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Abstract—Consider a stream learning system with a source
and a set of computation nodes that solves a machine learning
task modeled as stochastic convex optimization problem over an
unknown distribution D. The source generates i.i.d. data points
from D and routes the data points to the computation nodes
for processing. The data points are processed in a streaming
fashion, i.e., each data point can be accessed only once and is
discarded after processing. The system employs local stochastic
gradient descent (local SGD), where each computation node
performs stochastic gradient descent locally using the data it
receives from the source and periodically synchronizes with
other computation nodes. Since the routing policy of the source
determines the availability of data points at each computation
node, the performance of the system, i.e., the optimization error
obtained by local SGD, depends on the routing policy.

In this paper, we study the influence of the routing policy
on the performance of stream learning systems. We first derive
an upper bound on the optimization error as a function of
the routing policy. The upper bound reveals that the routing
policy influences the performance through tuning the bias-
variance trade-off of the optimization process, and gives rise to a
framework for optimizing the routing policy for stream learning
systems. By minimizing the upper bound, we propose an optimal
static routing policy that achieves the best trade-off for stream
learning systems with deterministic data generation process. We
then propose a routing policy that can approximate the optimal
static routing policy arbitrarily closely for systems where the
data points are generated according to a stochastic process with
unknown rate. Finally, we conduct simulations using Support
Vector Machine as the machine learning task on a real data
set, and show that the optimal static routing policy has excellent
empirical performance in terms of minimizing the optimization
error and the proposed stochastic routing policy closely matches
the optimal static routing policy.

I. INTRODUCTION

Stream learning is a machine learning paradigm where the
training data arrives as a continuous stream [1], [2] and the
learning algorithm can only perform one pass over the training
data. It models machine learning tasks in stream analytics
applications such as video streaming analysis [3], network
traffic classification [4], [5], and social network user profiling
[6], where the data is naturally generated in a streaming
fashion and has tight latency constraints. As machine learning-
based analysis can discover valuable insights and patterns
from streaming data [1], [7], systems for stream learning have
become a key component in modern stream analytics platforms
such as Twitter Heron [8], S4 [9], and Apache Flink [10].

A typical stream learning system has two logical compo-
nents: a network component that consists of a source that
generates the training data and a set of parallel computation
nodes that receive the training data from the source, and an

This work was supported by NSF CNS-1907905 and by Office of Naval
Research (ONR) grant award N00014-20-1-2119.

underlying learning algorithm that the computational nodes
follow to process the training data and solve the machine
learning task. There has been a flurry works that study the
underlying learning algorithms for stream learning systems
[7], [11], [12], [13], [14], [26]. Some of them work for
general machine learning tasks while others are designed for
specific machine learning tasks or models, such as Support
Vector Machine [11], Neural Networks [7], and least-square
regression [13]. On the other hand, the network component of
stream learning systems has been largely overlooked. Different
from other distributed machine learning systems, in stream
learning systems, the training data is routed to the computation
nodes by the source and each data point can be accessed only
once. Due to this distinction in the availability of training
data, the network component in stream learning system plays
a fundamentally different role compared to previous studies on
network operations in other learning systems, e.g., traditional
distributed learning systems (where the training data is stored
in a central memory and can be accessed by all computation
nodes [15], [16], [17], and federated learning systems, where
the training data is stored in the local memory of of each node
and can be accessed on demand [18], [19], [20], [21].

The core operation of the network component of stream
learning systems is the routing policy employed by the source.
The routing policy determines the availability of the training
data at each computation node, and thus controls the execution
flow of the underlying machine learning algorithms. There-
fore, the routing policy can have significant influence on the
performance of stream learning systems.

In this paper, we consider a stream learning system with
a source s and M computation nodes. The machine learning
task is modeled as a convex optimization problem whose goal
is to find the optimization variable w (often corresponding
to model parameters) that minimizes the objective function
F (w) := Ex∼D[f(w, x)], with D being an unknown distri-
bution, x representing the data and f being the loss function.
Such formulation is common in the machine learning literature
[23]. We will discuss in Section II on how this formulation
corresponds to real-life machine learning tasks. We first study
a discrete time deterministic system where at each time slot
t, the source s generates λ i.i.d. data points xi from the
distribution D. Next, s sends am data points to the buffer of
node m with

∑M
m=1 am = λ. Each node can process at most

µ data points per time slot. To distill the effect of routing
policies, we fix the underlying algorithm employed by the
system as local stochastic gradient descent (local SGD). The
main reasons behind choosing local SGD for our model are
that in theory local SGD achieves near-optimal performance
with minimal assumptions [25], and in practice local SGD
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is easy to implement and is widely adopted in real machine
learning systems [26], [27]. In local SGD, each node m
maintains a local iterate of the optimization variable w(m) and
performs stochastic gradient descent based on the local iterate
using its local data. Local SGD proceeds in rounds, where at
the beginning of each round, each node with more than C
data points in the buffer participates in the round by taking C
steps of SGD using data points in the buffer. At the end of
each round, each node updates its local iterate as the average
of the local iterates of the nodes that have participated in the
round (see Section II. B. for a detailed introduction to loca
SGD). Given a time horizon of T time slots, the performance
of the stream learning system is measured by the optimization
error, i.e., the gap between the average of all the local iterates
and the optimal solution after T time slots.

To quantitatively characterize the influence of the routing
policy, we first derive an upper bound on the optimization error
as a function of the routing policy {am}. The upper bound
reveals that the routing policy influences the optimization error
through tuning the trade-off between the number of rounds
that local SGD completes by T time slots, which can be
interpreted as the bias of the optimization process of the
system, and the number of participating nodes of each round,
which relates to the variance of the optimization process.
The upper bound gives rise to an optimization framework
for the routing policy of stream learning systems. Through
minimizing the upper bound, we identify the optimal static
routing policy that achieves the best bias-variance tradeoff.
The optimal static routing policy has a special form that every
time it sends a∗ data points to approximately bλ/a∗c nodes,
where the value of a∗ depends on the properties of F and
system parameters λ and µ. As a∗ decreases with the noise of
the data generating process (which will be formally defined in
Section II), our results yield interesting insights, namely, the
optimal policy should concentrate more data points to fewer
nodes when the noise is low (a∗ is large), while balance the
data points over more nodes when the noise is high (a∗ is
small).

