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Abstract

We consider processors communicating over a mesh
network with the objective of broadcasting information
amongst each other. One instance of the problem involves
a number of nodes all with the same message to be broad-
casted. For that problem a lower-bound on the time to
complete the broadcast, and an algorithm which achieves
this bound are presented. In another instance, every node
in the mesh has packets to be broadcast arriving inde-
pendently, according to a Poisson random process. The
stability region for performing such broadcasts is charac-
terized, and broadcast algorithms which operate efficiently
within that region are presented. These algorithms involve
interacting queues whose analysis is known to be very diffi-
cuit. Toward that end we develop an approximation which
models an n-dimensional infinite Markov chain as a sin-
gle dimensional infinite Markov chain together with an n-
dimensional finite Markov chain. This approximate model
can be analyzed and the results compare very well with
simulation.

1 Introduction

A common task for network protocols is the broadcasting of in-
formation from one node to the rest of the nodes in the network.
This task is often required during the execution of parallel algo-
rithms in a network of processors. In this paper we consider a
situation where the nodes of a mesh network generate packets to
be broadcast at random time instances. We were motivated by
:he following problem: A number of satellites, laid out in space in
= mesh topology are required to broadcast information amongst
sach other. Each satellite is able to receive information from all
of its neighbors simultaneously, but can only transmit in one di-
rection at a time. ! The objective of that problem was to develop
z delay optimal algorithm for performing these message broad-
casts. A similar problem was considered in [1] where efficient
algorithms were developed for performing multiple broadcasts in
= binary hypercube.

In order to broadcast a packet, all that a node needs to
Zo is transmit the packet along a spanning tree routed at its own
iocation. If no interfering transmissions take place the packet will
== received by all of the nodes with a delay which depends on
222 selected tree and the order in which the arcs of the tree are
wraversed. Also, the delay encountered will be at least equal to
depth of the selected tree. This simple communication task is
czlled a single node broadcast. In an n X n, mesh any spanning
trze has depth at least equal to n-1 and therefore a single node

=T

*This assumption follows from the use of optical beams for comme-
zocation: it runs contrary to usual assumptions about wireless or cable
—mmunications.
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broadcast must take at least n-1 time units. In fact, the time
to complete the broadcast depends on the tree-depth and the
degree of the nodes of the tree. Thus, although there are many
spanning trees of depth n-1 in a mesh, they are not all optimal.
A simple algorithm that completes a broadcast in n time slots
is as follows: We partition the mesh into vertical and horizontal
rings as shown in Figure 1. The start node first transmits the
packet along its vertical ring, then each node on the vertical ring
transmits the packet along the horizontal ring. Since the time to
cover a ring is n/2 slots, the total broadcast time is n.

In section 2 we consider the case of multiple “start” nodes,
that is, we assume that we have d “start” nodes all of which con-
tain the same packet to be broadcast. Qur problem here is to find
a placement for the d “start” nodes, and an associated broadcast
algorithm, to complete the broadcast in minimum time. We show
that in this case the broadcast time is lower-bounded by 7’% and
we provide an algorithm which meets this bound.

Finally, in section 3, we consider what is the main focus of
this paper, namely the case of, so called, multiple-node broadcasts
in the mesh network. In this case, every node has its own pack-
ets to broadcast across the mesh. We assume that each node
generates packets independently according to a Poisson random
process of rate \. We begin by showing that a necessary and
sufficient condition for stability for multiple-node broadcasts in
a mesh is given by, A < ;!1_—1 We then discuss broadcast algo-
rithms that will operate within this stability region.

A simple approach to the realization of such multiple-
node broadcasts would be to require each node, when it has a
packet to broadcast, to initiate a broadcast along a spanning
tree routed at itself. This kind of algorithm we call an “unsyn-
chronized algorithm”. Such algorithms, despite their simplicity,
do not tend to perform well in heavy traffic and are very difficult
to analyze. We therefore focus our attention on synchronized
algorithms (algorithms where the nodes attempt to coordinate
their broadcasts).

We develop two basic synchronized broadcast algorithms
which attempt to minimize average delay while at the same time
having a stability region equal to the one of the multiple-node
broadcast as described above. Unfortunately, both algorithms
involve n interacting queues which give rise to a n-dimensional
Markov chain. Obtaining analytical expressions for the steady
state behavior of such a system is known to be very difficult, if
not impossible. Even a numerical evaluation of an n-dimensional
Markov chain is computationly prohibitive [4]. This leads us to
the development of an approximate model for the analysis of in-
teracting queues. The results from our approximate model com-



pare very well with simulation, particularly when arrival rates
are low [3]. :

/ Horizontal Ring

Vertical Ring

Figure 1. A mesh with its vertical and horizontal rings.

