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Abstract— In a wireless network, blocking probability of
connection-oriented traffic depends on the transmission radius of
the nodes and the channel assignment scheme. In this work we
study these two aspects for simple wireless networks. Specifically,
we present blocking probability analysis for a wireless line net-
work with random channel allocation to the incoming calls. Based
on the expressions derived from our model, we then study the ef-
fect of transmission radius of the nodes on blocking probability.
We show that for a line network using a larger transmission ra-
dius substantially reduces the blocking probability of the calls;
while for a more dense grid network using a smaller transmission
radius is better. Finally, we present a novel non-rearranging chan-
nel assignment algorithm for multi-hop calls in a general network.
Our algorithm significantly reduces call blocking probability when
compared to other algorithms.

I. I NTRODUCTION

A multi-hop wireless network is a cooperative network where
data streams may be transmitted over multiple wireless links
to reach the destination. The network structure depends on the
transmission radius of the nodes and can be adjusted by varying
the transmission power. Recently, there has been substantial re-
search work on Quality of Service (QoS) guarantees for ad-hoc
networks with various performance metrics [1], [2], [3]. In this
work, we consider blocking probability as a performance mea-
sure and explore its dependence on the transmission radius of
the nodes. In the rest of the paper a channel refers to a time slot
in a TDMA system and a distinct frequency band for a FDMA
system.

This paper addresses the following issues. We first present an
exact blocking probability analysis for a single channel wire-
less line network. We then construct a model to compute the
blocking probability in the multiple channel case for the ran-
dom channel assignment policy. Using our model we study the
following tradeoff: A smaller transmission radius of the nodes
incurs less interference on each hop but the calls have to hop
through many nodes to reach the destination. As the nodes not
only serve the external call requests but also the internal re-
quests from other nodes, multi-hopping increases the internal
load in the network. On the other hand a larger transmission
radius reduces the number of hops of a call but increases the
interference constraints at each hop. We examine this trade-
off between increased interference and increased internal load
in relation to its effect on blocking probability. For analyti-
cal simplicity we focus on two network topologies: the line
and the grid network. We show that in a line network larger

transmission radius can in fact substantially reduce the block-
ing probability of the calls. However, for a grid network with an
underlying more dense node topology we show that it is more
desirable to use smaller transmission radius. This suggests that
for networks with low node density the effect of increased inter-
ference due to a larger radius is offset by a reduction in the total
effective load experienced by the nodes. Finally, we address
the issue of dynamic channel assignment to the incoming calls
given the network link structure (i.e. given the transmission
radii of the nodes). Note that for multi-hop calls a channel must
be allocated on each hop such that the wireless constraints are
satisfied. Here, we develop a novel non-rearranging algorithm
(Section V) and compare its performance with other algorithms
namely the rearrangement, random and first fit algorithms.

The problem of dynamic channel assignment has been exten-
sively considered in the context of cellular networks ([11], [12],
[13] and references therein). However there are significant dif-
ferences between the two networks. For example, in a cellu-
lar network the communication is with the nearest base-station
over a single wireless link; whereas in a multi-hop wireless net-
work calls hop through various links to reach the destination.
This imposes additional complexity as non-conflicting chan-
nels must be allocated on the wireless links along the source-
destination path. Another difference between the two networks
is that a cellular network has a regular structure which makes
the set of interfering cells fixed; whereas in a multi-hop wire-
less network the set of interfering nodes depends on the node
topology and their transmission radii.

Steady state blocking probability as a performance metric for
connection-oriented traffic has been widely used by researchers
in studying various other networks. Some of this work in-
cludes [16], [17] in all-optical networks; [7], [8], [9], in circuit-
switched networks; and [10], [13], in cellular networks. Block-
ing probability relates to the system throughput in the follow-
ing sense. Let the system throughput be defined as the set of
arrival rates such that the steady state average blocking proba-
bility is less than some thresholdβ. Consider two transmission
and channel assignment schemes such that for all arrival rates
Scheme 1 has a lower steady state average blocking probabil-
ity than Scheme 2. This implies that Scheme 1 has a larger
throughput than Scheme 2. Thus in this sense reducing block-
ing probability leads to an increase in the supportable load for
a given thresholdβ.