Next, we extend our results to stochastic systems, where the
source generates a(t) data points at time t with a(t) being a
random variable such that E[a(t)] = λ and the parameter λ is
unknown. Since computing a∗ requires knowledge of λ, the
optimal static routing policy cannot be applied in stochastic
systems. We thus seek a stochastic routing policy that has close
performance to the optimal static routing policy. We propose
the Priority-K policy, that constructs virtual queues for each
node and makes routing decision based on virtual queues.
Priority-K does not rely on knowledge of λ, yet achieves
a steady state distribution of routing decisions that can be
arbitrarily close to the optimal static routing policy, with the
difference decreasing exponentially with K. It can also be
viewed as a method that solves a new kind of routing problems
in stochastic queueing network that aim at maintaining the
data rate of each node at a pre-defined level (rather than load-
balancing or optimizing throughput). To summarize, our main
results are as follows:

• We derive an upper bound on the optimization error of
local SGD in stream learning systems as a function of
the routing policy. The upper bound gives rise to an
optimization framework for the routing policy in stream
learning systems.

• Based on minimization of the upper bound, we derive
the optimal static routing policy for deterministic stream
learning systems.

• We then propose a stochastic routing policy, Priority-K,
that can approximate the optimal static routing policy
arbitrarily closely in stochastic stream learning systems.

• We empirically validate our theoretical results through
simulations using SVM as the machine learning tasks on
a real data set from libSVM [34].

It is worth mentioning that previous works on optimal routing
for stream processing systems have considered the abstract
problem where the objects to be routed are tasks that require
a sequence of network resources from the network nodes [28],
[29], [30], [31]. The problems therein are typically translated
to a general network flow problem where the goal is to
maximize the completion rate of the tasks subject to the
resource constraints of the nodes [30], [31]. On the other hand,
our work focuses specifically on the interaction between the
routing of training data points and the underlying machine
learning algorithm in stream learning systems.

The rest of the paper is organized as follows. In section
II, we present our model for stream learning systems. The
upper bound on optimization error as a function of the routing
policy is derived in Section III. Based on the upper bound, we
derive the optimal routing policy for deterministic systems in
Section IV. We then extend the results to stochastic systems in
Section V. We conduct simulations to evaluate the empirical
performance of our routing policy in Section VI and we
conclude the paper in Section VII.

II. MODEL AND PROBLEM FORMULATION

In this section, we present our model for the stream learn-
ing system that involves definitions of the machine learning
task, network component, the underlying algorithm and the
optimization error as the performance metric.

A. Machine Learning Task

The machine learning task is modeled as a stochastic
optimization problem

minimize F (w) := Ex∼D[f(w, x)] (1)
s.t. w ∈ W,

where f is the loss function, w is the optimization variable
with domain W , and x is the data that follows distribution
D. The distribution D is unknown, but we will have access
to i.i.d. data points that are generated from D. We aim to
(approximately) find the minimizer w∗ := arg minw∈W F (w)
with first-order (gradient-based) algorithms. This formulation
is common in machine learning literature [23], [24] for super-
vised learning tasks. As a concrete example, consider linear
regression with regressor θ ∈ Rn and dependent variable
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y ∈ R. The goal is to compute a linear model parameterized
by w ∈ Rn such that the value of wTθ is close to the corre-
sponding value of y, for (θ, y) from population distribution
D. The closeness is measured by the square-loss function
(y −wTθ)2. We do not know the distribution D but we have
access to i.i.d. training data coming from D and seek to learn
a model with small expected loss with respect to D using the
training data. In this example, a generic training data point x
consists of the regressor θ and the dependent variable y and
the loss function f(w, x) = f(w, θ, y) is the square function
f(w, θ, y) = (y − wTθ)2.

Throughout the paper, we will make the following assump-
tions on the optimization problem:

Assumption 1. W is a convex and bounded set with
supw,w′∈W ||w−w′|| ≤ D. The gradient of F is bounded with
supw∈W ||∇F (w)|| ≤ G0 and supw∈W supx ||∇f(w, x)|| ≤
G1. Ex∼D[||∇f(w, x)−∇F (w)||2] ≤ σ2.

Note that the gradient of F being bounded is implied by the
gradient of f being bounded with probability one, and is thus
a weaker assumption. Moreover, the quantity σ2 essentially
characterizes the variance of the gradient ∇f(w, x) over the
distribution D. If we use ∇f(w, x) as a stochastic gradient
for ∇F (w), then σ2 can be considered as the noise of the
stochastic gradient, as the stochastic gradient ∇f(w, x) is
computed over one data point x sampled from the distribution
D rather than over the whole distribution.

Assumption 2 (Convexity). For each x, f(w, x) is convex
with respect to w, i.e., ∀w1, w2 ∈ W , f(w1, x) ≥ f(w2, x) +
∇f(w2, x)T(w1 − w2).

Note that we do not assume the function to be smooth
(differentiable), so the notation∇f(w, x) should be interpreted
as the sub-gradient when the gradient does not exist.

B. Stream Learning System

1) Network Component: The network component of the
stream learning system consists of a source s and M compu-
tation nodes. The source s generates i.i.d. data points from the
distribution D, and has a buffer Qs that stores the generated
data points. Each data point will be sent to one of the
computation nodes for processing. Each computation node m
has a buffer Qm that stores the incoming data points. The
nodes process the data points by computing gradients in a
streaming fashion, i.e., for a generic data point xi in the buffer
of a node, the node can only compute the gradient of the loss
function on the data point with respect to one value of the
optimization variable, i.e., ∇f(w, xi) for some w. After such
computation, the data point leaves the buffer and cannot be
reused.

