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Abstract—We consider the problem of overload balancing in
single-hop networks with bounded buffers. We show that the
backpressure policy, which is known to achieve the most balanced
overload for networks with unbounded buffers, does not balance
the overload for networks with bounded buffers. We formulate
the problem of overload balancing in single-hop networks with
bounded buffers by leveraging ordinary differential equations
(ODE) to model the queue dynamics. We prove that choosing
service rates on each transmission link that minimizes the
quadratic sum of queue overload rates leads to the most balanced
overload. Based on this result, we propose a queue-based policy
combining maxweight scheduling with backpressure, which can
asymptotically achieve the most balanced overload agnostic
of packet arrival rate and capacity information. The proof
technique is based on a novel characterization of the policy
in a differentiable form, which is of independent interest. We
further propose a distributed version of the policy, which reduces
overhead by an order of magnitude. We evaluate our proposed
policies under single-hop network and their concatenation into
Clos structure, under randomly selected packet arrival rates,
link capacities, and buffer sizes. Results demonstrate that our
proposed policy converges to the most balanced overload in all
cases, and the distributed version is nearly optimal.

I. INTRODUCTION

Network overload occurs when user demand surpasses
network service capacity. Data packets accumulate in network
buffers and cause congestion. Multiple reasons contribute
to network overload: demand surge [1], denial-of-service
attacks [2], server shutdown and misconfiguration [3], [4],
transmission link failure [5], etc. Such overload can result in
detrimental consequences such as throughput reduction [6],
[7], increased latency [8], or unfairness where some sessions
“starve” other sessions [9], [10]. Network overload may occur
in datacenters and server farms on a regular basis due to bursty
demand [3].

An important measure to impede severe overload is overload
balancing, which ensures that all sessions are equally affected
by the congestion, and is a desired attribute of network control
policies [9]. A number of works considered the problem
of overload balancing. In [9], Georgiadis and Tassiulas
demonstrated that the backpressure policy can achieve most
balanced overload in a network with unbounded buffers under
the criterion of lexicographic minimum, a concept related to
min-max optimization [11]. More recent works study specific
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network structures. For parallel queues, [10] considered
overload balancing by introducing explicit constrainits on
fairness level, and [12] studied packet dropping policies to
control the flow. For server farms, [3] generalized different
fairness notions through α-fair penalty functions, which
allowed for a convex optimization formulation. For cloud
systems, [13] studied detection and balancing the transient
overload through distributed optimization.

However, the above works did not study the effect of
bounded buffers, whose sizes are limited in any practical
setting, from networks on-chip to spacecraft networks [14].
We point out that bounded buffers can significantly affect the
resulting policy under network overload. Consider the 3 × 1
switched network in Fig. 1. According to [9], if the egress node
d has unbounded buffer, the backpressure policy1 guarantees
that in the steady state, the queue overload rates in all 4
nodes are the same, which is most balanced. However, if
node d has bounded buffer, which means its buffer size is
finite, then backpressure will fill up the buffer in the steady
state, and lead to overload imbalance as explained in the figure
caption. Therefore, figuring out effective transmission policies
to balance the queue overload in bounded-buffer systems is
nontrivial and practically significant.

Fig. 1: Suppose all ingress nodes have unbounded buffer. When
node d has unbounded buffer, backpressure achieves most balanced
overload rates where all 4 nodes grow with rate 3.75; When
node d has finite buffer, then q̇d = 0 in the steady state
due to buffer saturation, and backpressure achieves overload rates
(q̇s1 , q̇s2 , q̇s3 , q̇d) = (2, 5, 8, 0), deviating significantly from the most
balanced one (5, 5, 5, 0).

In this paper, we propose a general analytical framework
based on ordinary differential equations (ODE) to characterize
queue dynamics, which we demonstrate can capture general

1The definition of backpressure is deferred to Section IV (eqn. (8)).



buffer settings, and facilitate analytical results and policy
design. We concentrate on single-hop networks modeled as a
bipartite graph connecting ingress and egress nodes, each with
a buffer to store incoming packets. Fig. 2 shows an example
of bipartite graph, and real world infrastructures matching this
structure: switched networks with ingress and egress buffering,
and server farms with packet dispatchers as ingress nodes and
servers as egress nodes. This work can serve as the foundation
for future work on multi-hop structures, such as datacenter
network that are made up of multiple single-hop structures
[15].

Fig. 2: (a) Single-hop structure as a bipartite graph; (b)
Network switch with ingress and egress buffering; (c) Server
farm with load balancers and servers.

Specifically, our contributions are as follows. (i) We prove
that minimizing the quadratic sum of queue overload rates
leads to the minimum of the max overload rate among all
nodes, and also lexicographic minimum of queue overload
rates. The quadratic sum minimization offers an equivalent
but more tractable way to analyze the most balanced overload,
compared with lexicographic minimization in [9]. (ii) Agnostic
of packet arrival rates and link capacities, we prove that
a policy combining maxweight and backpressure (mw+bp)
achieves the most balanced overload in single-hop networks,
which only requires queue information. We show that our ODE
formulation can embed queue-based policies under bounded
buffers elegantly based on a novel characterization of the
policy in differentiable form. (iii) From a practical perspective,
we propose a distributed version of the mw+bp policy which
significantly reduces communication overhead. (iv) We verify
our proposed policies by simulation in single-hop structures
and their concatenations (Clos structure [16]), under randomly
selected settings of packet arrival and departure rates, link
capacities, and buffer settings. We show the mw+bp converges
to the most balanced overload in all the test cases, while the
distributed version sacrifices little optimality. Both policies
work much better than pure backpressure proposed in [9] for
unbounded-buffer systems.