The rest of the paper is organized as follows. In Sec-
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tion II, we describe the wireless interference model. Section III
presents blocking probability analysis for a line network. In
Section IV, we consider the effect of transmission radius on
blocking probability in a line and a grid network. In Section V,
we present channel assignment algorithms for a wireless net-
work and simulation results that compare their performance.
Finally, Section VI concludes the paper.

II. W IRELESSMODEL

We assume a disk model of interference and define the trans-
mission radius of a node, sayT , as the radius of a circle cen-
tered atT outside which the signal due to nodeT ′s transmis-
sion is negligible. Within the transmission radius of nodeT
we assume complete interference of the signal transmitted by
T with other ongoing transmissions and no interference outside
the circle. We say that a direct wireless link exists between any
two nodes if they lie within transmission radius of each other.
All nodes in the network have an omnidirectional antenna and
transmit with constant power thereby having equal transmission
radius. We investigate a wireless network whose topology does
not change over time.

For any two nodesT andR, we say that nodeR is a neighbor
of nodeT if R lies within the transmission circle ofT . Since
the nodes have equal transmission radiusT is also a neighbor of
R. Let the set consisting of neighbors ofT andR be denoted as
NT andNR respectively. Consider the data transfer on a single
link, T → R, in channelγ. For this call to be successfully
serviced, the following criteria needs to be satisfied.

1) NodesT andR must not be involved in any other call
transmission/reception in channelγ. This criterion en-
sures that a node cannot simultaneously serve two differ-
ent calls in the same channel.

2) Neighbors ofT (P ∈ NT , excludingR) must notreceive
from any other node in channelγ. Otherwise the trans-
mission fromT will interfere atP .

3) Neighbors ofR (Q ∈ NR, excludingT ) must nottrans-
mit to any other node in channelγ. Otherwise the trans-
mission fromQ will interfere atR.

The above “idealized” model approximates realistic interfer-
ence assumptions and is commonly used in the study of network
layer issues in wireless networks [1], [14], [15].

We focus on connection-oriented traffic which models the
QoS calls in the network and also permits an understanding of
the trade-offs in a shared resource environment. A connection-
oriented call requires a dedicated channel on each hop along the
path. These channels are held up while the call is in progress
and simultaneously released at the end of the call. We assume
that all calls require asinglechannel for service on each hop.
For simplicity of mathematical arguments and length consid-
erations, we consider only bi-directional calls in this paper. A
call between any two nodesT, R is defined as bi-directional if
there is data transfer in both directionsT → R andR → T .
The reader is referred to [4] for an analysis of uni-directional
calls that involve data transfer only in one direction. For a bi-
directional call a node can both transmit and receive data in the
reserved channel and thus all the three conditions stated ear-
lier must be satisfied. A node is labelled inactive in channel

γ if it is not involved in transmission/reception in that channel
and active otherwise. With this notation, we get the following
spatial channel re-use constraint. For a bi-directional call on
link T ↔ R to be successful in channelγ, neighbors of node
T excludingR and neighbors of nodeR excludingT must be
inactive.

Figure 1 illustrates a single hop bi-directional data transfer
between nodesT andR in channelγ. NodesT andR cannot
service any other call in channelγ. Neighbors of nodeT (T1,
T2) and neighbors of nodeR (R1, R2) must be inactive while
call T ↔ R is active. In the figure all data transfers marked ‘X’
must not take place for callT ↔ R to be successful.

X

RT

T 4

T 3 T 1

T 2

X

X

X

R 1

R 2 R 4

R 3

X

X

X X

X

X

Transmission circle of RTransmission circle of T

Fig. 1. Interference model for a bi-directional transmission (T ↔ R).

III. B LOCKING PROBABILITY ANALYSIS IN A WIRELESS

L INE NETWORK

In this section we develop an analysis for the blocking prob-
ability of a call in a line network. The expressions derived here
form the basis for the study in Section IV where we consider the
effect of transmission radius on blocking probability. In addi-
tion to facilitating elegant solutions, a line network is an impor-
tant network in practice and serves as a good starting point in
understanding network tradeoffs. We begin with the analysis of
a single channel network for which an exact solution is obtained
and then extend it to multiple channels in the next subsection by
making simplifying approximations.