The network component operates in discrete time with t =
1, 2, . . .. The source s generates a(t) data points at time slot t.
We first consider deterministic systems where the generation
of data points follows a deterministic process with a(t) = λ for
all t and the parameter λ is known. In section V, we will study
stochastic systems where a(t) is a sequence of i.i.d. random

variables with E[a(t)] = λ and the parameter λ is unknown.
In the deterministic system, the generated data points are first
stored in the source buffer Qs and then routed to the buffer of
the nodes following some routing policy {am} with each am
being a non-negative real number with

∑M
m=1 am = λ. Thus,

am can be interpreted as the time-average number of data
points that node m receives. The routing process is conducted
as follows: the source maintains a routing counter Am for
each node m. Every time slot, the source increments Am by
am, sends bAmc data points from the source buffer to the
buffer of node m, and set Am := Am − bAmc. The above
procedure ensures an integer number of data points in sent in
every time slot. The maximum processing rate of each node
is µ, i.e., each node can compute the gradient on at most µ
data points every time slot. Therefore, for system stability, we
need to have am ≤ µ for all m. Without loss of generality, we
assume that λ ≤ Mµ, i.e., the generating rate of data points
is no larger than the maximum total processing rate of all
the nodes. As can be seen from the model, the routing policy
{am} determines how the incoming data points are routed
to the computation nodes. The main goal of this paper is to
explore how the routing policy influence the performance of
the stream learning system.

2) Underlying Algorithm: We adopt the local stochastic
gradient descent (local SGD) as the underlying algorithm that
the system uses to solve the optimization problem (1). In local
SGD, each node maintains its own iterate of the optimization
variable. It proceeds in rounds, with each round consisting of
C iterations of stochastic gradient descent at each participating
node and an averaging step on which the local iterates are
averaged among the participating nodes and synchronized to
all the nodes. The parameter C is prefixed and will be referred
to as the averaging interval. The nodes participating in a round
are the ones that have at least C data points in the buffer at
the beginning of each round. A new round starts after the end
of the previous round as soon as some node(s) has at least
C data points in the buffer. We will use i to represent the
index of iterations and use w

(m)
i to denote the local iterate

of node m at iteration i. Consider a generic iteration i in
a round where the set of participating nodes is M. Then,
for each node m ∈ M, it uses a data point x(m)

i in its
buffer and updates w(m)

i := w
(m)
i−1−ηi∇f(w

(m)
i , x

(m)
i ), where

ηi is the step size at iteration i. If i is the last iteration
of the round, then all the nodes (including non-participating
ones) set their local iterate to the average of the local iterate
of the participating nodes projecting onto the domain W ,
i.e., ΠW

[
ŵi := 1

|M|
∑
m∈M w

(m)
i−1

]
for all m, with ΠW [·]

representing the projection onto W . The pseudo-code of local
SGD is presented in Algorithm 1. We present a schematic of
our system in Figure 1.

C. Performance Metric

The notion of optimization error, which essentially measures
the gap between the produced solution and the optimal after a
certain number of iterations, is commonly used to measure the
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Fig. 1. Example of the stream learning system with M = 5 and C = 3. For
iteration i = 1, 2, 3 (the first round),Mi = {1, 2, 3}; for iteration i = 4, 5, 6
(the second round), Mi = {3, 4, 5}.

Algorithm 1 Local SGD
Input: Averaging Interval C

1: Initialize: w
(1)
0 = . . . = w

(M)
0 = w0 ∈ W .

2: M := the set of nodes with at least C data samples in
the buffer.

3: for i = 1, 2, . . . do
4: for m ∈M do
5: Use one data point x(m)

i in the buffer.
6: w

(m)
i+1 := w

(m)
i − ηi∇f(w

(m)
i , x

(m)
i ).

7: for m 6∈ M do
8: w

(m)
i+1 := w

(m)
i .

9: if i mod C ≡ C − 1 then
10: ŵi+1 := ΠW

[
1
|M|

∑
m∈M w

(m)
i+1

]
.

11: w
(m)
i+1 := ŵi+1 for all m.

12: Update M as the set of nodes currently with at least
C data samples in the buffer.

performance of optimization algorithms [23], [24]. We adopt
the optimization error as the performance metric of the stream
learning system. However, a key difference in our setting is
that the number of iterations completed in a certain number
of time slots depends on the routing policy, and it is more
appropriate to measure the performance of the system as the
quality of the solution obtained after certain time. Therefore,
we define the performance metric as the optimization error
with respect to wall-clock time, as follows.

Definition 1 (Optimization Error). Suppose under some rout-
ing policy, local SGD completes IT iterations after T time
slots. Let Mi be the participating set at iteration i and
w̄T := ΠW

[
1
IT
·
∑IT
i=1

1
|Mi|

∑
m∈Mi

w
(m)
i

]
. Then, the opti-

mization error under the routing policy after T time slots is
E[F (w̄T )− F (w∗)].

Define ŵi = 1
|Mi|

∑
m∈Mi

w
(m)
i to be the averaged iterate

of iteration i (whether i is the last iteration of a round or not).
In Definition 1, we have implicitly assumed that the solution
produced by local SGD is the mean of the averaged iterates
of all the iterations completed, which follows the convention
of previous analysis of local SGD [25]. Returning the last
averaged iterate ŵ(T ) as the solution might sound like a more

natural choice, but as shown in [24], w̄T used in our definition
usually has a smaller error than ŵ(T ). Furthermore, using
techniques from [23], we can extend our results to the case
where the optimization error is defined with respect to ŵ(T ).

