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Abstract

We consider the problem of transmission scheduling of
data over a wireless fading channel with hard deadline con-
straints. Our system consists of N users, each with a fixed
amount of data that must be served by a common deadline.
Given that, for each user, the channel fade state determines
the throughput per unit of energy expended, our objective is
to minimize the overall expected energy consumption while
satisfying the deadline constraint. We consider both a lin-
ear and a strictly convex rate-power curve and obtain op-
timal solutions, based on dynamic programming (DP), and
tractable approximate heuristics in both cases. For the spe-
cial non-fading channel case with convex rate-power curve,
an optimal solution is obtained based on the Shortest Path
formulation. In the case of a linear rate-power curve, our
DP solution has a nice “threshold” form; while for the con-
vex rate-power curve we are able to obtain a heuristic algo-
rithm with comparable performance with that of the optimal
scheduling scheme.

1. Introduction

Increasing data transmission rates provides benefits in
terms of efficiency of the bandwidth utilization and in terms
of range and quality of services offered to the users. How-
ever, sending data at the maximum rate often decreases en-
ergy efficiency. Since many mobile wireless devices are
battery powered, and the energy for transmission is often
a major source of energy consumption, saving energy dur-
ing transmission can lead to a significant performance im-
provement, resulting in smaller batteries or longer battery
lifetimes. Thus, a well designed mobile transmitter must
not only maximize data throughput but also optimize the
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use of resources, effectively cope with fading channel, and
meet operational constraints.

In this paper, we consider the problem of minimizing
the energy expended by a transmitter in a wireless network
serving multiple users within a given amount of time. A
number of realistic wireless networking scenarios can be
modeled in this way. For example, the transmitter can be
a ”backbone” node, which serves as an access point for a
set of end nodes, with limit amount of energy and finite life
time in an ad-hoc network, or a satellite with time-critical
data (i.e., information that must be sent before certain dead-
line).

The communication system considered in this paper con-
sists of a single transmitter sending data to N users, each
user has a fixed amount of data that must be received by a
deadline. Time is assumed to be discrete. During each time
slot, at most one user can be chosen for transmission. Our
objective is to select the user to transmit, and the associated
data rate, so that the total energy consumption is minimized
subject to a deadline constraint. The key drivers behind en-
ergy savings in this setting are : i) varying transmission rate
over the time horizon since, as addressed in [2] and [3], it
is possible to reduce the energy consumption by lowering
transmission power and transmitting data over a longer pe-
riod of time and ii) the use of opportunistic scheduling to
exploit the channel variability, as addressed in [1].

The problem of resource allocation in wireless networks
has received much attention in recent years. In [1], the
authors try to maximize the data throughput of an energy
and time constrained transmitter communicating to a single
user over a fading channel. They also explored the prob-
lem of using the minimum amount of energy to send a fixed
amount of data to a single user by a deadline (i.e., the single
user version of the problem that we address here). In [2],
the authors use a calculus approach to obtain energy effi-
cient transmission policies with arbitrary arrival and dead-
line constraints over a time-invariant channel. In [3], the
authors consider the problem of sending a random number
of packets that arrive in a time interval by a deadline using



the minimum amount of energy. The transmission channel
is assumed to be time invariant in their setup. Other works
that address the similar problem include [9] and [10].

This paper is organized as follows. In section II, we set
up the framework for modeling the minimum energy trans-
mission by a deadline problem. In section III, the minimum
energy scheduling scheme is obtained as the solution of a
shortest path problem when channels are known and time
invariant. Cases where all users have the same deadline and
where different users has different deadline are both stud-
ied. In section IV, we present the minimum energy schedul-
ing scheme for the case where users’ channels are unknown
and the rate-power curve is linear. Heuristic algorithm is
given for the case where user’s rate-power curve is convex.
Section V concludes this paper.