A. Single Channel

Consider a wireless line network with nodes located unit dis-
tance apart at positionsx = −m,−m+1,..., m. We label these
nodes asX−m, X−m+1,..., Xm. Let there be a single chan-
nel with each node having a transmission radius ofr (r ≥ 1,
r ∈ Z+, a positive integer) and let all calls in the network ber
units long (i.e. between nodesXk andXk+r, k ∈ Z). The calls
are single hop as each node can communicate directly with a
noder units apart. CallsXk ↔ Xk+r, ∀k arrive according
to an independent Poisson process of rateλ. The call holding
period of each call is independent and identically distributed
according to an Exponential distribution with mean1/µ 1. If a
call cannot be accepted then it is dropped otherwise it occupies
the channel while in progress. We refer to this network as a
wireless line network with radiusr or WLN-r for short.

As an example illustrating the constraints on the successful
service of a call consider the WLN-1 (r = 1) network. If
Ck denotes a call between nodesXk andXk+1 then following

1The result holds even for general service distributions with mean1/µ as the
product form solution for the steady state distribution still holds.
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Section II callCk can be successfully serviced if nodeXk−1

(neighbor ofXk) and nodeXk+2 (neighbor ofXk+1) are inac-
tive. This implies that callsCk−2, Ck−1, Ck+1, Ck+2 must be
inactive (Figure 2). The constraints for the WLN-r network are
more involved and follow along similar lines.
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Fig. 2. Constraints representing the simultaneous service of calls.

Theorem 1: The blocking probability of a call in a WLN-r,
r ≥ 1, r ∈ Z+, network with the length of the line network
tending to infinity andν = λ/µ is,

PB = 1− x2r+1

1 + 2rνx2r+1
(1)

wherex is the unique root in (0,1] ofνx2r+1 + x = 1
Proof: The proof is omitted for length considerations but

can be found in [4].
The limiting argument in the derivation of Theorem 1 elimi-
nates edge effects and yields the above simple expression that
very closely approximates blocking probability of finite length
line networks (See [4] for more details).

It is worthwhile comparing Equation 1 with the standard
M/M/1/1 blocking probability expression [6]. This gives use-
ful insights into the blocking probability behavior of a link
Xk ↔ Xk+r in a shared linear environment as compared to
an identical link when it is isolated. The blocking probability
of a M/M/1/1 system with load̃ν is given by,

PB =
ν̃

1 + ν̃
(2)

Let ν̃ be such that thePB in Equation 2 equals that obtained
from Equation 1 for loadν. Thus ν̃ captures the effects of a
shared channel and is the load on an isolated link of WLN-r
that would have the same blocking probability as experienced
within the line network with symmetrical loadν. As we see
later, ν̃ plays an important role in the analysis for the multiple
channel case.

ν̃

1 + ν̃
= 1− x2r+1

1 + 2rνx2r+1
(3)

ν̃ =
1 + (2rν − 1)x2r+1

x2r+1
, νx2r+1 + x = 1 (4)

Define theeffective load factorg as,g = ν̃/ν; theng can be
expressed as,

g =
1 + (2rν − 1)x2r+1

νx2r+1
(5)

The low load and the high load regimes can be studied by taking
the limit ν → 0 andν → ∞ respectively in Eqn 5. This yields
limν→0 g = 4r +1 andlimν→∞ g = 2r +1. Thus at low loads
ν̃ ≈ (4r + 1)ν and at high loads̃ν ≈ (2r + 1)ν.

B. Multiple Channels

In this section we extend the analysis of WLN-r to the case of
multiple channels. We consider the random policy for assigning
channels to the incoming calls. In this policy the new channel
request on a link is assigned a channel randomly from among
the free channels on that link. Free channels refer to those chan-
nels such that the acceptance of a call in those channels does
not violate the wireless constraints. The random policy is non-
rearranging (see Section V) and easy to implement practically.
However its exact analysis is complicated by the fact that to
make a channel allocation decision we must have knowledge
of the channels already occupied by the ongoing calls. This
makes the state space for this system very large and an analysis
of the steady state probability distribution intractable. Interest-
ingly, since the random policy does not differentiate between
the channels we can construct an approximate model of the sys-
tem based on the effective load concept. We show later that the
model closely predicts the blocking probability values obtained
from simulation results.

Consider the linkLk (Xk ↔ Xk+r) of the line network. For
now, assume that there is only a single channelγ in the network
and denote its state on linkLk asSk. We modelSk as a three
state process, the free state (F), the busy state (Bu) and the
blocked state (Bl) as shown in Figure 3. The linkLk is said
to be in the blocked state if the channel is occupied by a call
on an interfering link. It is in the busy state if there is a call
in progress. LetYF→Bl be the random variable denoting the
amount of timeLk spends in stateF before making a transition
to stateBl.