II. MODEL AND PROBLEM FORMULATION

A. Queue Dynamic Model

In this section, we introduce the ODE model for queue
dynamics in single-hop network structure. We use a bipartite
graph (V, E) to model the network, where V := {VI ,VE}
denotes the node set with VI the set of ingress nodes, VE the
set of egress nodes, E the set of transmission links between
VI and VE , and |VI | = N and |VE | = M . We term it as an
N ×M single-hop network. Denote the ith ingress node as si

and the jth egress node as dj . Each node k has a buffer that
stores the packets, whose size is denoted by bk. The packets in
each node k form a queue, whose length at time t is denoted
by qk(t). Therefore qk(t) ∈ [0, bk],∀k,∀t, which means that
queue length cannot surpass the buffer size. We do not allow
packet transmission to a saturated node. This is desirable in
practice since it prevents packet dropping and significantly
reduces the retransmission delay due to buffer overflow [17],
[18], and can be implemented simply with a detection signal
of the saturation level of downstream buffers. Packets will be
backlogged until there exists spare buffer storage downstream.

Each packet arrives to one of the ingress nodes and departs
from one of the egress nodes. The packet arrival rate at
ingress node si, denoted by λi, represents the average number
of packets that are injected into si in a time unit. We use
λ := {λi}Ni=1 to denote the packet arrival rate vector. Packets
in the buffer of si are transmitted to an adjacent egress node
dj through link (si, dj) ∈ E . The transmission rate on link
(si, dj) at time t, denoted by gsidj

(t), represents the number
of packets transmitted over (si, dj) in a time unit. Each
link (si, dj) is associated with a capacity value csidj , which
represents its maximum transmission rate. Specifically, 0 ≤
gsidj

(t) ≤ csidj
, ∀(si, dj) ∈ E . We use c := {csidj

}(si,dj)∈E
to denote the capacity vector. Finally, packets in an egress node
dj depart from the networks with departure rate denoted as
gdj (t), and the service rate of node dj , which is the maximum
departure rate for packets in dj , is denoted by µj . Thus
gdj

(t) ∈ [0, µj ], ∀j = 1, . . . ,M . Let µ := {µj}Mj=1.
Based on the above setting, we now formulate the queue

dynamics according to the flow conservation law, which states
that the net increase of queue length equals the difference
between the number of new arrivals and departures at a node
at any time. Specifically, for any ingress node si,

q̇si(t) = λi −
∑

dj :(si,dj)∈E

gsidj (t) (1)

and for any egress node dj ,

q̇dj (t) =
∑

si:(si,dj)∈E

gsidj (t)− gdj (t). (2)

q̇k(t) denotes the queue overload rate of node k at time t, and
we assume that q̇k := limt→∞ q̇k(t) exists where q̇k denotes
node k’s queue overload rate in steady state2. All the nodes
thus have nonnegative queue overload rates in the steady state
as the queue length is bounded below by 0. Furthermore, the
queue length in nodes with bounded buffers will not grow
with a positive rate in the steady state, therefore q̇i = 0 for
any i ∈ V with bounded buffer.

In this paper, we assume that internal (egress) buffers are
bounded while ingress buffers are large enough to avoid
saturation. In practice, internal nodes often have limited
buffers [14], [20]. For example, on-chip networks have very
small internal buffers. Similarly, satellite networks have small
buffers on-board the satellite. In contrast, ingress buffers have

2The existence holds under most of the policies of interest [3], [19].



sufficient capacity to absorb bursty packet arrivals, e.g. in
a satellite network the buffer at the ground terminal can be
relatively large.

In reality, even ingress buffers have limited size, and packet
loss will be inevitable when the packet arrival rate to an
ingress node si is larger than the sum of the capacities of its
downstream links. We can deal with bounded ingress buffers
by introducing a virtual queue for such si with unbounded
buffer, whose length is qsi plus the number of dropped packets
that are to be retransmitted, and thus the actual overload rate
at si can be exactly characterized by the overload rate of
a virtual queue with unbounded buffer. Therefore, we can
assume without loss of generality that ingress buffers are
unbounded.

We define q̇ := {q̇s, q̇d} ∈ RN+M as the queue overload
rate vector, where q̇s = {q̇si}Ni=1 ∈ RN and q̇d =
{q̇dj}Mj=1 ∈ RM are the ingress and egress queue overload rate
vector respectively3. Similarly, we define the transmission rate
vector of the system as g :=

{
{gsidj}(si,dj)∈E , {gdj}Mj=1

}
.

We further define the feasible flow region G as the set of
transmission rate vectors g that satisfy the flow conservation
laws (1) and (2) and capacity constraints. We then define the
feasible queue overload rate region R as the set of queue
overload rate vectors q̇ that can be achieved under some
element in G.