2. Model Description

We consider a system with a single transmitter sending
data to N users through N time-varying channels. The chan-
nel for each user c, c ∈ {1, ..., N}, can be in one of a finite
set Sc of states. The channel process is represented by a vec-
tor Q(t) = (q1(t), ..., qN (t)), where Q(t) ∈ S1 × ... × SN .
The time axis is discretized: channels hold their states for
time slots of length T, with transitions on the boundaries
t = kT . The channels’ states are assumed to be known
at the beginning of each time slot, either through direct
measurement or through a combination of measurement and
prediction. Furthermore, we assume no correlation between
channels of different users. Each user has an amount of data
that must be transmitted by a deadline. The transmitter con-
trols the consumed energy by adjusting the rate allocation
vector Γ(t) = (µ1(t), ..., µN (t)), subject to the constraints
that only one user can transmit in each slot and that all of
the data must be transmitted by the deadline. The rate per
time slot assigned to the user j at time slot k is µjk. For
any given state qjk of the channel j at time slot k, there is
a rate-power curve f(µjk, qjk) representing the amount of
energy required to transmit at rate µjk when the channel is
in state qjk.

In this paper we address two cases of rate-power curves.
The first one is when f(µjk, qjk) is linear in µjk

qjk
, so that qjk

can be interpreted as the rate obtained per unit of consumed
energy. This kind of curve is an accepted assumption in the
low SNR regime or for ultra-wideband transmissions. The
second case is when f(µjk, qjk) is strictly convex in µjk

(see Fig. 1). The convexity is a reasonable assumption due
to the following two factors. First, the Shannon capacity for
an AWGN channel is a logarithmic function of the expended
energy; second, under a fixed modulation scheme, through-
put has a linear relation to the expended energy, and since
the curve could represent a set of coding schemes, with a
power limitation, the curve becomes piecewise linear and

convex. The convexity reflects increasing costs in signal
power with each incremental increase in transmission rate:
this makes the spreading of the service over more time slots
less energy costly than concentrating it on a single slot.

The goal of this paper is to find a transmission schedule
that minimizes the expected consumed energy, subject to a
constraint on the minimum amount of data to serve for each
user and a deadline by which it must be transmitted. We
consider the time window constraint composed by K time
slots, K ≥ N . The optimization problem becomes

min E


 N∑

j=1

K∑
k=1

f(µjk, qjk) · τjk


 (1)

subject to the constraint that at least the initial amount of
data dj for each queue is served within a finite time window:

K∑
k=1

µjkτjk ≥ dj ∀j = 1, ..., N (2)

N∑
j=1

τjk ≤ 1 ∀k = 1, ...,K (3)

where τjk is equal to 1 if the queue j has been served during
the time slot k, 0 otherwise. The inequality (2) expresses
that the service of all the users has to be completed within
the frame of K time slots, while (3) that at most one user
per slot can be served. For the remainder of this paper, if
not otherwise specified, we will also assume dj = d for all
users.

rate

power
improving
channel
conditions

q2 q3q1

Figure 1. Set of rate-power curves f(µjk, qjk) for users

1, 2 and 3 at time k.

3. Known Channel Quality

Let us assume that the channels’ quality is completely
known, namely qjk is known for all the users and all the
time slots. For each user j, the rate-power curve f(µjk, qjk)
is then a family of convex curves in µjk indexed by time:

f(µjk, qjk) = fjk(µjk)



The problem (1) can be restated as minimizing

N∑
j=1

K∑
k=1

fjk(µjk) · τjk (4)

subject to the constraints (2) and (3). For the optimal energy
minimization policy, we can see that constraint (3) will be
met with equality due to the convexity of the rate-power
function.

Let us assume that the channel is time invariant. The
channel quality for each user j is equal to a constant value
Qj . Knowing the fading state is equivalent to knowing the
rate-power curve for each user; a constant fading state im-
plies that each user maintains the same rate-power curve for
all the time considered. This is a realistic assumption for
the slow fading wireless channel [4].

To solve the optimization problem stated in Eq.(4) with
the time invariant channel assumption, the scheduler must
decide: 1) to which user a particular time slot should be
allocated and 2) how much power to spend. Due to the
time invariant channel, the time at which a single user is
served, and therefore the order with which users are served,
becomes irrelevant; note that this holds only if all the users
have the same deadline. Also, given that m slots were as-
signed to a particular user with rate-power curve f(µ), to
send d amount of data in m slots with minimum energy, the
optimal policy is to consume an equal amount of power in
each of these m time slots. This can be shown easily us-
ing the convexity of the f(µ). Hence, to find the optimal
energy minimization policy, we need to consider only one
factor: the number of time slots allocated to each user.