Suppose that the present stateSk = F . If we knew the
state of channelγ on other links thenYF→Bl is an exponen-
tial random variable with rate equal to the sum of the rates of
the competing arrival processes on interfering links. The num-
ber of such competing processes will vary depending on the
present state of other links. Thus, conditioned on the state of
the networkYF→Bl is exponentially distributed. However, un-
conditionallyYF→Bl has a general distribution. Based on this
observation, we model the unconditionedYF→Bl by approxi-
mating it as an exponential random variable with rateλ′. The
random variableYBl→F has a general distribution with mean
1/µ′. Figure 3 shows the transition rates ofSk. The single

Blocked
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state

λ µ

F Bu

Bl

µ

λ

Fig. 3. Three state Markov process model of a channel on a link.

channel blocking probabilityPB can be computed by solving
the detailed balance equation (see [5]) of the three state Markov
process. Letν′ = λ′/µ′ andν = λ/µ; then,

ν̃ = ν′ + ν =
PB

1− PB
(6)

Thus, we can interpret the effective loadν̃ as consisting of
two components; the external loadν and the load seen by the
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link ν′ that makes the channel blocked. Using the expression
for PB from Equation 1 we get,

ν̃ = ν′ + ν =
1 + (2rν − 1)x2r+1

x2r+1
(7)

Generalizing to the multiple channel case, define the state of
a link asX(t) ≡ (Xbu(t), Xbl(t)) whereXbu is the number of
busy channels andXbl the number of blocked channels on that
link at timet. Let the total number of channels available in the
network bep. At any timet, the stateX(t) ≡ (Xbu(t), Xbl(t))
must satisfyXbu(t)+Xbl(t) ≤ p. Following the single channel
process and the fact that the random policy does not differen-
tiate among the channels we approximate the transition rates
among the states of the processX(t) as shown in Figure 4.
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Fig. 4. State transition diagram for the random assignment policy.

Let π(i, j) denote the steady state probability thatX takes
value(i, j). Then the steady state probability of blockingP rand

B

is equal to
∑

i+j=p π(i, j). Solving the detailed balance equa-
tions (see [5]) we get,

P rand
B =

ν̃p

p!

1 + ν̃ + ν̃2

2! + ... + ν̃p

p!

(8)

DenotingE(ν, p) as the Erlang B formula ([6]) for loadν
andp servers, we have,

P rand
B = E(ν̃, p) (9)

Plots comparing the predicted and the actual simulation re-
sults for 20 channels withr = 2 and r = 10 are shown in
Figure 5. The length of the line network simulated is 50 nodes
and blocking probability is computed for the center call to mini-
mize edge effects. As seen from the figure the theoretical values
closely predict the simulation results even for larger.

IV. EFFECT OFTRANSMISSIONRADIUS ON BLOCKING

PROBABILITY

This section explores the dependence of blocking probability
on transmission radius. The primary motivation is the following
tradeoff: If the nodes have a smaller transmission radius then
the interference constraints on each hop are fewer but the calls
hop through many links to reach the destination. As the nodes
not only serve the external call requests but also the internal
requests from other nodes, multi-hopping increases the internal
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Fig. 5. Comparison of theoretical and simulated values forr = 2 andr = 10
with 20 channels.

load in the system. On the other hand a larger transmission
radius reduces the number of hops of a call but increases the
interference constraints at each hop. The effect of this tradeoff
between increased interference and increased internal load is
considered next. We will restrict our attention to the line and
the grid network.

A. Line Network

We begin by considering the following simple but non-trivial
example that lends itself to an exact analysis and also clearly
highlights the problem. Consider a line network withtwo chan-
nels and all calls oflength two; i.e. between nodes that are
two units apart. The arrival process of each call is an indepen-
dent Poisson process of rateλ and the holding time is i.i.d with
mean1/µ. Consider two schemes, the first in which nodes have
a transmission radius of unity (r = 1) and thus the calls are two
hops long. Each call requires a distinct channel on each hop as
adjacent links are interfering. The channels are assigned using
the rearrangement channel assignment policy (Section V) as it
uses the channel resources optimally.