Remark: In (1) and (2), the queue length can be fractional.
This is a fluid approximation to the real case where packets
are discrete, which offers a simplified framework for studying
flow control [9]. This fluid approximation is different from the
fluid model defined in some prior works which captures the
scaled limit of the queue backlog [6], [21], [22], an indicator
for queue stability but not suited to study finite buffers and
queue overload dynamics.

B. Problem Formulation: Overload Balancing

In this section we define the problem of overload balancing.
The queue overload rate vector q̇ indicates the severity of
queue overload. We need a metric to evaluate how balanced
q̇ is. Multiple metrics related to network fairness have been
investigated. The very first concept is min-max fairness which
aims to identify a transmission rate vector such that any other
vector that decreases the overload rate at some nodes must be
at the expense of increasing the overload rate of some other
nodes with a higher overload rate [11]. This concept stems
from max-min fairness [23] which maximizes the minimum
commodity flow to be transmitted, while in overload balancing
the direction is reversed as reducing the max queue overload
is desired.

Moreover, the min-max fairness solution is closely related
to the lexicographic minimum solution [9] defined as follows.

Definition 1. The queue overload vector q̇∗ is the
lexicographic minimum in the feasible overload rate region
R if and only if for ∀q̇ ∈ R that q̇ ̸= q̇∗,

∑k
i=1 q̇

∗
(i) ≤

3We neglect time t in the notations for brevity. We will clarify explicitly
when notations without t represents steady state value to avoid ambiguity.

∑k
i=1 q̇(i), ∀k, where q̇∗(i), q̇(i) denote the ith maximal element

of q̇∗, q̇ respectively.

The lexicographic minimum q̇∗ represents the most
balanced overload vector since it guarantees that the top-k
most severely overloaded nodes have been balanced under
the metric of the sum of queue overload rates for every k.
Therefore the overload balancing problem can be formally
stated as: determine the transmission rate vector g so that the
resulting overload rate vector is the lexicographic minimum.

Nevertheless, the lexicographical minimum is hard to
formulate as it involves the ordering of a vector with
cumulative sum comparisons. To overcome the challenge,
we prove that minimizing the quadratic sum of queue
overload rates serves as an equivalent criterion to lexicographic
minimum under network flow constraints, which facilitates
analysis of overload balancing, as shown in following sections.

III. QUADRATIC SUM MINIMIZATION LEADS TO
LEXICOGRAPHIC MINIMUM

In this section, we prove that identifying g ∈ G to
minimize the quadratic sum of queue overload rates leads to
lexicographic minimum overload rates. This result is derived
under the prior information of (λ, c,µ), and it can capture
the most balanced solution at any time shot when (λ, c,µ) is
obtained. Analysis of policies without such prior information
in following sections is based on it. This result can be
directly proved by Cauchy-Schwarz inequality if there are no
constraints on g, however there is no general result (and it
generally does not hold) when g is constrained. We, for the
first time, prove the result under general single-hop network
with bounded buffers. We first introduce an intermediate
result that the minimizer of the quadratic sum minimizes the
maximum overload rate, and then show the main result.

A. Quadratic Sum Minimization to Maximum Overload Rate
Minimization

The quadratic sum minimization framework of overload
balancing under an N × M single-hop network can be
formulated as

min
g

1

2

N∑
i=1

(
λi −

M∑
j=1

gsidj

)2

+
1

2

M∑
j=1

(
N∑
i=1

gsidj − gdj

)2

s.t.
N∑
i=1

gsidj = gdj , ∀dj ∈ B

0 ≤ gsidj ≤ csidj , ∀(si, dj) ∈ E
0 ≤ gdj ≤ µj , ∀j = 1, . . . ,M

(3)

where the objective represents the quadratic sum of queue
overload rates at all ingress and egress nodes according to
(1) and (2), the variables g can represent the transmission
rate vector at any specific time shot t, with B denoting the
nodes whose buffer has been saturated at this time shot. The
constraint

∑N
i=1 gsidj

= gdj
means that q̇dj

= 0 for an egress
node dj saturated at this time shot. It is trivial to verify that the
optimum can never be achieved when ∃i /∈ B, q̇i < 0, since
the objective function is a quadratic sum of q̇. This property



enables using (3) to study the steady state (t→∞), since we
require q̇i ≥ 0, ∀i in steady state mentioned in Section II-A.

The minimization of maximum queue overload rate
corresponds to the objective function ming∈G maxi∈V q̇i. This
can be equivalently formulated as a linear programming
problem

min
g,v

v

s.t.
N∑
i=1

gsidj = gdj , ∀dj ∈ B

0 ≤ gsidj ≤ csidj , ∀(si, dj) ∈ E
0 ≤ gdj ≤ µj , ∀j = 1, . . . ,M

λi −
M∑
j=1

gsidj ≤ v, ∀si ∈ VI

N∑
i=1

gsidj − gdj ≤ v, ∀dj ∈ VE

(4)

by introducing an auxiliary variable v and additional
constraints q̇i ≤ v, ∀i ∈ V .

Now we state the intermediate result as Lemma 1.

Lemma 1. Suppose that g∗ ∈ G is optimal in (3), then g∗ is
optimal in (4).