Since the time horizon considered here is finite, we can
formulate this energy minimization problem into a deter-
ministic shortest path problem. Due to the irrelevance of the
service order, we assume that the scheduler serves a user in
consecutive time slots until all data of that user are trans-
mitted (i.e., user 2 will not be served until all the data of
user 1 are sent). The state variable xn is then defined to
be the time at which the scheduler finishes serving user n.
The state space, denoted here as Xn, is therefore a finite
set: indeed, xn can only assume integer values within the
set {n, · · · ,K − (N − n)}. The value of xn cannot be less
than n because n users cannot be served using less than n
time slots, which is result of the fact that at most one user
per time slot can be served; similarly, xn cannot be greater
than K−(N −n) since sufficient number of time slots (i.e.,
N − n time slots) must be reserved to finish the data trans-
mission for the remaining N − n users. At any state xn a
control 1 wn decides how many time slots will be used to
serve the next user, the (n+1)st, and can be associated with
a transition from the state xn to the state xn+1. This transi-

1In the time-varying channel formulation the decision variable is un

and represents which user is served

tion has a cost. If each user has an amount of data d to trans-
mit, the cost of a transition from the node xn = i to the node
xn+1 = j is the energy required to serve the (n + 1)st user
over j − i time slots, i.e. f( d

j−i , Qn+1), where the function
f is the considered rate-power curve, the first component is
the rate required to transmit the amount d of data over j − i
time slots and Qn+1 is the channel quality of the (n + 1)st
user. Notice that, given a state xn, the effect of using a
certain number of slots to serve the next user is perfectly
predictable because the channel is constant. Such a finite-
state deterministic problem can be equivalently represented
by a graph G as in Fig. 2, with the following properties:

• The graph is composed of N stages; the generic stage
n corresponds to the state space Xn, namely the nodes
of the stage n represent the set of feasible values that
xn may take.

• The arcs correspond to transitions between states at
successive stages, and each arc has an associated cost
equal to the cost of the represented transition; the
cost of transition towards the nth stage, from a node
xn−1 = i to a node xn = j, represents the additional
energy consumption to serve the nth user in j − i time
slots. At the state xn = j, n users have been served
over j time slots.

• An initial state at which no user has been served and
no time slots has been used is connected to every state
of the first stage. The cost of each arc is the energy
required to serve the first user using t time slots, with
t ∈ {1, ...,K − N + 1}.

Theorem 1. Given a graph G built according to the pre-
sented procedure, the shortest path from the initial state to
the last stage represents the optimal solution to the opti-
mization problem (1) in case of time-invariant channel.

Proof. The graph includes all of the feasible solutions to
the scheduling problem. Each arc from one stage to the
next one represents the service of an additional user using
a certain amount of time, which determines the energy cost
of that transition. A path is a sequence of arcs, each one
associating a certain amount of time slots to the service of
each user: at the end of each path, all the N users have been
served using all the K time slots available2, and the sum of
the arc weights is the total cost of that particular scheduling
associated to that path. The optimal cost is clearly achieved
applying the shortest path algorithm to the graph.

Notice that i) the procedure used to generate the graph
G includes all the feasible solutions and excludes all the
infeasible ones, namely all the solutions not fullfilling the

2Since we consider the general case of convex rate-power curve, ex-
ploiting all the available time is a necessary condition of optimality
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Figure 2. A graph G generated considering N users with

a deadline of K time slots; f( d
K−(N−1) , Q1) is an ex-

ample of cost associated to a transition, namely it is the

energy consumption to serve the first user over the first

K − (N − 1) time slots.

deadline constraint; the generic ith user cannot be served
in such a way that the total amount of time spent to serve
i users exceeds K − (N − i) time slots, otherwise the ser-
vice of the remaining users could not be completed ii) the
particular order with which users are served does not affect
the result of the optimization problem, since all the users
transmit on a constant channel and have the same deadline;
the optimal scheduling is a set of frames associated with the
users, and the service of each user over the number of time
slots specified by a frame does not change depending on the
particular time slot at which the service is offered. Point ii)
is no longer true if users have different deadlines, because in
this case the set of feasible solution is affected by the order
of the nodes.