The second scheme considers nodes with a transmission ra-
dius of two units (r = 2) and hence all calls are single hop.
Here, we consider a sub-optimal channel assignment policy that
selects a channel randomly from the two channels for each new
arriving call. If the channel is free (non-blocked and non-busy)
then it is allocated otherwise the incoming call is dropped. The
policy clearly under utilizes the channels as it rejects a call if
the randomly selected channel is not free without considering
the state of the other channel. It performs a simple random
splitting of the incoming arrival stream into two independent
Poisson processes of rateλ/2 applied to each channel.

The following theorem shows that even with this very inef-
ficient random policy the second scheme (r = 2) has a lower
blocking probability as compared to the unit radius case for all
finite loadν. Thus, for any fixed blocking probability threshold
β the supportable loadν is higher for the second scheme than
the first one. This increased throughput performance comes
at the expense of higher transmission energy. Thus, the re-
sult highlights that in networks with low node density increased
transmission power can lead to better network performance.

Theorem 2: The blocking probability for caser = 2 is lower
than the blocking probability for caser = 1 for all load ν =
λ/µ satisfying0 < ν < ∞.

Proof: The proof is omitted for brevity and can be found
in [4].
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Next, we draw a similar conclusion in a more general setup.
Consider a line network withp channels and all calls of

lengthk > 1 (k = 1 is the trivial case). The traffic model
is identical to that considered earlier. We consider the random
channel allocation policy and use the blocking probability ex-
pression derived in Section III-B. We compare the following
transmission schemes.

Scheme 1:The transmission radius of the nodes iss(< k)
and hence each call isn = k

s hops long. For technical reasons
we take only thoses for which n is an integer. We consider
the low blocking regime as it is practically significant and also
justifies our simplifying approximations. In the low blocking
probability regime almost all calls get served and the average
load on each link (Xm ↔ Xm+s, ∀m) is ≈ nν which is the
sum of the loads of all calls hopping through that link. Assum-
ing this load to be Poisson the probabilityPL that none of the
channels on a link are free can be computed by considering this
as an equivalent system with loadnν on each link andr = s.
Using Equations 7 and 9 we get,

ν̃1 =
1 + (2kν − 1)x2s+1

x2s+1
, (nνx2s+1 + x = 1) (10)

PL = E(ν̃1, p) (11)

For an hop call to be served it must not be blocked on any
hop along the entire length of the path. Therefore, the blocking
probability of the call is greater than its blocking probability on
the first hop. As the latter value isPL we get,

P 1
B > PL = E(ν̃1, p) (12)

Scheme 2 :The transmission radius of the nodes isk and
hence each call is single hop. For this system, Theorem 1 gives
the exact blocking probability in the single channel case. The
blocking probability for multiple channels follows from Sec-
tion III-B. Thus we have,

ν̃2 =
1 + (2kν − 1)x2k+1

x2k+1
, (νx2k+1 + x = 1) (13)

P 2
B = E(ν̃2, p) (14)

Observe that the tradeoff can be understood by examining
the polynomial equations inx for the two schemes (Eqns 10
and 13). In Scheme 1 we have a higher loadnν but a smaller
exponent2s+1 of x due to less interference at each hop; while
in Scheme 2 the load isν but a higher exponent2k + 1 of x
due to more interference. It can be shown thatP 2

B < PL <
P 1

B , ∀ν > 0, k > 1, k integer. The proof is omitted for brevity.
The intuition behind this result is that for a line network with

a sparse node topology the blocking probability increase due
to a larger set of interfering nodes (larger radius) is smaller as
compared to an increase due to larger effective link load caused
by multi-hopping.

Figure 6 presents simulation plots verifying this claim. The
blocking probability of the center call is computed in each sim-
ulation to reduce edge effects. The first plot has all calls of
length 3 with two schemes of radius 1 and 3. The second plot
has all calls of length 6 with radius 1, 2, 3 and 6. Note that the
reduction in blocking probability by using a larger transmission
radius is a few orders of magnitude and this difference increases
with the length of the calls.
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Fig. 6. Line network with calls of length 3 and 6 and 20 channels.

B. Grid Network

We observed in Section III-A that asν → 0, ν̃ ≈ (4r + 1)ν.
A similar observation can be shown to hold for a single channel
general network as well by making the low load approximation
i.e. asν → 0, ν̃ ≈ αν whereα = total number of interfering
calls + 1 (see [4]). Following Section III-B, the blocking prob-
ability at low loads for multiple channels and random channel
allocation policy isPB = E(ν̃, p).