The main proof idea is to take advantage of the
Karush-Kuhn-Tucker (KKT) conditions of (3) and (4). Details
are deferred to the appendix. We present a geometric
interpretation of Lemma 1 in Fig. 3 through a 2×1 single-hop
networks. Lemma 1 states that the the minimizer of (3) always
overlaps with a minimizer of (4) in the feasible flow region G
under the constraints.

Fig. 3: Geometric interpretation of Lemma 1 through a 2 × 1
single-hop network. The contour curves of (3) in red and (4) in green
coincide at the same optimal point B on the boundary of G under
different arrival rate vectors λ = (λ1, λ2), denoted as point A where
λ1 + λ2 > µ.

B. Quadratic Sum Minimization to Lexicographic Minimum

We now demonstrate the main result in Theorem 1. The
idea is that by Lemma 1, g∗ minimizes the maximum queue
overload rate, then we can show it must minimize the second
maximum queue overload among all g ∈ G that minimizes
the maximum queue overload, otherwise it violates Lemma 1.
Then iteratively we can obtain lexicographical minimum.

Theorem 1. Suppose that g∗ ∈ G is optimal in (3), then it is
lexicographic minimum in G.

Proof. (sketch) Note that g∗, the minimizer of quadratic sum∑n
i=1 q̇

2
i in (3) is the minimizer of max growth rate q̇(1) in (4).

Denote the minimum q̇(1) as q̇△(1), then the set G1 = {g ∈ G |
q̇
(g)
(1) = q̇△(1)} contains g∗, where q̇

(g)
(1) denotes the maximum

queue overload rate under the transmission rate vector g. Now
we consider (3) and (4) with additional constraint that g ∈ G1.
Obviously G1 is a convex set, thus (4) with g ∈ G1 is still
convex. Meanwhile, with additional constraint that g ∈ G1,
(3) keeps in the form of a quadratic optimization problem.
Therefore we can apply Lemma 1 to (3) and (4) in G1 similarly
to obtain that the g∗ minimizes q̇(2), the second largest queue
overload rate. Denote the minimum q̇(2) as q̇△(2), thus g∗ ∈
G2 := {g ∈ G | q̇(g)(1) = q̇△(1), q̇

(g)
(2) = q̇△(2)}. Iteratively, g∗ ∈

GN+M where any element in GN+M induces the lexicographic
minimum queue overload rate vector.

IV. MAXWEIGHT + BACKPRESSURE LEADS TO MOST
BALANCED OVERLOAD

Section III demonstrates that solving (3) can achieve
most balanced overload. However, it requires the complete
knowledge of network parameters (λ, c,µ), which in real
networks may not be available [19]. In practice, the queue
backlog q(t) is often accessible in real-time, thus we consider
if there exists any queue-based transmission policy, which
determines the transmission rate vector g(t) based on q(t),
that can achieve most balanced overload as (3) does.

The ODE dynamical system (1) and (2) under queue-based
policy form an autonomous system{
q̇si(t) = λi −

∑
dj :(si,dj)∈E gsidj

(q(t)), ∀i = 1, . . . , N

q̇dj
(t) =

∑
si:(si,dj)∈E gsidj

(q(t))− gdj
(q(t)), ∀j ∈ 1, . . . ,M

(5)
Due to the absence of prior knowledge of (λ, c,µ), we

can no longer achieve most balanced overload in one stroke
by optimizing (3). Instead, we aim to propose queue-based
policies that can render the queue dynamics (5) to converge
to the most balanced overload state. Formally, the problem
of overload balancing under queue-based policy can be
formulated as: Is there g(q) that guarantees limt→∞ q̇(t) =
q̇∗ in (5), where q̇∗ is the overload rate vector induced by
g∗, the optimal solution to (3) with the oracle (λ, c,µ)?
We prove that a maxweight + backpressure (mw+bp)
queue-based policy yields a solution under N ×M single-hop
structure, and propose a distributed version of this policy that
reduces communication overhead from O(N) to O(1), with
performance close to optimum shown in Section V.

A. Methodology

Our methodology to prove that a queue-based policy g(q)
achieves the most balanced overload is to verify that it satisfies
two conditions which together, as illustrated in Fig. 4, is a
sufficient condition. For the first condition, we establish the
existence of a queue vector q such that the transmission rate
vector under the policy at q is an optimizer of (3) which leads
to most balanced queue overload. Specifically, we consider the



following optimization framework in which the only difference
with (3) is that the queue vector q is the decision variable.

min
q

1

2

N∑
i=1

λi −
M∑
j=1

gsidj (q)

2

+
1

2

M∑
j=1

(
N∑
i=1

gsidj (q)− gdj (q)

)2

s.t.
N∑
i=1

gsidj (q) = gdj (q), ∀dj ∈ B

0 ≤ gsidj (q) ≤ csidj , ∀(si, dj) ∈ E
0 ≤ gdj (q) ≤ µj , ∀j = 1, . . . ,M

(6)
Denote an optimizer of (6) as q∗ and the set of all optimizers

of (6) as Q∗. The first condition is to verify that the policy
g(q) satisfies ∀q∗ ∈ Q∗, g(q∗) equals some g∗ ∈ G∗
where G∗ denotes the set of optimizers of (3). For the second
condition, we verify the convergence of the ODE dynamics
(5) to the most balanced state under the policy g(q) given any
initial queue vector. Namely, as t→∞, the second condition
is to verify that the policy drives the queue vector to Q∗. If
the policy g(q) satisfies both conditions, it can achieve most
balanced overload in the steady state.