In this paper, we will seek routing policies that minimizes
the optimization error after T time slots1. Our results can
also be extended to other alternatives, e.g., using the averaged
iterate of the last iteration as the solution in the definition of
optimization error.

III. INFLUENCE OF ROUTING POLICIES

In this section, we characterize the influence of routing
policies on the stream learning system by deriving an upper
bound on the optimization error as a function of the employed
routing policy.

A. Intuition – Bias-Variance Tradeoff

Before delving into the details about the upper bound, it
is useful to consider some special cases to develop intuition
behind how routing policies influence the optimization error,
and thus the performance of stream learning systems. Suppose
C = 1, i.e., the local SGD performs averaging every iteration.
It follows that in this case, for each m, w(m)

i = ŵi before
every local gradient step, i.e., the local iterates never diverge
from the averaged iterate ŵi. If we ignore the projections
ΠW for now, then the evolution of ŵi can be written as
ŵi+1 := ŵi − ηi · 1

|Mi|
∑
m∈Mi

∇f(ŵi, x
(m)
i ), where Mi

is the set of participating nodes at iteration i. In this sense,
the averaged iterate ŵi in local SGD evolves as in mini-batch
SGD with a iteration-varying batch size of |Mi|, i.e., at every
iteration ŵi moves along the direction that is the average of
|Mi| stochastic gradients.

Suppose λ = M ≤ µ. We consider two routing policies. The
first one routes all the data samples into the first node, i.e.,
a1 = λ = M,a2 = . . . = aM = 0. The second policy, at each
time slot, route the λ data samples generated from the source to
the first λ nodes with each node receiving one data sample, i.e.,
a1 = . . . = aM = 1. Under the first policy, for every iteration,
only the first node participates in the updates and |Mi| = 1.
After T time slots, local SGD runs for λT iterations. Under
the second policy, all the M nodes participate in every update.
After T time slots, local SGD runs for T iterations, which is
only 1/M of the number of iterations under the first policy.
This suggests that under the first policy, the solution produced
by the stream learning systems will have a lower bias, i.e., if
the gradients were accurate, the solution under the first policy
will have a smaller error. On the other hand, under the first
policy, the averaged iterate is updated with gradients that are
computed on only 1 data point while under the second policy
the averaged iterate is updated with the averaged gradients on
M data points, which have lower variances. It follows that the

1Here, we essentially ignore the time consumed by averaging steps, which
may depend on the communication delay between nodes. It is easy to
incorporate the communication delay in our analysis. However, doing so will
render the results dependent on the relative scale of communication delay and
computation time, which varies in different systems and can hide the insights
we have on the impact routing policy on the optimization error.
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Fig. 2. Illustration of the multiplicity factor γ({am}) with M = 4. Under
this routing policy, after sufficient number of iterations, in a4/a1 of the
iterations, the number of participating nodes Mi = 4, in (a3 − a4)/a1
of the iterations, Mi = 3, in (a2 − a3)/a1 of the iterations, Mi = 2 and
in (a1 − a2)/a1 of the iterations, Mi = 1. Correspondingly, γ({am}) :=∑4

m=1
am−am+1

a1m
, with a5 defined as 0.

stochastic gradients used under the first policy can be more
noisy and less accurate. Such noise naturally propagates to
the final solution and the solution under the first policy will
thus have a higher variance. The optimization error takes into
account both the bias and the variance, or in other words, total
number of updates and the quality of each update. Therefore,
minimizing the optimization error requires the routing policy
to balance between the number of updates and the variance
of each update, which has a similar flavor as the classical
bias-variance tradeoff in machine learning literature. Note that
such tradeoff is in a sense unique to stream learning systems,
since the training data is generated as a stream and cannot
be reused. Other distributed machine learning systems do not
possess this kind of tradeoff as the training data therein is
available beforehand and typically the algorithm can perform
multiple passes over the data.

B. Upper Bound on Optimization Error

We now derive the upper bound on the optimization error of
local SGD as a function of the routing policy {am}. Without
loss of generality, we assume a1 ≥ a2 ≥ . . . ≥ aM . Also,
as the processing rate of a server is µ, we only consider
the case where a1 ≤ µ. For a routing policy {am}, we
define its multiplicity as γ({am}) :=

∑M
m=1

am−am+1

a1m
(with

aM+1 = 0), which is essentially the average inverse of the
number of participating nodes in each round (see Figure 2 for
a graphic illustration.). The upper bound is formally presented
in Theorem 1.

Theorem 1. The optimization error of local SGD with step
size ηi = α√

i
is upper-bounded by

E[F (w̄T )− F (w∗)] ≤ C1√
a1T

+
C2γ({am})√

a1T
+O

(
1

T

)
,

where C1 = 2αCG0G1 + 2D2

α +
αG2

0

2 and C2 = ασ2

2 are
independent of the routing policy.

We prove the theorem by analyzing the averaged iterate
ŵi = 1

|Mi|
∑
m∈Mi

w
(m)
i , with Mi being the set of partic-

ipating nodes at iteration i. The multiplicity γ({am}) shows
up in the upper bound because it is related to the variance of

the stochastic gradients applied to the averaged iterate. The
proof is omitted due to spce limitations.