The scheduling algorithm presented in Theorem 1 deals
with a single deadline and the same amount of data d for all
the users. It is possible to extend this result to the case of
multiple deadlines. Here, we consider only multiple dead-
lines that are feasible (i.e., there exists at least one schedul-
ing scheme that will meet all users’ deadlines). This mul-
tiple deadlines problem can be formulated into the shortest
path problem in the following two steps:

1. Order the service of the users on a earliest deadline first
basis

2. Build a graph G according to the procedure previously
proposed, and associate a weight equal to ∞ to those
arcs of the graph G that do not fulfill the deadline con-
straints. Specifically, consider the transition from the
node xn = i to the node xn+1 = j: if the deadline for

user (n+1), say tn+1, is less than j (i.e., user (n+1)’s
deadline is not met), we will assign an infinite weight
to that transition.

We call the obtained graph with the above modified pro-
cedure Gm. It is clear that the shortest path algorithm will
avoid all the paths in which one or more arcs has infinite
weight, namely the paths that do not meet the deadlines.
While for the scheduling algorithm of Theorem 1 the or-
der with which users are served does not affect the perfor-
mance in terms of energy consumption, in the case of multi-
ple deadlines the service order matters. However, constraint
(3) will still be met with equality (i.e., the transmitter will
not be idle during any time slot). Also, given that m time
slots were allocated to user i, the transmitter will consume
an equal amount of energy in each of the m time slots. The
following theorem shows the existence of an optimal policy
using the procedure described above.

Theorem 2. In the case of multiple deadlines and time-
invariant channel:

a) the set of feasible solutions to the optimization prob-
lem (1) obtained ordering users on a earliest deadline first
basis still includes the optimal solution

b) the optimal solution is achieved applying the Shortest
Path formulation on the graph Gm as stated in Theorem 1.

Proof. The ordering operation on a earliest deadline first
basis generates the set of all feasible solutions. It is straight-
forward to see that any other feasible scheduling scheme
that meets all deadline constraints can be transformed to the
earliest deadline scheme. Since we are considering only fea-
sible multiple deadlines and the number of states is finite,
there exists an optimal solution to the shortest path prob-
lem.

In this section, for simplicity, we assume that each user
has an equal amount of data that needs to be served by the
transmitter. However, the previous two theorems hold even
when different users have different amount of data to be
served by the transmitter.

4. Minimum Energy Scheduling with a
Stochastic Channel Process

We now examine problem (1) with a stochastic channel
process. Here, the channel state of each user is a random
process over time but is assumed to be known at the begin-
ning of each time slot; i.e. qjk is assumed known at the
beginning of time slot k for each user j but is unknown
for future time slots. The channel state of each user is as-
sumed independent of other users and is also independent
over time. First we consider a linear rate-power curve and
then in the next section investigate the more general case of
a convex rate-power relationship.



4.1. Linear Rate-Power Curve

The power expenditure is assumed to be a linear func-
tion of the transmission rate, i.e. f(µjk, qjk) = µjk

qjk
. With

a linear rate-power curve it can be shown that it is optimal
for the transmitter to simply transmit the entire data of a
user in just one slot. The reason lies in the linearity of the
cost function (the expected cost is linear in the amount of
data). The scheduling policy is then to choose the “best slot”
in some statistical sense depending on the present channel
conditions and the time left until the deadline. The above
argument holds only for the linear rate-power curve. In gen-
eral for a convex rate-power curve the optimal solution may
serve a user over multiple time slots. We treat the convex
rate-power curve case in Section 4.2.

We begin by first presenting an optimal on-line policy
based on dynamic programming (DP) and then compare the
performance of various simple heuristic policies. For sim-
plicity we assume a constant amount of data d for each user.
The arguments that follow can be easily extended to the
case with variable data for the users. As each user is served
within a single time slot, the value function for the DP recur-
sion just depends on the number and the channel conditions
of the remaining users. Let Jk(nk, q

k
) be the cost of hav-

ing nk users remaining to be served at time slot k, where
q

k
is the vector whose component (qj)k is the channel state

of user j at time slot k. The recursive DP equation for this
problem can be written as,

Jk(nk, q
k
) = min

uk




N∑
j=1

d

qjk
Ij(uk) + J k+1(nk+1)




(5)

where uk is the decision taken by the server at time k (i.e., if
a user j is served uk = j), nk+1 is the number of remaining
users after the decision (nk+1 = nk if no user is served,
otherwise it equals nk−1), I is the indicator function whose
form is

Ij∗(uk) =
{

1, if uk = j∗

0, otherwise

and

J k+1(nk+1) = E
[
Jk+1(nk+1, qk+1

)
]

(6)

is the expected future cost of the decision. To complete the
recursion, the termination condition is given as,

J K+1(nK+1) =
{

0, nK+1 = 0
∞, nK+1 > 0

where an infinite cost is imposed if there are unserved users
remaining after time slot K.