2 Multiple Start node broadcasts

We now turn our attention to the more interesting task of mul-
tiple “start” nodes. Let there be d such nodes. That is we can
choose d nodes on the mesh which will all have the same message
to be broadcast. Our objective is to find 2 placement for the d
start nodes, and an associated broadcast algorithm, so that the
time to complete the broadcast is minimized. We begin by pro-
viding a lower bound on the broadcast time for 2 mesh with d
start nodes and we go on to show an algorithm which meets this
bound.

Let R(d) be the radius of a mesh with d start nodes,
. defined as follows:

R(d)= max { min
i all nodes r | all start nodes s

distence(z, s)} .

Where distance is measured in number of “hops”. So R(d) is the
greatest distance that any node must traverse in order to reach a
start node. Clearly, it will take at least R(d) time slots in order to

broadcast a message throughout the entire mesh. Also ford > 1,

R(d) will depend. on where the start nodes are placed. Next we
provide a lower bound on R(d). which is independent of where
the start nodes are located.

Proposition 1 [5] Consider any start node z and let n (i) be
the number of nodes ezactly i hops away from node z. Then,

1, =0
4i, 0<i<3

ne(i) = {

Proposition 1 tells us how many nodes are exactly i hops
away from node x. It follows directly from the mesh topology.
We can now use this property to determine how many nodes are
within i hops of x. Let N.(r) be the number of nodes within r
hops of x. Then, using Proposition 1, when r < n/2 we have,

No(r)=1+4) 4i=2"+2r+1

i=1
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Suppbse we have d start nodes. Then let N(d,r) be the number
of nodes within a distance r of any start node. Then, clearly, we
have

N(d,r) < dN(r) = d(27® 4 2r + 1).

In order for every node to be within a distance r of a start node
we must have,

n? < N(d, 7)< d(2r* +2r +1).
For this inequality to be satisfied we must have,
o?
0<2r% +2r+(1- =¥

Which, in turn, implies that

—2:4 /4 8(1- %)

> — :
n

T O,

= V2Vd

So, when we have d start nodes the diameter must be at

least n/(v2Vd) - 1.

Theorem 1 Given a mesh with d start nodes, any broadcast al-
gorithm must take at least

.
Vv2vVd
time slots to complcté the broadcast.

=)

Proof: Since the diameter of such a mesh must be at least
n/(v/2v/d) — 1 links, and only one link can be traversed during
one time slot, the theorem immediately follows.

Next we provide a placement for the d start nodes and
an associated broadcast algorithm which meets the above bound.
When d is equal to one we have already obtained an optimal al-
gorithm earlier which requires n slots. When d is equal to two we
can place the two start nodes as far apart as possible (place one
node in the center of the mesh and the other at the furthest cor-
ner) and it is easily verifiable that the diameter of this topology
is n/2. For d greater than 2 it is not as simple to find an op-
timal broadcast algorithm. The following algorithm approaches
our bound within a constant multiplier. For simplicity, we as-
sume that d is a perfect square and that n divides the square
root of d. We can now partition an » X n mesh into d square
segments each with diameter n/v/d. This is done simply by di-

viding the mesh along its vertical and horizontal dimensions into

V/d parts each of size nf/d. The result is d square segments of
size n/vd x n//d. We can now place the d start node in the
center of each of these squares (as was done in the single start
node example). The message can now be broadcast in each of
these smaller mesh segments using the optimal algorithm for the
single start node case. Since the d smaller meshes can be han-
dled in parallel, each requiring n/Vv/d slots, the total bfoadcast

time for the mesh with d start nodes will be n/+/d slots. Figure-

2 describes the partitioning of the mesh into d meshes.
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Figure 2. A mesh partitioned into d square segments.

So now we have,
n

vd

_—\/fn 73 < delay <

The upper bound above is within a factor of 1/4/2 of the
lower bound. Although we are not sure how to make these bounds
tighter, we believe that the broadcast algorithm described above
is optimal, and that the lower bound is a little loose. Also, if
d is not a perfect square we can always use a smaller number
d’ of start nodes which is a perfect square and is within a small
constant factor of d (d"> d — v/d > d/2). Similarly if n does not
divide the square root of d, the segments will not be all of the
same size, but there size will still be < n/v/d + 1.