We define the upper bound of the optimization error in
Theorem 1 (ignoring the lower order term in T ) as a function
of the routing policy {am} as

U({am}) =
C1√
a1T

+
C2γ({am})√

a1T
, (2)

We will derive the optimal routing policy based on U({am}).
Remark: (i). The upper bound on the optimization error in
Theorem 1 depends on the step size. The choice of step size
in the theorem, i.e., ηi = α√

i
has been shown [23], [24] to be

in the optimal regime in terms of the scaling with respect to
the iteration i. (ii). Although U({am}) is an upper bound on
the optimization error, which might not exactly match the true
value of the optimization error for every objective function,
the upper bound is tight in terms of scaling with respect to T
(see e.g. [32]). Furthermore, it can be seen from Section VI
that routing policies that minimizes the upper bound U({am})
also enjoys superior performance in terms of minimizing the
true value of the optimization error. As the exact dependence
of the optimization error on the routing policies is mathe-
matically intractable, the upper bound U({am}) provides a
good proxy to measure the affect of the routing policies on the
performance of stream learning systems. (iii). To demonstrate
the significance of the routing policy, consider the value of
U({am}) of the two routing policies discussed in Section
IV.A. The first one has a1 = λ = M and γ({am}) = 1
while the second one has a1 = 1 and γ({am}) = 1/M .
Therefore, the values of upper bound U({am}) of the two
policies are C1+C2√

MT
, and C1√

T
+ C2

M
√
T

, respectively. The ratio
of the two upper bounds can grow as O(

√
M), which scales

with the size of the system and can grow much larger than
the constants C1, C2 which depend solely on the properties
of the optimization problem. Therefore, although the routing
policy does not affect the scaling of optimization error with
respect to the time horizon T , it can determine the scaling of
optimization error with respect to the size of the system.

IV. OPTIMAL ROUTING IN DETERMINISTIC SYSTEMS

The upper bound sets up a framework for optimizing the
routing policy in stream learning systems. In this section,
we use the framework to derive the optimal routing policy
in deterministic stream learning systems through minimizing
the upper bound U({am}) on the optimization error. We start
by analyzing the multiplicity factor γ({am}) which is a key
term that characterizes the influence of routing policy on the
optimization error. We define Γa as {{am} | a1 = a, µ ≥
a1 ≥ a2 ≥ . . . ≥ aM ,

∑M
m=1 am = λ}, i.e., the set of all

routing policies with the maximum data rate to the nodes
being a1 = a. Since for a given value of a1 = a, U({am})
is optimized by minimizing γ({am}), in Lemma 1, we derive
the optimal routing policy and the optimal value of γ({am})
in the set Γa.
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Lemma 1. For all a ≤ µ, min{am}∈Γa
γ({am}) =(

λ/a− bλ/ac
)
· 1
dλ/ae +

(
1− λ/a+ bλ/ac

)
· 1
bλ/ac . Further-

more, a/λ ≤ min{am}∈Γa
γ({am}) ≤ 9

8 · a/λ.

The proof of Lemma 1 consists of simple algebraic manipu-
lations, and is omitted due to space limitations. From Lemma
1 and its proof, we have the following corollary that specifies
the form of the routing policy that minimizes U({am}) in Γa.

Corollary 1. The routing policy in Γa that minimizes
U({am}) is of the form: a1 = a2 = . . . = abλ/ac = a,
abλ/ac+1 = λ− a · bλ/ac, and abλ/ac+2 = . . . = aM = 0.

With slight abuse of notation, we define γ(a) as(
λ/a− bλ/ac

)
· 1
dλ/ae +

(
1− λ/a+ bλ/ac

)
· 1
bλ/ac . From

Lemma 1 and Corollary 1, to find the routing policy that min-
imizes the upper bounds U , it suffice to find the a ∈ [λ/M,µ]
that minimizes C1√

aT
+ C2γa√

aT
and the policy of the form in

Corollary 1 in Γa. Here a ≥ λ/M since it corresponds
to the largest data rate among all the nodes. As we have
the closed-form expression of γa, we can directly minimize
C1√
aT

+C2γa√
aT

. However, the minimizer would not have a closed-
form expression due to the floor and ceiling functions in γ(a).
Instead, we will approximate γ(a) by a/λ, which by Lemma
1, is at most a factor of 9

8 of γ(a). As will be seen later,
such approximation will lead to a much cleaner and insightful
expression on the optimal value of a. Hence, we replace γ(a)
with a/λ and seek to find a ∈ [λ/M,µ] that minimizes

U(a) =
C1√
aT

+
C2
√
a

λ
√
T
, (3)

The function U(a) = C1√
aT

+ C2
√
a

λ
√
T

is monotonically
decreasing for a ∈ [0, C1λ

C2
] and monotonically increasing

for a ∈ [C1λ
C2

,∞). Define C3 = C1/C2 It follows that the
a∗ = arg mina∈[λ/M,µ] U(a) is equal to

arg min
a∈[λ/M,µ]

U(a) =


µ, if µ ≤ C1λ

C2

C1λ
C2

, if λ
M ≤

C1λ
C2
≤ µ

λ
M , if C1λ

C2
≤ λ

M

Based on the preceding discussion, we have the following
optimal routing policy that (approximately) minimizes the
upper bound on the optimization error in deterministic stream
learning systems. We will refer to such policy as the optimal
static routing policy, to distinguish it with the dynamic policy
that we will propose for stochastic systems.

Definition 2 (Optimal Static Routing Policy). The optimal
static routing policy {a∗m} is one such that a∗m = a∗ for m =
1, . . . , bλ/a∗c, abλ/a∗c+1 = λ− a∗ · bλ/a∗c, and a∗m = 0 for
m = bλ/a∗c+ 2, . . . ,M , where

a∗ =


µ, if µ ≤ C3λ

C3λ, if λ
M ≤ C3λ < µ

λ
M , if C3λ <

λ
M

Remark: In the definition of the optimal static routing

policy, C3 is defined based on the properties of the objective
functions which can be known or estimated beforehand. Also,
λ and µ are parameters that are typically known for deter-
ministic systems. Thus, the optimal static routing policy can
be implemented in deterministic systems. In the next section,
we will discuss stochastic systems, where the parameter λ
is unknown and the optimal static routing policy is thus
inapplicable.