Fig. 4: Condition 1 (existence) and 2 (convergence) to verify
that a queue-based policy achieves most balanced overload

B. Maxweight + Backpressure Policy in Differentiable Form

The ODE-based methodology in Section IV-A requires the
queue-based policy g(q) in a differentiable form. We now
define the mw+bp policy accordingly. The policy contains two
parts: maxweight scheduling and a backpressure mechanism.
The idea of maxweight scheduling is to serve input nodes
that have longer queue backlogs with higher priority [22]. The
backpressure mechanism determines to transmit packets over a
link (si, dj) at t with rate csidj

if qsi(t) > qdj
(t), and does not

transmit otherwise [9]. To avoid buffer overflow, backpressure
also ensures that packets are not served to a saturated node.

Both maxweight and backpressure were proposed in discrete
forms originally. To embed them in the ODE framework, we
propose the following differentiable characterization which
can well approximate their original version.

Maxweight Scheduling: The maxweight scheduling in
differentiable form is defined as

gsidj (q) = csidj

eγqsi∑N
k=1 e

γqsk
, ∀(si, dj) ∈ E (7)

where γ > 0 is a parameter. The larger γ is, the more we favor
to serve ingress nodes with longer queue length. An extreme

case is γ →∞, which matches to the serve-the-longest-queue
policy [24]: only the ingress node with longest queue length
will be served, and if there are K ingress nodes that have the
same longest queue length, then (7) guarantees that each of
these K nodes, say node si, will be served with rate csid/K.
This corresponds to the result under serve-the-longest-queue
policy in expectation, in which one of these K nodes is chosen
uniformly at random to be served.

Backpressure Mechanism:

gsidj
(q) = csidj

αsidj
βdj

, ∀(si, dj) ∈ E (8)

where

αsidj
=

1

1 + e−a(qsi−qdj )
, βdj

:=
1

1 + e−a(bdj−qdj−ϵ)

and a > 0 and ϵ > 0 are preset values. Note that if a→∞ and
ϵ is close enough to 0, then the term αsidj

= 1 if qsi > qdj

and αsidj = 0 if qsi < qdj ; the term βdj → 1 if qdj < bdj

and βdj → 0 if qdj → bdj . Therefore the policy (8) transmits
the packets from an ingress node si to an egress node dj with
maximum service rate csidj

if and only if the queue length in
si is greater than in dj , and meanwhile the buffer of node d
is not saturated, which shows that (8) is an approximation to
backpressure under sufficiently large a and small ϵ.

Maxweight + Backpressure (mw+bp): Combining (7) and
(8), we can formulate the mw+bp policy as

gsidj (q) = csidjαsidjβdj

eγqsi∑N
k=1 e

γqsk
, ∀(si, dj) ∈ E (9)

In (9), a transmission link is activated if and only if its
corresponding ingress queue length satisfies the link activation
requirements under both maxweight and backpressure.

In addition, egress nodes operate in a work-conserving
manner, where each egress node dj serves packets with rate
µj whenever the buffer is nonempty. This guarantees that the
egress nodes reduce the queue overload at the maximum rates.
This work-conserving policy can also be formulated into a
differentiable form as

gdj
(q) = µj

1

1 + e−a(qdj−ϵ)
,∀j ∈ 1, . . . ,M (10)

under sufficiently large a and ϵ→ 0.

C. MW+BP in Single-hop Networks with Sufficient Capacity

In this part, we prove that the mw+bp policy (9) can
achieve most balanced overload as by optimizing (3) if every
transmission link has sufficient capacity, and all egress nodes
run (10), stated in Theorem 2.

Theorem 2. The queue dynamics under (9) and (10)
converges to the most balanced overloading if csidj

>
µj , ∀(si, dj) ∈ E , j = 1, . . . ,M .

The proof idea is to verify the existence and convergence
of most balanced state. More details are deferred to appendix.
Implementing (10) clearly makes for overload mitigation as all
egress nodes do their best to send packets out. The intuition
why (9) achieves most balanced overload is three-fold: (i)



The maxweight (7) balances the ingress nodes as it favors
serving queues with longer length; (ii) The backpressure (8)
balances any connected ingress si and egress dj as it sets
the threshold for transmission decision at qsi = qdj

; (iii)
The condition csidj

> µj , ∀(si, dj) ∈ E guarantees that
mw+bp can achieve maximum throughput since it makes any
egress node dj never be idle. The sufficient link capacity
generally holds in data center networks and server farms
which have sufficient transmission resources to guarantee high
quality-of-service requirements [3].

D. MW+BP in Single-hop Networks with Limited Capacity

Next we consider limited capacity where csidj
>

µj , ∀(si, dj) ∈ E does not hold. In this case, mw+bp
policy (9) may not achieve most balanced overload since the
maximum throughput may not be achieved, compared with
sufficient capacity case in Section IV-C. We show an example
in Fig. 5. Our solution is to consider a generalized version of
mw+bp, where we run (9) and in the meantime additionally
serve the ingress nodes with longest queues in order until
maximum throughput is achieved. A special case is to consider
γ → ∞ in (9) so that the whole mechanism is exactly an
extended version of serving-the-longest-queue policy.