3 Multiple-node Broadcast Algorithms

We consider an 7 X7 mesh with n? nodes, each of which generates
packets independently according to a Poisson random process of
rate A. The packets take exactly one time slot to be transmitted,
each node can only transmit to one of his neighbors at a given
slot, but can receive from all of his neighbors simultaneously.

We begin by providing a necessary condition for stability for any.

multinode broadcast algorithm.

Proposition 2 In order for a multinode broadcast algorithm to
be stable the following must hold,

1
n2 -1

A<

Proof:

The average number of packets generated in the mesh
during a single time slot is An?. Broadcasting of any packet
requires at least n? — 1 transmissions (this is because n? — 1
nodes must receive the packet, and no transmission can be heard
by more than one node at a time). Therefore, during each slot an
average demand for at least An?(n? — 1) packet transmissions is
generated in the system. Now, since each node can only transmit
in one direction at a time, at most n? transmissions can take
place during one time slot. Therefore, for the system to be stable,
Ar?(n?—1) < n? must hold, which proves our claim. Next, we will

show that the condition of Proposition 2 is sufficient by providing
an algorithm which is stable for all arrival rates satisfying this
bound.

3.1 A Simple Synchronized Multiple-node Broad-
cast Algorithm

The algorithm described in this section is based on performing
periodic, complete, multi-node broadcasts, throughout the entire
system. A multi-node broadcast is the task where each node
in the system broadcasts one packet (the same one) to every
other node in the system. By performing periodic multi-node
broadcast we allow each node to broadcast exactly one packe:
per cycle. It can be shown that a multi-node broadcast takes
O(n? — 1) time slots to be performed[3]. Consider the following
Multi-node broadcast algorithm which takes n? — 1 slots. The
algerithm proceeds in two steps:

- Step 1) Every node broadcasts one message along its vertical
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ring, so that every node on the ring contains all of the
messages from the ring. If a node has no packets to send it
sends a null packet. Similarly; if 2 node has more than one
packet, it must wait for the next cycle before broadcasting
its second packet.

Step 2) All nodes broadcast all of the messages from their ver-
tical ring along their horizontal ring, so that all nodes in
the mesh contain all of the messages.

During each slot every node across a vertical ring per-
forms a one packet transmission to its neighbor in the same di-
rection, for the duration of the first step. During the second
step, a variable number of slots is needed to perform similar ur:-
directional transfers along the horizontal rings, depending on 1zz
number of packets each vertical ring accumulates during the first
step. If null packets are counted then n(n-1) slots are needed.

3.1.1 Delay Analysis

Clearly the first step takes a total of n-1 time slots, because al!
nodes can broadcast their messages in parallel along the ring. Bv
the same reasoning step 2 takes n(n — 1) slots. Therefore. ke
algorithm takes a total of 2% — 1 time slots to be performed.

Our simple synchronized algorithm uses the above multin-
ode broadcast algorithm periodically as follows. Every n?—1 time
units we perform a complete multinode broadcast according to
the above algorithm. If a node has no packet to send it sim-
ply sends a null packet. This algorithm serves each node every
n? — 1 time units. Therefore, the queues at each node behave
as M/D/1 queues with synchronization. That is, we have an
M/D/1 queue, where service is offered at prespecified instant of
time which are n% —1 slots apart. The delay associated with such
a system is the same as the delay for an ordinary M/D/1 system
with service duration 72 — 1 plus the expected duration of tie
time elapsing between the arrival instant of some customer and
the beginning of the next slot. This quantity is called the av-
erage synchronization time and is equal to half the service time.
Therefore, the delay for this algorithm, D, is

3 ,\(nz— 1)
D=(n’-1)z+ m)




Also,an M jF/i queue with arrival rate A and service time n° -1
is stable if and only if,
1

This algorithm has the same stability region as that de-
scribed in proposition 2; however, the delay associated with this
algorithm is very high even for very low arrival rates. For very
high arrival rates every node has a packet to send, therefore no
slots go unutilized and the algorithm is optimal. However, for
low arrival rates, the algorithm yields many unused slots and re-
sults in delay of O(n?). One would expect that a good algorithm
would result in O(n) delay for low arrival rates, because a single
node broadcast can be performed in n slots. In the next sections
we consider alternative broadcast algorithms which perform as
well as this algorithm for high arrival rates and result in much
less delay for low arrival rates.

