SWF 924900 94092 92312
SSF 959576 94766 96090
DRR 951845 89960 95915
FIFO 954804 46443 100929
TABLE 1I

TEN SESSIONS. ONE SESSION HAS PACKET LOSS RATE OF 1%.

physical channel, which the scheduler cannot prevent,
limit the number of packets that can be successfully
transmitted. Furthermore, prioritizing lossy sessions
at the expense of lossless sessions, limits the number
of packets that lossless sessions can transmit. Interest-
ingly, when the packet loss rate is 1%, SWF actually
favors the lossy session over the lossless sessions. At
high loss rates, packets are lost frequently leading the
congestion window to close. Thus, the throughput of
the lossy sessions remains constrained and less than
that of lossless sessions. However, when the loss rate
is low, congestion control is not invoked as often. The
lossy session can grow the TCP congestion window
large enough so that there are packets backlogged for
transmission at the gateway, while their congestion
window is still small enough so that packets belonging
to the lossy session receive priority. We also find
that as the number of lossy sessions increases, the
performance of our schedulers decreases as lossy
sessions compete with each other for priority [13].

B. Variable Propagation Delays

In this section, we consider the performance of our
schedulers in the presence of a mix of sessions with
high and low propagation delays. Our setup is the
same as that in the lossy channel case. However, we
now examine the effect satellite traffic with different
propagation delays has on the performance of our
schedulers. In one scenario, we consider sessions with
a round trip propagation delay of one second or half

a second. Table III has the results for the case of
one high delay session and nine low delay sessions.
We also consider a case where a mixture of satellite
and terrestrial traffic share the same bottleneck link.
Sessions have round trip propagation delays on the
order of half a second (the satellite case) and 20ms
(the terrestrial case). See Table IV for the case where
half of the ten sessions are terrestrial.

Notice from Tables III and IV that once again
FIFO achieves the highest overall throughput and SSF
and SWF achieve a slightly lower overall throughput.
However, SSF achieves by far the fairest allocation of
bandwidth. Notice that SSF achieves nearly four times
the throughput of FIFO for the high delay session and
about a 10% improvement over DRR. Although SWF
provides a marked improvement over FIFO in terms
of fairness, its performance is not appreciably better
than that of DRR. A high propagation delay does not
directly imply that the congestion window will close,
rather it suggests that the congestion window grows
more slowly. In the case of SWF, when the buffer
is full, packets from sessions with low propagation
delays will be dropped and their windows will close.
Since SWF schedules packets based on the window
size of the source, it is possible for packets from
sessions with low propagation delays to be sorted to
the front of the queue. Without the external pressure
lossy channels place on the congestion window, low
and high delay sessions will alternate priority leading
to a reduction in overall performance.

Although a session with a high RTT can grow
a congestion window comparable to competing ses-
sions, a session with a high RTT will not have a large
sequence number compared to competing sessions.
Therefore, scheduling based on packet sequence num-
bers expedites the flow of traffic from sessions that
face high propagation delays. SSF is able to distribute
bottleneck bandwidth more equitably than DRR, with
a minimal decrease in overall goodput.

IV. DELAY PERFORMANCE

In this section, we consider the delay performance
of our queue management schemes when used for
short file transfers. Some of the queue management
schemes in use today attempt to combat the unfair
effects of TCP, among them DRR. Earlier, we con-
sidered persistent file transfers. While queue man-
agement schemes like DRR provide a certain degree



Scheduler Total Goodput Goodput of Avg Goodput

(bps) High Delay of Low Delay

Session (bps) Session (bps)
SWE 925262 63057 95801
SSF 948823 95443 94820
DRR 949814 87167 95915
FIFO 953440 14905 104282

TABLE III

TEN SESSIONS. ONE SESSION HAS A RTT OF 1.0S, AND THE
OTHERS HAVE A RTT OF 0.58.