Consider an infinite grid network (to avoid edge effects) with
all calls of length 3 and loadν. Calls are between nodes
{x, y} → {x + 3, y} and{x, y} → {x, y + 3}. The approach
can be easily generalized to longer length calls. In the first sce-
nario, transmission radius of each node is 3 and hence all calls
are single hop. Here, each link has 134 interfering links all of
which carry loadν [4]. Thus,ν̃ = 134ν + ν and the blocking
probability of a call isPB ≈ E(135ν, p).

In the second scenario, the transmission radius of each node
is 1. Here, each link has 23 interfering links including itself.
In the low blocking regime almost all calls get served and the
average load on each link is≈ 3ν. Treating the system as an
equivalent network with load3ν on each link, the effective load
equals̃ν = 23 ∗ 3ν. The probability that no channel is free at a
link is E(69ν, p). Making a further simplification that the links
block independently the probability that a 3-hop call is blocked
≈ 1− (1− E(69ν, p))3 ≈ 3E(69ν, p).

Clearly, for lowν and moderate number of channels we have
E(135ν, p) > 3E(69ν, p) which suggests that it is preferable
to use a smaller transmission radius. The intuitive reason is
that a grid network has a denser node topology than a line net-
work. As a result the number of interfering links increase much
rapidly with an increase in the transmission radius of the nodes
leading to higher blocking than using a smaller transmission ra-
dius. This suggests a relationship between blocking probability
and the density of the nodes in the network and is an interesting
future research direction.

Figure 7 presents simulation results that justify this conclu-
sion. The plot shows the blocking probability of the center call
in a 20X20 grid with 30 channels. All calls are of length of 3
and two cases of radius 1 and 3 are considered.

V. CHANNEL ASSIGNMENTALGORITHMS

Given the transmission radii of the nodes, blocking proba-
bility in a wireless network also depends on how we assign the
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Fig. 7. Grid network with calls of length 3.

channels to the incoming calls. In this section, we propose a dy-
namic channel assignment algorithm called the Local Channel
Reuse Algorithm (LCRA) and present simulation results that
compare its performance with other algorithms - random, first
fit and rearrangement algorithm.

Rearrangement Algorithm : The rearrangement algorithm
was first presented in [11] for cellular networks. This policy
admits an incoming call even if this requires rearrangement of
the allocated channels to the calls in progress. Thus at a new
call request the ongoing calls may be re-assigned channels to
accommodate the new call. It is clear that this policy cannot be
easily implemented in practice. The difficulty lies in the com-
putational burden of searching for the feasible assignments for
all the calls. However, as shown in [4] there is a simple charac-
terization of the existence of an assignment for a line network.

Non-rearranging Algorithms : Here we consider algo-
rithms that are not allowed to rearrange the channels allocated
to the existing calls. Such algorithms are clearly more practi-
cal. The algorithms that we study are the random, first fit and
the local channel re-use algorithm (LCRA). These algorithms
base their decision on the set of free channels available at a
node. Free channels refer to those channels such that the accep-
tance of a call in those channels does not violate the wireless
constraints.

LetFN be the set of free channels at nodeN . FN contains all
those channels in which nodeN and its neighbors are inactive.
Similarly, the set of free channels for a linkN ↔ M is the set
of all those channels that are free at both nodesN andM . We
have,FN↔M = FN ∩ FM .

Single Hop Calls:Consider a single hop call between nodes
S and D. The set of available channels on linkS ↔ D is
FS ∩ FD. If g̃() denotes the decision function which selects a
channel from the setFS ∩ FD then the chosen channelγc =
g̃(FS ∩ FD). The channels are arbitrarily assigned an index
number for the implementation of the algorithms.

Random Algorithm: The channel decision functioñg()
chooses a channel randomly from the set of free channels.

First Fit Algorithm: The channel decision functioñg()
chooses a channel that has the lowest index among the set of
free channels. This algorithm has been studied earlier in WDM
optical networks [18].

Local Channel Re-use Algorithm (LCRA): Consider a link
S ↔ D on which the channel needs to be allocated. LetNS

andND be the neighbors of nodeS and nodeD respectively.