Theorem 3. For the multi-user stochastic channel scenario
with a linear rate-power curve, the optimal on-line policy
that minimizes the expected energy expenditure is a thresh-
old policy of the form:

uk =
{

idle if d
qmax,k

> αk

qmax,k otherwise

where

αk = J k+1(nk) − J k+1(nk − 1) (7)

is a threshold that can be easily computed off-line, and
qmax,k is the best channel among all the channels associ-
ated with the remaining users at time k.

Proof. During each time slot the policy either serves one
user or does not serve any user. This implies that the value
function (5) can be written as,

min


min

uk∈U




N∑
j=1

d

qjk
Ij(uk)


 + J k+1(nk − 1),J k+1(nk)




(8)

where U is the set of users still waiting to be served.
J k+1(nk) is the expected future cost when all the users are
delayed (nk+1 = nk) while J k+1(nk − 1) is the expected
future cost when all but one user is delayed (nk+1 = nk−1).
On the other hand, the cost for consuming energy at time
k is d

qj∗k
, where j∗ is the selected user. The user that

minimizes the quantity d
qj∗k

is simply the one with the
best channel state among the set of remaining users. This
choice is also justified by the fact that users have iid chan-
nel conditions and the only objective is to reduce the num-
ber of remaining users using the minimum amount of en-
ergy. Thus, the total cost of serving this user at time k is

d
qmax,k

+ J k+1(nk − 1). To satisfy (8), the optimal policy
transmits on the best channel among the remaining users if

d

qmax,k
+ J k+1(nk − 1) ≤ J k+1(nk) (9)

where the left side represents the cost for serving one user,
the one with the best channel, while the right side represents
the cost of delaying all the services. The inequality (9) is
equivalent to

d

qmax,k
≤ αk (10)

where αk is defined as in (7). Thus the threshold is equal to
the difference between the expected future cost of delaying
all nk transmissions or serving one user and delaying only
nk − 1 transmissions. Clearly, if the cost of serving a user
during the current time slot is less than this difference, then
it is better to serve a user during this slot, otherwise it is
better to delay all transmissions.



The optimal policy is a threshold policy that requires the
(pre) computation of the threshold for each time-step. To
compare the performance of the optimal solution, we now
present simple heuristics that are based on the solution of
the optimal stopping time problem as described in [6]. No-
tice that the problem we considered with only a single user
reduces to a simple optimal stopping time problem. With
multiple users, however, optimal stopping time solutions
cannot be directly applied as it is possible that more than
one user would have the same stopping time. The heuristic
policies that we consider are as follows.

• OptStop Max: This policy calculates the optimal stop-
ping time independently for each user, fixing the last
time slot (the Kth slot) as the deadline for all the users.
If two or more users have the same optimal stopping
time the policy serves the one with the best channel.
When the number of the remaining users is equal to
the time slots remaining until the Kth slot, a greedy
algorithm is applied that transmits in each slot the user
with the best channel among the remaining users.

• OptStop Rand: This policy is similar to OptStop Max
except that it solves the collisions randomly.

For comparison, we can also consider the optimal algo-
rithm that assumes complete future knowledge of the chan-
nel state evolution. While such knowledge is usually not re-
alistic, the optimal solution to the scheduling problem with
full knowledge provides a lower-bound on the optimal “on-
line” policy presented earlier. It also shows the additional
energy cost associated with the lack of such knowledge of
the channel state.

Optimal “off-line” algorithm: Consider a bipartite graph
with one set of nodes (inputs) representing the N users and
the other set of nodes (outputs) representing the K time
slots. As the channel state of each user is known for all
the time slots, we can obtain the transmission energy re-
quired to serve a user in a particular time slot. Let the edge
connecting the input node j (user j) with the output node
k (time slot k) have weight equal to cjk, where cjk is the
energy required to serve all the data of user j in time slot k.
Thus for each user j we have K edges connecting to each
time slot and, as the channel state is known, the weight of
each is also known. Its obvious now that the optimal policy
is simply a Minimum Weight Matching applied to the above
graph.