Scheduler Total Goodput Avg Goodput Avg Goodput

(bps) of High Delay of Low Delay

Session (bps) Session (bps)
SWF 916980 64662 118730
SSF 930190 93851 92187
DRR 956950 87613 103780
FIFO 957650 19822 171710

TABLE IV

TEN SESSIONS. FIVE SESSIONS HAVE RTTS OF 0.01S, AND
THE OTHERS HAVE A RTT OF 0.5s.

of fairness in the long run, they are not equipped
to deal with short-term file transfers. The benefits
of fair queuing are not achieved because the session
ends too soon. Short file transfers require only a few
RTTs to complete transmission. However, the RTT is
a function of the queuing delay. Therefore, the queue
management policy has a large effect on the over all
time to transmit a file.

In our simulations, files arrive according to a
Poisson random process with interarrival times that
are exponentially distributed and have a mean of
two seconds. We model a GEO satellite network;
the round trip propagation delay for each session is
half a second. The performance of our schedulers is
evaluated for both different loads as well as different
file sizes by measuring the amount of time to transmit
each file.

Today’s Internet is dominated by numerous short-
lived flows (e.g., e-mail) even though long-term flows
(e.g., MPEG files) actually account for the bulk of
data traffic being exchanged [18]. We simulate the
performance of short and long file transfers using a
mix of 10KB and 100KB files, see Figure 1, as well
as a mix of 1IMB and 10MB files [13]. We compute
the transmission time for files as the percentage of
short files that comprise the load varies (keeping the
total load constant).

In this environment, SSF achieves the smallest de-

lays for short files but large delays when transmitting
long files. This is because with long files, SSF drives
all sessions to have the same sequence number. At
which point, active sessions transmit packets in a
round robin fashion. Under this scheme long sessions
all complete their transmissions at approximately the
same time regardless of when their session began. In
contrast, SWF achieves small delays for short files at
minimal additional delays for the long files.

The time to transmit short files increases for all
schedulers as the percent of the load comprised by
short files increases. In the case of SWEF, the time
to transmit long files also increases. Short sessions
compete with each other for priority. Additionally,
each new short session decreases the relative priority
of long file transfers. Therefore, as the number of
short sessions increases, the delay in transmitting
both long and short files increases. For DRR, the
transmission time stays relatively constant over all
combinations of the load. However, for FIFO, the
transmission time associated with long files actually
decreases. FIFO prioritizes long sessions by default
since they typically have larger windows and occupy
the bulk of the buffer. Therefore, as the fraction of
short files increases, there are fewer competing long
file transfers and FIFO’s performance for long file
transfers improves.

SWF performs substantially better than DRR when
the majority of the load is comprised of large files,
which is in practice true. It provides up to a 40%
improvement over DRR for short file transfers. In
some cases, SWF also has an advantage over DRR
in the transmission of long files. Although, SWF has
relatively poor performance compared to FIFO in long
file transfers, FIFO requires almost 80% more time to
transmit short files. When the portion of short files in
the load is under 50%, SWF’s superior performance
for short files compensates for its performance with
long files.

We performed simulations where short sessions
comprised 5% of the system load. However, we varied
the length of small sessions anywhere from 10KB to
IMB. Large files were 10MB in length. As expected,
improvement in latency is the highest when message
lengths are small (between 10-30KB). As can be
seen from Figure IV, SWF provides as much as 20%
reduction in delay over DRR and 70% reduction over
FIFO. Of course, as the size of short files increases,
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V. CONCLUSION

We designed two new queue management schemes,
SWF and SSF. Our scheduling schemes use novel
metrics for packet scheduling and admission. Unlike
existing queue management schemes, which rely on
the number of packets a session has buffered, we uti-
lize the congestion window size and packet sequence
number in making scheduling decisions. While the
SSF shows marked improvement over schedulers in
certain aspects, it is the SWF that shows a general
increase in the level of fairness provided. SWF treats
lossy sessions fairly and allocates them an equitable
share of bottleneck bandwidth. It doubles the through-
put of lossy sessions in comparison to FIFO and
provides a significant improvement over DRR. SWF
is also fair to short-term files transfers that compete
against persistent traffic. It sharply reduces the latency
experienced by short file transfers in comparison to
existing queue management schemes. We observed as
much as a 40% reduction in delay as compared to
DRR and an 80% reduction as compared to FIFO.
By aggressively growing the congestion windows of
slow session, our queue management policies are able
to reverse some of the bias inherent to TCP.
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