Discussion: Definition 2 suggests that the optimal routing
policy should approximately route the same amount of data
(a∗) to as many computation nodes as possible, and determine
the optimal value of a∗. Although the value of a∗ involves
three cases based on the relative magnitude of µ,C3λ,

λ
M , the

first one and the third one exist due to the physical condition
that a∗ ∈ [ λM , µ]. The core lies in the second case, where
a∗ = C3λ. This reflects the intuition of bias-variance tradeoff
in Section III-A. As in our setup, σ2 characterizes the level
of noise in the gradients as the gradients are computed on
data pointed generated from D rather than directly from the
whole distribution D. Since the constant C1 is independent
of σ2 and C2 increases with σ2, the factor C3 = C1/C2

decreases as the noise increases. Therefore, in the high-noise
regime (C3 is small), the optimal static routing sets a∗ = λ

M ,
which essentially routes an equal number of data points to each
server, so that each update of the local SGD averages over all
the M nodes. This implies that decreasing the noise of each
update outweighs increasing the total number of iterations in
terms of minimizing the optimization error. On the other hand,
in the low-noise regime (C3 is large), the optimal static routing
sets a∗ = µ. This maximizes the total number of iterations
completed by T time slots, which implies that having more
updates is more beneficial than decreasing the noise of each
update (as the noise is already low).

V. EXTENSION TO STOCHASTIC SYSTEMS

In this section, we extend the optimal routing problem to
stochastic stream learning systems where the data generation
follows a stochastic process. The optimal static routing policy
is no longer applicable here since we do not have knowledge
of the data generation rate λ. We instead propose a queue-
based routing policy that can arbitrarily closely approximate
the optimal static routing policy in stochastic systems.

A. Stochastic System Model

The setup of a stochastic stream learning system is similar
as the deterministic system. The main difference is that the
number of data points a(t) generated from the source at each
time t is no longer deterministic, but a sequence of i.i.d.
random variable with E[a(t)] = λ, where λ is unknown.2 In
the stochastic system, we allow for dynamic routing policies
{am(t)} with

∑
m am(t) = a(t). As in the deterministic

system, each node can compute the gradient on at most µ

2Our results can be easily generalized to the case where the processing
rate is also a stochastic process with unknown rate µ. For simplicity of
presentation, we only consider the case where the data generation is stochastic.
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data points at each time slot. We assume that there exists B
such that µ ≤ B and max{C3, 1} · a(t) ≤ B almost surely.

Since λ is unknown, we cannot compute the a∗ in the
optimal static routing policy, which renders the policy inap-
plicable in stochastic systems. Instead, our goal is to design
a routing policy that works for stochastic stream learning
systems that closely approximate the optimal static routing
policy, albeit without knowing a∗. We will consider policies
where limT→∞

∑T
t=1 am(t)

T exists and use

M∑
m=1

|a∗m − lim
T→∞

∑T
t=1 am(t)

T
|

as the measure of closeness, with {a∗m} being the optimal
static routing policy.

B. Stochastic Routing Policy

Before presenting our routing policy for stochastic systems,
we first make some observations regarding the optimal static
routing policy. In Definition 2, the third case C3λ ≤ λ

M is
equivalent to C3 ≤ 1

M , which can be checked without knowing
the value of λ. Furthermore, since in the third case all the
nodes get the same number of data points, round-robin routing
or join-the-shortest-queue work even in stochastic systems
[33]. In the following, we will thus focus on approximating
the first and the second cases of the optimal static policy in
stochastic systems since the third case can be easily dealt with.

The first and the second cases cannot be directly distin-
guished without the knowledge of λ. However, the optimal
static routing in both cases still have the structure that bλ/a∗c
nodes receive the same amount of data and one node gets
the remaining data points. Therefore, for a routing policy that
works in stochastic systems and approximates the optimal
static routing policy, it needs to leverage the structure and
approximately distinguish the first and the second cases with
auxiliary information. To do so, our proposed policy, Priority-
K, maintains two virtual queues Ym(t) and Ỹm(t) for each
node m that evolve as follows:

Ym(t+ 1) := [Ym(t)− µ]+ + am(t)

Ỹm(t+ 1) := [Ỹm(t)− C3a(t)]+ + am(t),

where [z]+ = max{z, 0}. Note that maintaining the virtual
queues does not rely on knowledge of λ. At time t, the service
to virtual queue Ym is equal to µ and the service to virtue
queue Ỹ is equal to C3a(t). Intuitively (as will be formally
shown later), if Ym is bounded and maintained at a non-zero
level, then the time-average data rate to m is close to µ while
if Ỹm is bounded and maintained at a non-zero level, then
the time-average data rate to m is close to C3λ. Therefore,
if µ ≤ (C3λ), to approximate the optimal static policy, it is
sufficient to keep Ym for m = 1, . . . , bλ/µc positive for the
majority of the time; On the other hand, if µ > C3λ, it is
sufficient to keep Ỹm for m = 1, . . . , bλ/C3λc positive for
the majority of the time. Priority-K achieves this based on a
priority-based routing rule, with the priority simply being an

arbitrary ordering of the computation nodes. The details of the
Priority-K policy are presented in Algorithm 2.

Algorithm 2 The Priority-K Policy
Input: Parameter K

1: Initialize: Ym(1) = 0, Ỹm(1) = 0 for each m.
2: for t = 1, 2, . . . , do
3: am(t) := 0 for each m.
4: for m = 1, 2, . . . ,M do
5: if max{Ym(t), Ỹm(t)} ≤ K then
6: am(t) := a(t).
7: End for loop.
8: Update Ym(t), Ỹm(t) for each m.

The Priority-K policy takes a parameter K as input. It first
checks node 1. If the maximum value of the two virtual queues
of node 1 at the current time is no larger than K, then it
sets a1(t) to be a(t). Otherwise, it proceeds to check if the
maximum value of the two virtual queues of node 2 at the
current time is no larger than K, and sets a2(t) as a(t) if the
condition holds. The process proceeds until node M , i.e., the
routing policy will set am(t) to be a(t) as soon as it finds a
node m with max{Ym(t), Ỹm(t)} > K. In Algorithm 2, we
have omitted the case where max{Ym(t), Ỹm(t)} > K for all
m. We will show that the probability of such events decreases
exponentially with K. Furthermore, when such events happen,
we can either set am(t) to be zero for all m (essentially discard
the data points generated at t) or set am(t) to be a(t)/M for all
t. We will study the variant of Priority-K policy that discards
the generated data points when max{Ym(t), Ỹm(t)} > K for
all m. The analysis holds similarly for the other variant.