3.2 A synchronized Multiple-Node broadcast Algo-
rithm

The previous algorithm was based on performing complete multin-
ode broadcasts in a synchronized fashion. The problem with such
algorithms is that at low traffic rates very few of the nodes have
a packet to be broadcast, and therefore in performing a com-
plete multinode broadcast many time slots are wasted. In this

. algorithm we attempt to take into account the fact that at low.

arrival rates complete multinode broadcasts are wasteful. This al-
gorithm performs synchronized “Partial Multinode Broadcasts”.
As before this algorithm is based on dividing the mesh into ver-
tical and horizontal ring so that every node is associated with
exactly one vertical and one horizontal ring. The algorithm has
three stages:

Step 1) As before, every node broadcasts one message along its
vertical ring, so that every node on the ring contains all of
the messages from that ring.

Step 2) Every ring selects, at random, up to d packets to be fur-
ther broadcast through the mesh. The un-selected packets,
if any, rejoin their node’s queues and attempt retransmis-
sion during the next cycle. (If a ring has fewer than d
packets then the remaining slots are filled with null pack-
ets). All-nodes on a given vertical ring choose the same d
packets, to be broadcast through the mesh.

step 3) All nodes broadcasting the d “select” packets through
their horizontal rings.

As before, the first step takes n-1 slots and the third step
takes an additional d(n-1) slots. So, the cycle length, S, is equal
to (d+1)(n-1) slots. Since there are n nodes on the ring and
up to d of them can receive service during a cycle of duration
(d+1)(n-1), in order for the algorithm to be stable we must have
A< mﬂ—;ﬂ. Clearly, for d < » the stability region of this
algorithm is smaller than the region implied by Proposition 2.
However, this algorithm can accommodate all admissible arrival
rates by increasing the value of d, since with d=n the algorithm
has the same stability region as that of the mesh.

.The delay analysis for this scheme is rather complicated.
The n queues on each vertical ring are highly dependent on each
other. This is because the event of one queue getting service
is dependent on whether or not the other queues in the system
got served. The queue sizes on a ring of n nodes form an n-
dimensional infinite Markov chain. Obtaining closed form expres-
sions for the steady state behavior of such a system is generally
very difficult. Even a numerical evaluation of such systems can be
computationally prohibitive [4]. Therefore it is useful to develop
an approximate model for the analysis of interacting queues. Be-
fore we go on to discuss this model, let us first consider a special
case of this problem where an exact solution is attainable.

3.2.1 Exact solution for d=1

We can obtain the solution for the case of d equaling one by
considering the state of the entire ring. Clearly, for the entire
ring with d=1, at each cycle the number of packets on the ring is
reduced by one as long as the ring is not empty. Also, since the
ring contains n nodes each with independent Poisson arrivals of
rate AS (where S = cycle length = (d+1)(n-1)), packets arrive at
the ring according to a Poisson process of rate nAS = 2An(n —
1). Therefore the entire ring behaves as an M/D/1 queue with
synchronization and with service time S = 2(n — 1) and arrival
rate 2An(n — 1). The average delay for this queue is well known
and is given by,

Delay(d = 1) = 2n = 1)(5 + g gimr=15)

Unfortunately, a similar approu;.h can not be taken for

- values of d which are greater than one (except d=n which was

solved in the previous section). This is because for values of d
other than one the entire ring no longer behaves like 2 M/D/1. In
fact it is no longer M /D because, since only one packet is allowed
per node during a cycle, service will depend on the way packets
are distributed among the nodes and is not deterministic.

3.2.2 Approximating interacting queues: A two chain

approach.

In this approximation we model a n-dimensional infinite Markov
chain as a single-dimensional infinite Markov chain together with
an n-dimensional finite Markov chain. A similar model was de-
veloped previously for the analysis of the Aloha multiple access
protocol which also gives rise to interacting queues. We let one
chain, the user’s chain, represent the gueue length for a single
node. We let the other chain, the system chain, represent -the
number of non-empty nodes in the ring. The motivation behind
this approach is that the only system information relevant to the
analysis of the user chain is the number of nodes in the system
attempting transmission. A similar model was developed pre-
viously in [2], and later improved in [5], for the analysis of the
Aloha multiple access protocol which also gives rise to interacting
queues. .

The User’s Markov Chain

The user’s Markov chain contains the queue size for a
single user. It is therefore an infinite chain similar to that of a
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3 D/1 system with Poisson arrivals. However, unlike the M/D/1
—zse. departures are not assured and take place with some prob-
2=ty of success P;. The quantity P, represents the probability
221 this node is among the d nodes which are selected for trans-
=ission and depends only on the number of nodes in the ring
aitempting transmission; it can therefore be obtained by condi-
zioning on the state of the system chain. So in fact, what the user
Z2zin amounts to is an M/G/1 with geometrically distributed
ssrvice time.