Simulation Results

In Figure 3 we compare the performance of the optimal
on-line algorithm with the heuristic algorithms previously
explained. The average is obtained generating 500 differ-
ent channel state trajectories for each value of the window
constraint from 16 to 76. It can be noticed that the optimal

off-line policy is obviously a lower bound. The best perfor-
mance possible is represented by the optimal on-line policy
which turns out to be very close to the ideal performance
of the system represented by the lower bound. When K
is large, the performance of the stopping-time heuristics is
very close to the optimum since the probability of collision
between the calculated optimal stopping times is low. A
worse performance is expected when the probability of col-
lision increases, namely when the time window constraint is
shorter. In this case, the strategies to solve collisions charac-
terize the heuristics’ sub-optimality. Notice that the perfor-
mance of OptStop Max is very good even in the short term.
However the performance of OptStop Rand worsens but this
is not surprising for a policy where collisions are randomly
solved instead of choosing the best channel.

Let us focus now on a single channels’ state trajectory for
the previous setting. The scenario consists of K = 24 time
slots. In Figures 4, 5 and 6 we compare the transmission
schedule obtained by the optimal on-line policy and the two
heuristics. On each figure the line representing the thresh-
old between saving or consuming energy is reported. No-
tice that the two heuristics have exactly the same threshold,
since it is calculated in the same way (optimal stopping time
strategy), and the difference in the policies is determined by
the way collisions are solved. While OptStop Max solves
collisions transmitting on the best channel among those eli-
gible to be served, the OptStop Rand chooses randomly. At
each time slot, all those users whose channel is above the
threshold are eligible to be served: in the case of the optimal
on-line policy and OptStop Max the user with the best chan-
nel is selected; in the case of OptStop Rand the user to serve
is randomly selected. If all the channels associated with the
remaining users are under the threshold no user is served.
Note that, since OptStop Rand does not serve the user with
the best channel among those eligible to be served, we show
the quality of the used channel in Figure 6, which may not
be the best one (only whenever no user is served the best
channel is shown). It can be noticed that OptStop Rand im-
mediately under performs at the first time slot where it does
not transmit using the best channel.

Finally notice, that the threshold of the optimal on-line
policy is a function of the number of the remaining users
and this intrinsically forces the system to respect the delay
constraint, thereby, serving all the users by the short term
deadline. In contrast, the threshold of the two heuristics is
calculated for each user in isolation. While this leads to
an easier pre-computation phase it may lead to situations in
which there are not enough slots remaining to exploit the
channel variation over time. To satisfy the deadline con-
straint, if the residual time in terms of time slots is equal
to the number of remaining users, the threshold is no longer
considered and a greedy service is applied. In Figure. 6, this
can be observed for the policy OptStop Rand in the last two



time slots.
The computation of the optimal on-line policy turns out

to be quite efficient. However, when the number of users is
large (more than 100) it can be substantively slower than the
heuristics. In particular, the pre-computation phase to calcu-
late the threshold is the most critical compared to the sim-
pler heuristic algorithms, where a threshold for each user
in isolation or a search for the best channel over few time
slots has to be implemented. In contrast, the heuristics are
slightly more complicated during service because they have
to manage the collisions.
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4.2. Convex Rate-Power Curve

In this section, we consider the case of a convex rate-
power curve, i.e. Pjk = f(µjk, qjk), where f() is con-
vex in rate. While the linear rate-power curve implies that
there is no limit on the amount of energy that can be con-
sumed during a single time slot and so there is no limit on
the amount of data of a single user that can be served, the
convex curve introduces a smooth power limitation. Theo-
retically any user may still be served within a single time
slot but each increment in the data rate produces an increas-
ing additive cost of signal power. Thus it might be better for
the server to spread the service of a single user over multi-
ple slots. The problem is now clearly more complex as we
must also keep track of the amount of data that remains to
be transmitted by each user. This means a state space whose
vectorial component at time k is (dk, q

k
), where each com-

ponent j of dk is the residual amount of data at time k for
user j and each component of q

k
is the corresponding chan-

nel state.
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Figure 4. Transmission schedule obtained by the

optimal on-line policy
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Figure 5. Transmission schedule obtained by Opt-
Stop Max
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Figure 6. Transmission schedule obtained by Opt-
Stop Rand