Before formal analysis, we first give an intuitive explana-
tion of the design rationale behind Priority-K. Without loss
of generality, we consider the case where µ > C3λ and
bλ/(C3λ)c = L > 1. In this case, at every time t, the virtual
queues Ym(t) and Ỹm(t) have the same arrival, while the
service to Ym(t) is µ and the service to Ỹm(t) is C−3a(t). As
Ym and Ỹm have the same arrivals but the service to Ym is in
expectation larger than that of Ỹm, Ỹm(t) is usually larger than
Ym(t). Therefore, the condition max{Ym(t), Ỹm(t)} ≤ K is
usually equivalent to Ỹm(t) ≤ K. Recall that the maximum
arrival is bounded by B. Consider node 1, as it has the top-
priority under Priority-K and λ > C3λ, Ỹ1(t) is maintained
at a level that is greater than 0 but smaller than K + B. It
follows that the data rate to 1 is approximately C3λ (it cannot
be greater than C3λ since Ỹ1 is bounded). Next, consider node
2, since it has the priority next to node 1, applying the same
argument, we have Ỹ2(t) is also maintained at a level that is
greater than 0 but smaller than K + B. It follows that the
data rate to 2 is approximately C3λ. Repeat the argument for
m = 1, . . . , L and noting that the residual data points when
max{Ym(t), Ỹm(t)} > K for m = 1, . . . , L will mostly go to
node L + 1, we have that the time-average data rates to the
nodes under Priority-K are close to those under the optimal
static policy.
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To begin with analyzing Priority-K, note that
Y (t) = (Y1(t), Ỹ1(t), . . . , YM (t), ỸM (t)) forms a
discrete-time Markov chain, and {am(t)} is a function
of Y (t). Furthermore, from the construction of the policy,
0 ≤ Ym(t), Ỹm(t) ≤ K + B for all m, t, where recall that
B is an upper bound on a(t). Therefore, the virtual queues
are stable and there exists a steady state distribution for
the Markov chain. Denote the steady state distribution of
Y (t) under the Priority-K policy as π, and the probability
and expectation under π as Pπ and Eπ . It follows that
limT→∞

∑T
t=1 am(t)

T = Eπ[am(t)]. Thus, we can equivalently
use

∑M
m=1 |a∗m − Eπ(am(t))| to measure the closeness of

Priority-K to the optimal static routing. We begin by proving
the following two lemma that link |a∗m − Eπ(am(t))| for
each m to the steady-state distribution of virtual queues. The
proofs of the lemmas are omitted due to space limitations.

Lemma 2. For each m, Eπ[am(t)] ≤ µ and Eπ[am(t)] ≤
C3λ.

Lemma 3. For each m, Eπ[am(t)] ≥ µ · Pπ[Ym(t) ≥ B] and
Eπ[am(t)] ≥ C3λ · Pπ[Ỹm(t) ≥ B].

Based on Lemmas 2 and 3, we have that if a∗m = µ, then
|a∗m − Eπam(t)| ≤ µ(1− Pπ[Ym(t) ≥ B]) and if a∗m = C3λ,
then |a∗m − Eπam(t)| ≤ C3λ(1 − Pπ[Ỹm(t) ≥ B]). This
corresponds to the informal claim we made in the preceding
discussion that to approximate the optimal static policy, it is
sufficient to maintain Ym or Ỹm at a non-zero level for the ma-
jority of the time. Next, we present the central theorem of this
section that establishes that the closeness between Priority-K
and the optimal static routing policy decreases exponentially
with K. The proof is done by showing that Pπ[Ym(t) ≥ B]
is close to 1 when µ > C3λ and Pπ[Ỹm(t) ≥ B] is close
to 1 when µ < C3λ, through constructing suitable potential
functions of the virtual queues and establishing concentration
bounds of the potential functions. The proof of the theorem is
omitted due to space limitations.

Theorem 2. Assume µ 6= C3λ. For K ≥ 2MB, there exist
positive constants ε0, M0, N0 that only depend on λ,B, µ,C3,
such that

∀m, |a∗m − Eπ[am(t)]| ≤M0 ·
(

B

B + ε0

)K/N0

Theorem 2 establishes that the steady state distribution of
the Priority-K policy can get arbitrarily close to the optimal
static routing policy by picking a large enough K. Although
the distance of the steady-state distribution to the optimal
decreases with K, the convergence time to the steady-state
distribution generally increases with K. In simulations, we
observe that Priority-K with K being about 10 times λ (or
B) can already achieve similar performance as the optimal
static routing policy.

It is worth mentioning that the objective of approximating
the optimal static routing policy in stochastic stream learning
systems can be equivalently put into the context of stochastic
queueing networks, where the goal is to maintain the data

rate received by the network nodes at a certain pre-defined
level (corresponding to a∗m in the optimal static routing),
with the level depending on unknown network statistics (the
relationship between C3λ and µ). Such routing objective is
of different nature than traditional objectives such as load-
balancing or throughput maximization, and we are not aware
of any traditional routing policies that can be used to achieve
the objective. Therefore, to our best knowledge, our Priority-K
policy is the first that solves this new kind of routing problems
in stochastic networks, which may appear in other scenarios
than performance optimization of stochastic stream learning
systems.