Fig. 5: Example that (9) does not achieve most balanced overload
with limited capacity with γ → ∞, where node d has bounded buffer.
On the left, (g1, g2, g3) = (2.5, 0.5, 0) denotes the transmission rates
under (9) in steady state, under which q̇ = [5.5, 5.5, 4]. It is not
the most balanced overload as presented on the right, where q̇∗ =
[5, 3.5, 3.5] under (g∗1 , g

∗
2 , g

∗
3) = (3, 2.5, 0.5), the optimal solution

to (3). Other γ values also suffer from the suboptimality.

We summarize our solution in Algorithm 1. Algorithm 1 is
a real-time algorithm that determines the service rates on every
link given the current queue information q(t). We run (9) and
calculate the remaining capacity on each link. Then we sort the
ingress nodes in non-increasing order, and further follow the
order to inject packets to egress nodes whose packet injection
rate is lower than its service rate. Algorithm 1 presents our
solution in a quantified way, which uses the information of
c and µ that may not be available. However, in practical
implementation we do not require them: (i) We can sense if
a link has been served with full capacity. If so, we do not
inject more packets through this link. This replaces the need
of calculation in line 3 and 8; (ii) Each egress node dj can
send the information of whether the queue length is increasing
to ingress nodes through broadcasting or a controller, serving
as an alternative indicator of rdj

< µj in line 7 and replaces
the need of calculation in line 4 and 9.

We can show that the generalized maxweight scheduling
leads to most balanced overloading.

Algorithm 1: Generalized maxweight + backpressure
with limited capacity

1 Input: current queue vector q := q(t);
2 Run (9) and (10), and obtain g(q);
3 For all (si, dj) ∈ E , calculate the remaining capacity

c̃sidj
:= csidj

− gsidj
(q);

4 Calculate the packet injection rate to all dj ∈ VE as
rdj

:=
∑

si:(si,dj)∈E gsidj
(q);

5 Sort the queue length of ingress nodes in
non-increasing order qs(1) ≥ qs(2) ≥ · · · ≥ qs(N)

,
where {s(i)}Ni=1 is a permutation of {si}Ni=1;

6 for i = 1, . . . , N do
7 for all dj that rdj

< µj do
8 gs(i)dj (q)← gs(i)dj (q)+min{c̃s(i)dj , µj−rdj};
9 rdj ← rdj +min{c̃s(i)dj , µj − rdj};

10 Return g(q) as the transmission policy;

Theorem 3. The generalized mw+bp policy in Algorithm 1
achieves most balanced overloading.

The proof idea is similar to the proof of Theorem
2 by expressing the generalized mw+bp policy into a
differentiable form, and then verify the conditions 1 and 2
in Section IV-A. The intuition is that Algorithm 1 achieves
maximum throughput, and is a combination of mw+bp (9)
and the serving-the-longest-queue, both of which achieve most
balanced overload once maximum throughput can be achieved.
Due to space limitation, we omit the proof.

E. Distributed MW + BP

In mw+bp policy (9), collecting real-time queue information
of all ingress nodes is required at each ingress node or through
a centralized controller. This induces large communication
overhead in large-scale networks. We consider a distributed
version of (9) to reduce overhead. The idea is that each ingress
node gets access to another r ingress nodes, and run (9)
where the maxweight part only depends on the queue length
of itself and these r ingress nodes. One extreme case is that
r = 1, where each ingress node si has the information of
si+1 (sN has the information of s1). The ingress node si
serves packets to egress nodes only if qsi > qsi+1

(for sN
the condition is qsN > qs1 ), thus no need of sharing queue
information of ingress nodes other than si+1 to si, which
reduces the communication overhead at the ingress side from
N−1 to 1 for each ingress node. The intuition this distributed
mechanism works for overload balancing is that balancing the
pairs (si−1, si) and (si, si+1) together indirectly balances the
pair (si−1, si+1).

The above distributed mw + bp policy at any ingress si can
be formalized into a differentiable form as

gsidj (q) = csidjαsidjβdj

eγqsi

eγqsi + eγqsi+1
(11)

where αsidj
and βdj

represents the backpressure terms as in
(8). We show in Section V that this distributed variant, even



under r = 1, is close to the optimum achieved by mw+bp (9)
in a large portion of test cases, which serves as a promising
alternative of (9) to reduce communication overhead with low
performance sacrifice in practical implementation.

V. PERFORMANCE EVALUATION

In this section, we verify our proposed policies and theories
through experiments over (i) single-hop network: server farm,
packet switch, etc.; (ii) tree-structured datacenter network, for
example Clos structure [16]. Clos concatenates multiple stages
of single-hop structures. Although not proved analytically,
verification results over Clos structure below demonstrate the
extendability of our proposed policies to multi-hop networks.