A dynamic programming formulation as in (4.1) can be
formulated. The cost function satisfies the following recur-
sion,

Jk(dk, q
k
) =

min
uk

0≤µukk≤duk




N∑
j=1

f(µjk, qjk)Ij(uk) + J k+1(dk+1)



(11)

where uk is the decision taken by the server at time k, µukk

is the transmitted amount of data of the selected user, the
summation is the actual cost of the decision (0 if no user is
served and f(µjk, qjk) if user j is served) and

J k+1(dk+1) = E
[
Jk+1(dk+1, qk+1

)
]

(12)

is the expected future cost of the decision. The termination
condition of the recursion imposes an infinite cost if one or
more users still have data to be sent after the deadline:

J K+1(dK+1) =
{

0, dK+1 = 0
∞, otherwise

This problem does not allow a semi-analytical solution
as in (4.1) where we are able to calculate a threshold and
then implement an optimal on-line policy. In this case, we
can numerically solve the recursion. The set of rate-power
curves that we consider here are the standard curves for
Shannon capacity

µjk(cjk, qjk) = log(1 + qjkcjk) (13)

where, as usual, cjk is the power per time slot required for
user j at time slot k to transmit µjk units of data and qkj is
the corresponding channel state depending on the received
signal-to-noise level for channel j. Since the optimal so-
lution is the result of an intensive numerical computation,
we also propose a practical and computationally less inten-
sive heuristic and compare its performance with the optimal
solution. The heuristic we propose is inspired by the single-
user infinite-horizon version of the minimization problem
addressed in this section.

Infinite Horizon Heuristic
For the moment, let us ignore the deadline constraint and

focus on a single user. We want to minimize the expected
consumed energy guaranteeing a certain long term through-
put to the user. Therefore, during each time slot, the trans-
mitter need to choose a data rate based on the channel state
of that time slot. The formulation of this problem is given
by the following:

min
∑

q

P(q)
exp(µq) − 1

q

s.t.
∑

q

P(q)µq = LTRG (14)

where the optimization is taken over the values of µq, the
data rate chosen when the channel is in state q. The func-
tion to be minimized represents the expected energy cost
averaged over all possible discrete channel values, and the
constraint represents the average long-term rate obtained.
P(q) is the probability mass function of the channel state,
and LTRG is the Long Term Rate Guarantee. The sum
in the objective function is a simple expectation of the con-
sumed energy: for each possible value of the channel state q,
the energy consumption to transmit the amount of data µq is
evaluated by inverting the convex rate-power curve of (13);
each amount of energy is then weighted with the probabil-
ity of the channel state, and the sum gives the expected en-
ergy consumption. The solution of this optimization prob-
lem will give us, for any channel state q, the value µq of
the data rate to offer, in order to meet the long term rate
guarantee, subject to minimizing the expected consumed
energy. The nonlinear optimization problem can be com-
puted efficiently because the objective function is convex
in the energy variable for every fixed channel state q. Us-
ing standard Lagrange multiplier techniques as in [7], it can
be shown that a solution is optimal if and only if the rate
is allocated according to the constraints so that the deriva-

tives P(q)
d(

exp(µq)−1
q )

dµq
are equalized to some value γ∗ for all

channel values q that receive some service, while all chan-
nel values receiving zero rate have derivatives greater than
γ∗. Given the convex rate-power curve (13), the solution
to (14) is:

µq =
LTRG − ∑

q′∈Q P(q
′
) log

(
q
′

P(q′ )

)
∑

q′∈Q P(q′)
+ log

(
q

P(q)

)

(15)

for channel state values q ∈ Q. Initially the set Q includes
all channel state values. The above equation produces the
optimal rate allocation whenever the resulting µq are non-
negative. If any value is negative, it is set to zero, and the
corresponding channel state is removed from Q. The calcu-
lation is repeated at most Nq−1 times, being Nq the number
of possible channel state values.