VI. SIMULATIONS

In this section, we empirically validate our theoretical
results. Specifically, we focus on evaluating the performance
of the optimal static routing policy and Priority-K using
the optimization error of the stream learning system, and
measuring the closeness of Priority-K and the optimal static
routing policy. We base our simulations on the classification
task of Support Vector Machine (SVM) with a real data
set from [34]. The data set contains n = 690 data points
(x1, y1), (x2, y2), . . . , (xn, yn), where each x ∈ RN (N = 14)
is a feature vector of the data and y ∈ {−1, 1} is the label. The
goal is to compute vector w ∈ RN and b ∈ R that minimizes
the loss

1

n

n∑
i=1

max[0, 1− yi(wT
i xi − b)].

The rationale behind the loss function max[0, 1−yi(wT
i xi−b)]

is that it is small when (wT
i xi − b) has large absolute value

and has the same sign as yi, and it is large otherwise. Through
minimizing the loss function, we seek for parameters w and
b that predicts the correct label with high confidence (large
absolute value of (wT

i xi − b)).
Projecting into our framework, each data point is a feature-

label (x, y) pair, and the optimization variable is (w, b). The
objective function is equal to E(x,y)∼D[max[0, 1− yi(wT

i xi−
b)]], where D is the empirical distribution defined by the
data set. Note that we choose the empirical distribution as
D so that we know D and can thus generate data points and
evaluate the optimization error based on it. The optimization
algorithm (local SGD) of stream learning does not have access
to D. We consider a stream learning system with one source
and M = 15 computation nodes. The source generates data
points (which is simulated by sampling from the empirical
distribution) at a rate of λ = 150 per time slot. For the
deterministic system, the source generates 150 data points
every time slot, while for stochastic routing, the number of
data points generated by the source is a uniform random
integer in [100, 200]. The processing rate of each node is
µ = 30.

A. Effect of Routing Policy

We first investigate how the routing policy influences the
evolution of the optimization error with respect to the wall-
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Fig. 3. Evolution of the optimization error with time in the low noise regime.
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Fig. 4. Evolution of the optimization error with time in the high noise regime.

clock time. We consider four different routing policies. The
first three are static policies in the deterministic system, and
the last one works in the stochastic system:
• Balanced: each node receives 10 data points for each slot,

i.e., am = 10 for all m.
• Concentrated: five nodes receives 30 data points for each

slot, i.e., am = 30 for m = 1, . . . , 5.
• Optimal: the optimal static routing policy defined in

Definition 2, with the parameters C3 estimated from the
data set.

• Priority-K: the stochastic routing policy with the same
C3 as the optimal static routing. K = 2000

We run the routing policies together with local SGD in two
regimes: a low noise regime where the noise of the gradients
only comes from the data generation process, and a high
noise regime where we add artificial noise (a uniform random
variable in [−10, 10]) to the gradient evaluated at each data
point. The results are plotted in Figures 3 and 4. Note that the
y-axis (optimization error) is in log-scale.

From Figure 3, we can see that in the low noise regime,
concentrated routing has better performance (in terms of
optimization error) than balanced routing and the optimal static
policy actually coincides with concentrated routing (a∗ = 30).
On the other hand, in the high noise regime (Figure 4), bal-
anced routing outperforms concentrated routing, and is close
to the optimal static policy. This validates the discussion on the
bias-variance tradeoff in Section III, which indicates that when
the noise level is low, increasing the number updates (reducing
the bias) outweighs improving the accuracy of the updates
(reducing the variance) for local SGD, and the contrary holds
when the noise level is high. Finally, we can also see that the
performance of Priority-K is close to the optimal static policy
in both regimes.
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Fig. 5. Performance of Priority-K with different values of K.
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Fig. 6. Steady state rate difference of Priority-K with different values of K.

B. Robustness of Priority-K

We proceed to evaluate the sensitivity of the performance
of Priority-K with respect to the value of the parameter
K. We first run local-SGD in the high noise regime with
Priority-K routing for K = {200, 500, 1000, 2000} and plot
the results in Figure 5. We can see that, in the range of
{200, 500, 1000, 2000}, the performance of Priority-K im-
proves as the value of K increases, and setting K = 1000 can
already closely match the performance of the optimal static
policy.

We then compute the steady state rate difference of Priority-
K with the optimal static routing policy, i.e., the value∑M
m=1 |a∗m − Eπam(t)|, for K = {100, 200, . . . , 1000} and

plot the results in Figure 6. From the figure, we can see the rate
difference roughly decreases exponentially with K, matching
the theoretical results in Section V.

VII. CONCLUSION

In this paper, we studied the optimal routing problem in
stream learning systems. We first proposed an framework for
optimizing routing policy for stream learning through deriving
an upper bound on the optimization error as a function of the
routing policy. By minimizing the upper bound, we proposed
an optimal static routing policy for stream learning systems
with deterministic data generating process. We then designed
a stochastic routing policy that can approximate the optimal
static routing policy arbitrarily closely for systems where the
data points are generated according to a stochastic process with
unknown rate. Our stochastic routing policy can also been seen
as a solution to a new class of routing problems in stochastic
queueing networks where the goal is to maintain the data rate
to nodes at a target level.
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[11] P. Rai, H. Daumé III, and S. Venkatasubramanian. “Streamed learning:
one-pass SVMs.” arXiv preprint arXiv:0908.0572 (2009).

[12] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the
empirical risk minimizer in a single pass.” in Conference on learning
theory, pp. 728-763, 2015.

[13] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford,
“Parallelizing stochastic gradient descent for least squares regression:
mini-batching, averaging, and model misspecification.” in Journal of
Machine Learning Research, 2018.

[14] H. Daneshmand, A. Lucchi, and T. Hofmann, “Starting small-learning
with adaptive sample sizes.” in International conference on machine
learning, pp. 1463-1471, 2016.

[15] A. S Berahas, R. Bollapragada, N. Keskar, and E. Wei, “Balancing
communication and computation in distributed optimization.” in IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3141-3155, 2018.
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