We evaluate three policies: (i) Pure backpressure (8) [9]; (ii)
Centralized Maxweight + Backpressure ((9) and Algorithm 1);
(iii) Distributed Maxweight + Backpressure under r = 1 (11).
We evaluate their performance in overload balancing through
measuring the gap between q̇∗, the optimal solution to (3)
achieved with prior knowledge of (λ,µ, c) in steady state,
and q̇π , the steady state queue overload rate vector under a
particular queue-based policy π. Closer gap represents superior
overload balancing performance. Specifically, we consider two
gap ratio metrics: (i) Quadratic sum gap ratio: ||q̇π||2/||q̇∗||2
which is exactly the metric we postulate; (ii) Max overload rate
gap ratio: maxi∈V q̇πi /maxi∈V q̇∗i which reflects particularly
the balancing of the most severe overload. For both metrics,
the closer to 1, the better π is. The first metric reflects more
on overall balancing while the second fits into cases where
maximum overload is more important.

To demonstrate the universality of our proposed policy,
we evaluate it using (i) different λ and µ, which represents
different overload levels; (ii) different c, which represents
different service capacity; (iii) different buffer values b,
which represents different buffer settings, including the spatial
distribution of sufficient and limited buffers. We consider
multiple networks instances with randomly sampled values of
the above parameters, and measure the empirical cumulative
distribution function (CDF) of the two gap metrics.

As introduced at length below, we see that maxweight +
backpressure achieves most balanced overload rates in steady
state, far better than pure backpressure in both metrics, while
the performance of distributed maxweight + backpressure
approaches that of maxweight + backpressure.

A. Single-hop Networks

We evaluate on a 64 × 32 single-hop network with full
connection between ingress and egress nodes, modeling real
switched networks [16], [20]. We consider 200 randomly
selected parameter settings: (i) The arrival rate to each ingress
port is uniformly distributed in [0, 4]; (ii) The service rates
of each egress port is uniformly distributed within [0, 6]; (iii)
The capacity csidj

for each ingress-egress pair (si, dj) is
uniformly distributed in [0, 10]; (iv) The buffer size for any
ingress node is 10,000 so that it is never saturated during the
simulation, and the buffer size for any egress node is 10,000
with probability 0.2 and uniformly distributed within [30, 80]

with probability 0.8. The initial queue length in each node is
set to be uniformly distributed within [0,min(30, buffer size)],
so that no queues are overflow initially. The rationales behind
the settings are: (i) and (ii) guarantee that the system is
overloaded with high probability, as the expected sum of
arrival rates is 2 × 64 = 128, 133% of the expected sum
of egress service rates 3 × 32 = 96; (iii) considers both
sufficient and limited capacity values; (iv) realizes different
buffer settings, which follows the real case that buffers at
ingress are large [17] while egress ports may have limited
buffers [14], [20] generally.

We plot the CDFs of the quadratic sum gap ratio and
max overload rate gap ratio of all 200 sampled settings in
steady state in Fig. 6 and Fig. 7, where the x-axis is in
logarithmic scale to make details clearer. Our proposed mw+bp
(9) achieves quadratic sum gap close to 1 for nearly all test
instances, and achieves max overload rate gap close to 1 for
more than 70% instances. The optimality shown in the results
is not 100% as in theory due to limited time span. The value
difference between these two gaps is due to the balancing
effect of quadratic sum4. The distributed version of mw + bp
(11) loses some accuracy while still performs generally well,
as in more than 85% instances, the quadratic sum overlaod gap
is less than 1.15 and the max overload rate gap is less than 1.4,
as pointed out in the figures. Comparatively, the backpressure
policy incurs large gaps in the steady state and achieves the
optimum in none of the cases. Typically, with more than 75%
of instances the quadratic sum gap exceeds 1.4 and the max
overload rate gap exceeds 1.5.

Fig. 6: Quadratic Sum Gap Comparison in Steady State

Fig. 7: Max Overload Rate Gap Comparison in Steady State

We further present the transient process of the quadratic sum
gap ratio in Fig. 8 under the ODE. Note that negative queue

4Consider, for example, q̇∗ = [0.5, 0.5] and q̇π = [0.6, 0.4], then a gap
of 0.6/0.5 = 1.2 in the max overload rate only leads to a gap of (0.62 +
0.42)/(0.52 + 0.52) = 1.04 in quadratic sum, where the gap is smaller.



overload rate may exist in transient states, which is desirable
for overload mitigation at a node. Therefore the quadratic sum
gap ratio at any time in Fig. 8 only considers the sum of
positive queue overload rates. At the beginning, the gap ratio
is high for all three schemes, because the queue is far from the
equilibrium point. For example, in pure backpressure, when
all connected nodes satisfy backpressure constraints, then all
intermediate links will be activated, thus all ingress nodes
have negative overload rates while egress nodes have large
positive rates due to the arriving packets from all upstream
links. Approaching the steady state, shown in the zoomed-in
subfigure, the gap of mw + bp, both centralized and distributed,
converges close to 1, while the gap of pure backpressure
converges a value greater than 1, not optimal solution for
overload balancing.