Let the nodes inNS ∪ND be denoted asN1, N2, .., N|NS∪ND|
andΓ = FS ∩ FD. LCRA chooses a channelγc ∈ Γ such
thatγc minimizes the number of nodes inNS ∪ ND that have
γc as a free channel in the present state. This leads to block-
ing of that channel for the least number of neighboring nodes.
Mathematically,

INi
(γk) = 1, if γk is free at nodeNi

= 0, otherwise.

Ω(γk) = Total nodes inNS ∪ND with γk free

=
∑

N∈NS∪ND

IN (γk)

γc = g̃(Γ) = arg minγk∈Γ Ω(γk)

If there are more than oneγk that minimizeΩ() then the small-
est indexedγk is selected.

To understand how this algorithm uses the channels in an
efficient manner suppose channelγc is chosen. Then, nodes
in NS ∪ ND cannot use channelγc as long as the allocated
call is active. Therefore, all those nodes that hadγc as a free
channel before the call request was made removeγc from their
set of free channels.LCRA minimizes this set of nodes. The
fact that some nodes inNS ∪ ND do not haveγc in their set of
free channels also implies that there is presently an active call
in their neighborhood but that call does not interfere with the
new incoming call onS ↔ D. Choosing such a channel will
then lead to a local re-use of the channels. Thus,LCRA tries to
locally re-use the channels.

Multihop Calls: A multihop call is regarded as a sequence
of single hop calls where the first call arrives on the first link
followed by an arrival on the second link and so on until the
last link of the multihop path. With this interpretation, we as-
sign channels for the multihop call by repeating the single hop
assignment procedure in a sequence over the multihop path.
Along the multihop path if at any link there are no free channels
available then the call is dropped.

We next present simulation results that compare the perfor-
mance of the above stated algorithms in a line and a grid net-
work. We compute the blocking probability of the center call
as the edge effects for this call are minimal. In both networks,
the transmission radius of each node is fixed at unity. The ar-
rival process of all the calls is Poisson and of the same rateλ
while the departure time is Exponentially distributed with mean
1/µ = 1. The load in the plots equalsλ/µ.

Figure 8 compares the blocking probability in a line network
with 30 nodes, unit length calls and 50 channels. LCRA per-
forms better than both the random and the first fit algorithms.
Observe that if we fix a particular value of blocking probability
then LCRA can support a higher load for each call as compared
to random and first fit algorithms. As expected the rearrange-
ment algorithm has the lowest blocking probability.

Simulating the rearrangement policy in a grid network is
practically difficult. Therefore, in a grid network we compare
the blocking probability for the random, first fit and the LCRA
algorithms. Figure 9 shows the comparison plot for a 20X20
grid with 50 channels and unit length calls. LCRA performs
better than both the random and the first fit policy. In a grid
network a node has more interfering neighbors as compared to
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Fig. 8. Line network with unit length calls.
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Fig. 9. Grid Network with unit length calls.

a line network. Therefore, spatially re-using the channels will
pack the calls onto significantly lesser number of channels and
have a greater impact on blocking probability. This is evident
from the wider spread between the curves as compared to the
line network.

Finally considering multihop calls, Figure 10 compares the
blocking probability for random, first fit, LCRA and the rear-
rangement algorithms for a line network with 50 channels and
all calls 6-hop long. Here again, we obtain similar conclusions
with LCRA outperforming both the random and the first fit al-
gorithms.
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Fig. 10. Line network with 6-hop calls (length 6 units).

VI. CONCLUSION

We studied the blocking probability behavior of connection
oriented traffic and investigated dynamic channel assignment

algorithms for multi-hop wireless networks. We derived both
exact and approximate blocking probability formulas for a line
network that yielded useful insights into the effect of transmis-
sion radius on call blocking. For example, we showed that in the
line topology using a large transmission radius though energy
costly substantially reduces the blocking probability; while the
opposite is true in the more dense grid topology. The relation-
ship between blocking probability and the density of the nodes
is an interesting future research direction for efficient network
design. We also developed a novel channel assignment algo-
rithm that aims at reducing blocking probability by cleverly
packing calls onto channels. We showed through simulations
that an efficient channel assignment algorithm can significantly
reduce blocking probability; especially for densely connected
networks and multi-hop calls. It would also be interesting to in-
vestigate channel assignment schemes when the nodes are mo-
bile.
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