Now, to solve the multi-users problem with convex rate-
power curve, the transmitter has to make the following two
decisions at the beginning of each time slot: 1) to whom the
time slot should be allocated. 2) the transmission rate for a
particular time slot given this time slot is already assigned
to a user. The idea behind our heuristic algorithm for the



multiple users problem is to address the first question by se-
lecting the user with the best channel state, and address the
second question by applying the rates obtained for the single
user problem (i.e., the optimal solution to (14) with appro-
priately chosen LTRG parameter). The LTRG parameter is
updated at each time slot on the basis of the amount of data
already served and the remaining time before the deadline.
Specifically, our heuristic algorithm consists of the follow-
ing three steps: i) At the beginning of each time slot, among
users with remaining data, the one with best channel state
will be chosen to be served ii) The selected user is consid-
ered in isolation in computing its allocated data rate accord-
ing to (15). The LTRG parameter can be obtained from the
ratio of the amount of data that remains to be served and
the number of time slots left iii) If the number of remaining
time slots is equal to the number of remaining users to be
served, a greedy policy is applied.

In step (ii) above, the allocated rate is the optimal solu-
tion to the optimization problem (14). However, a minor
subtlety arises here. The channel state distribution used in
(ii) is not simply that of a single user in isolation. Rather,
since each user is chosen for service only when it has the
best channel among all users, the distribution used in (14)
must be adjusted accordingly. In particular, at each time
slot the observed channel is the maximum among n chan-
nels, where n is the number of users remaining to be served,
with probability 1

n , and is zero with probability n−1
n , since

the channel is not considered for transmission in that time
slot.
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Figure 7. Average consumed energy vs time window con-

straint; Numerical Solution of the DP formulation and In-

finite Horizon Heuristic for the multi-user, fading channel

scenario with nonlinear rate-power curve.

Comparing our heuristic with the optimal solution, we
see that the two results are very close as the time horizon
increases. As an example, the numerical solution of the op-
timal on-line problem is obtained for N = 3 users. The

channel throughput per unit of energy qjk is integer valued
and Rayleigh distributed with a mean of 2 during each time
slot. The amount of data to serve is integer valued with the
unit as minimum granularity. Their initial values are 2, 1
and 3, respectively for the three users. The average con-
sumed energy is presented in Fig. 7, obtained by generating
1000 different channel state trajectories for each value of
the time window constraint. The time window constraint
length is moved from 6 to 450 time slots. The results of the
optimal policy are compared with the results of the infinite
horizon heuristic. As expected, as the deadline constraint
increases, the better is the heuristic’s performance.

The numerical approach, which is a brute-force solution
of the dynamic programming formulation, is orders of mag-
nitude slower than the heuristic. For this reason we limited
the above example to just 3 users. However the heuristic
could be easily implemented for any number of users as its
complexity is linear in the number of users.

5. Conclusions

In this paper we consider the problem of scheduling
transmissions over a wireless channel subject to a deadline
constraint. In principle, it may be possible to satisfy dead-
line constraints by simply increasing the data rate. How-
ever, higher data rates consume more energy; and typically
the required energy is a convex function of the data rate.
Therefore, a key objective is to minimize the total energy
consumed subject to satisfying the deadline constraints. To
that end, we wish exploit two aspects of wireless transmis-
sion. First, since energy is convex in data rate, we seek
transmission schemes that use the lowest possible data rate
while satisfying the deadline constraints. Second, since the
wireless channel is time-varying, we exploit opportunistic
scheduling by attempting to transmit at times that the chan-
nel conditions are good.

Specifically, we consider a single wireless transmitter
with N users. Each user has a fixed amount of data that
must be transmitted by a deadline. We consider both a linear
and a strictly convex rate-power curves and obtain optimal
solutions, based on dynamic programming, and tractable
approximate heuristics in both cases. When the channel
is time-invariant, we obtain an optimal solution based on
a Shortest Path formulation. When the channel is time-
varying and the rate-power curve is linear, our dynamic pro-
gramming solution has a nice ”threshold” form. While, for
the strictly convex rate-power curve we are able to obtain a
heuristic algorithm that performs well when compared to a
”brute-force” implementation of the dynamic programming
solution.

The problem of scheduling wireless transmissions with
a deadline constraint is very important for supporting both
wireless data services as well as traditional voice services;



yet, understanding of this complex scheduling problem re-
mains very limited. In this paper we address a simple
version of the problem with fixed amounts of data and
known deadlines. Important extensions to this work include
scheduling transmissions with stochastic traffic; obtaining
optimal solutions when the channel is time-varying; as well
as supporting different classes of traffic (e.g., with different
deadlines or priorities).
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