Fig. 8: Transient Process of Quadratic Sum Gap

B. Clos Network Structure

We further test on a 3-stage Clos structure abstracted
from Google’s work on their Jupiter datacenter [16], shown
in Fig. 9. It contains 24 ingress blocks at the top, fully
connected to 12 aggregation blocks at the middle, and the
aggregation blocks 1 to 4 are connected to 4 egress blocks,
as are aggregation blocks 5 to 8. Packets depart from the
network from the 8 egress blocks and aggregation blocks 9 to
12, which may have buffers with limited size. Similarly, we
randomly take 200 different settings of parameters: Arrival rate
is uniformly distributed within [0, 12]; Service rate of blocks
where packet depart from the network is uniformly distributed
within [0, 12]; Capacity values of different links, and buffer
size setting at blocks from which packets depart are identical
to the single-hop case in Section V-A. The performance of
the network policies are presented in Fig. 10 and Fig. 11. The
results share a similar trend with the single-hop case.

VI. CONCLUSION

In this paper, we study overload balancing in single-hop
networks with bounded buffers. We show that bounded
buffer affects the resulting policy to achieve most balanced
overload. We leverage ordinary differential equations to

Fig. 9: Example of a 3-stage Clos structure from [16]

Fig. 10: Quadratic Sum Gap Comparison (Clos)

Fig. 11: Max Overload Rate Gap Comparison (Clos)

model the queue dynamics in bounded buffer systems. We
first prove that setting link service rates to minimize the
quadratic sum of the queue overload rates leads to the
lexicographic minimum queue overload. Based on this result,
we prove that a maxweight scheduling and backpressure policy
asymptotically achieves most balanced overload, through a
novel formulation of the policy in a differentiable form
which may be of independent interest. We further propose
a distributed maxweight + backpressure policy that can
reduce communication overhead by one order of magnitude.
We validate the performance of our proposed policies by
simulation over single-hop structure and Clos networks
under different packet arrival rates, link capacities, and
buffer settings. Extension of the results in this work to
multi-hop networks, and exploitation of the differential
equation formulation for other network performance metrics,
are promising future directions.
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APPENDIX

A. Proof Sketch of Lemma 1
We term (3) as l2 problem and (4) as l∞ problem, since

they respectively minimize the l2 and l∞ norm of q̇. The
Lagrangian functions of (3) and (4) are5

• L(2)(g,a,b, h) = 1
2

∑
i∈V(q̇i)

2 +
∑

(i,j)∈E aij(gij −
cij)−

∑
(i,j)∈E bijgij +

∑
i∈B hiq̇i.

• L(∞)(g, v,α,β,γ, h̄) = v +
∑

i∈V γi(q̇i − v) +∑
(i,j)∈E αij(gij − cij)−

∑
(i,j)∈E βijgij +

∑
i∈B hiq̇i.

where q̇i follows (1) and (2). Their KKT conditions are
l2 problem:
−q̇i + q̇j + aij − bij − hi + hj = 0, ∀(i, j) ∈ E
hiq̇i = 0, ∀i ∈ B
aij(gij − cij) = 0, aij ≥ 0; bijgij = 0, bij ≥ 0, ∀(i, j) ∈ E

(12)
l∞ problem:

1−
∑

i∈V γi = 0

−γi + γj + αij − βij − h̄i + h̄j = 0, ∀(i, j) ∈ E
h̄iq̇i = 0, ∀i ∈ B
aij(gij − cij) = 0, aij ≥ 0; bijgij = 0, bij ≥ 0, ∀(i, j) ∈ E
γi(q̇i − v) = 0, γi ≥ 0, ∀i ∈ V

(13)
Denote an optimizer of the l2 problem as g(2), and it suffices

to show that given (g(2),a,b,h) that satisfies (12), there exists
(ḡ, v,α,β,γ, h̄) that satisfies (13), and g(2) = ḡ. If this holds,
then g(2) = ḡ minimizes (4) as the l∞ problem is convex.

B. Proof Sketch of Theorem 2
Our proof idea is to verify the existence and convergence

conditions for mw+bp (9) mentioned in Section IV-A. The
existence condition can be proved in a similar way as Lemma
1, where we prove that under (9), for any given solution
q∗ and feasible values of Lagrangian multipliers to the KKT
conditions of (6), then under g∗ = g(q∗) there exists feasible
Lagrangian multipliers to the KKT conditions of (3). The proof
requires the property that the policy should satisfy

∂gsidj

∂qsi
> 0,

∂gskdj

∂qsi
< 0, ∀k ̸= i,∀dj ∈ B, (14)

which the mw+bp policy (9) satisfies. The convergence
condition is proved by verifying that under mw+bp (9), the q̇ at
the steady state of (5) is the most balanced state as induced by
the optimum g∗ of (3). We present the proof idea of balancing
the ingress nodes for brevity, while taking into consideration
of balancing the egress nodes is the same. Due to overload,
there exists at least one si0 that will have q̇si0 > 0 in the steady
state. Suppose the most balanced state at the N ingress nodes
satisfies q̇si = ξi,i0 q̇si0 for some ξi,i0 ≥ 0, ∀i ̸= i0, then it
suffices to verify if the ODE dynamics under new variables
x := {xi}i̸=i0 where xi := qsi − ξi,i0qsi0 will converge to
the equilibrium point x∗, indicating ẋ = 0 in the steady
state, which means the most balanced overload is achieved.
By transforming the ODE (5) with respect to q to x under
mw+bp (9), we can prove the convergence to x∗ by Lyapunov
function method, conditioned on (14) which (9) satisfies.

5b in the proof are Lagrangian multipliers rather than buffer sizes.