T D @O

Figure 4. The User Chain.

Tais. of course, constitutes an approximation to the real

mme= leczuse we assume that the probability of a successful

wmmsmosson is independent of the number of packets in the
gme=ze. The average queue size for this system can be easily
mmmganad zsing the well known formulas for an M/G/1 and the
#ems and second moments of the geometric distribution.

AS5(2 - )S)
2X(P, - AS)’
wiw== S = the cycle length and is equal to (d+1)(n-1). This
mmmpisses 1he analysis of the user’s chain. The only missing

‘mgesien: in order to compute the delay, is P,. This is the one
‘ez txa: we will obtain from the system chain.

delay = +

The System Markov Chain

Te system chain contains information about the number
o msm-=wyy nodes on the ring (not including node x) and the
wame i 10de x. Let the pair (M, D) represent the state of the
e waere M equals the number of non-empty nodes and D,
% =ma o rero if node x is empty and one otherwise. Clearly,
M= 2= 3 total of 2n possible states. Figure 5 shows the system

Z"’O""@ @ Dx=1

4»\/@@ sto'

~—

Figure 5. The system chain.

Transitions between states require that either some empty

s receive new packets or that a non-empty node becomes

mmocr afer a successful transmission. The latter would not occur
qmisss 2= pon-empty node had exactly one packet in its queue

sesizre 1he transmission took place, and received no new packets.

Tae srobability of that event is computed using the statistics of
e pser chain. Using similar reasoning transition probabilities
for <3is system chain can now be expressed in terms of parameters
£ == user chain and can be found in [3]. Finally, we need to

=1z P, the probability of a successful transmission that is
s=gzmed for the user chain. This probability can be expressed as
Fllows:

P, = P(success|D;=1)
' P(success, D, = 1)
P(D; = 1)
S R+ DI A Pa
.’.—'—.'6' it

“ Where P, ; is the probability of state (i,j). The quantity in the
denominator represents the probability that the user chain is not
empty. The quantity in the numerator represents the joint prob-
ability of a successful transmission and the user chain being not
empty. Clearly, when the system has fewer than d non-empty
nodes successful transmission takes place with probability one.
However, if the system has i >> d non-empty nodes, success-
ful transmission for the user chain takes place with probability
d/(i+1).

We now have the user chain whose solution requires pa-
rameters from the system chain (namely, P,) and the system
chain whose solution requires parameters from the user chain.
The two systems can be solved together using the Wegstein’s it-
eration scheme[6]. The iterations begin by solving the user chain
with P, = 1 and then using the results of the user chain to solve
the system chain and obtain a new value for P,. The iterations
continue until the values of the parameters stabilize (the itera-
tions differ by no more than 1075% ).

The results of this approximation are compared with sim-
ulation for various values of n and d and are presented in [3].
Figure 6 shows this comparison for n=10 and d=4. As can be
seen from the figure the approximation performs best when ar-
rival rates are low and similar results are obtained for different
values of n and d. This can be because when arrival rates are
low very little contention takes place between the nodes for the
d available slots and, therefore, there is very little interaction
between the quenes.

100
95
90
85
80
75
70

1 1 L 1 1 1

65
0.001 0.002 0.003 0.004 0005 0006 0.007 0.008

Figure 6. Comparison between approximate results and
simulation with n=10 and d=4.

4 Conclusion

‘This paper presents broadcast schemes for a mesh network with
somewhat unusual properties which resulted from a specific ap-
plication. An interesting extension to this work would be to
consider a2 more “typical” mesh topology, where all nodes can
transmit to all of their neighbors simultaneously but only receive
from one neighbor at a time. Work similar to that of this paper
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was done for a binary hypercube in [2]. Comparing ‘the perfor-
mance of these two topologies when the same number of nodes
are involved would also be interesting. The algorithms described
in this paper are vulnerable to node failures. Many applica-
tions require algorithms which can withstand failures. Inevitably,
building security into a routing algorithm will result in additional
delays due to redundancy. The development of such algorithms,
and the analysis of the tradeoffs between delay and additienal
security, is also an interesting area for future research. Finally,
the model developed here for analyzing interacting queues can
be useful for the analysis of other systems of interacting queues.
It was motivated by similar models used for analyzing the Aloha
multiple access protocol and offers an improvement over those
models in the way the interaction between the user and system
chain is tracked. Preliminary results show that this new model
performs better than existing approximations for the Aloha mul-
tiple access protocol[3].
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