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Abstract—We investigate the problem of co-designing compu-
tation and communication in a multi-agent system (e.g., a sensor
network or a multi-robot team). We consider the realistic setting
where each agent acquires sensor data and is capable of local
processing before sending updates to a base station, which is
in charge of making decisions or monitoring phenomena of
interest in real time. Longer processing at an agent leads to
more informative updates but also larger delays, giving rise to
a delay-accuracy trade-off in choosing the right amount of local
processing at each agent. We assume that the available commu-
nication resources are limited due to interference, bandwidth,
and power constraints. Thus, a scheduling policy needs to be
designed to suitably share the communication channel among the
agents. To that end, we develop a general formulation to jointly
optimize the local processing at the agents and the scheduling of
transmissions. Our novel formulation leverages the notion of Age
of Information to quantify the freshness of data and capture the
delays caused by computation and communication. We develop
efficient resource allocation algorithms using the Whittle index
approach and demonstrate our proposed algorithms in two
practical applications: multi-agent occupancy grid mapping in
time-varying environments, and ride sharing in autonomous
vehicle networks. Our experiments show that the proposed co-
design approach leads to a substantial performance improvement
(18 − 82% in our tests).

Index Terms—wireless networks; Age of Information; dis-
tributed computing; robotics; networked control systems.

I. INTRODUCTION

Monitoring and control of dynamical systems are fundamen-

tal and well-studied problems. Many emerging applications

involve performing these tasks over communication networks.

Examples include: sensing for IoT applications, control of robot

swarms, real-time surveillance, and environmental monitoring

by sensor networks. Such systems typically involve multiple

agents collecting and sending information to a central entity

where data is stored, aggregated, analyzed, and then used to

send back control commands. Due to the dramatic improve-

ments both in on-device and edge computing, and in wireless

communication over the past two decades, there has been a

rapid growth in the size and scale of such networked systems.

This has motivated the design of scalable architectures, both

for computation and communication. Two key directions of
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Fig. 1. Example: four drones monitor different regions and send updates to
a base station over a wireless channel. Each agent spends time τi processing
the collected measurements before sending. A scheduling algorithm prioritizes
transmissions to the base station. This paper focuses on the co-design of the
processing times τi and the scheduling policy.

innovation involve a) pushing the computation to be distributed

across the network, such that all agents perform local processing

of the collected measurements, and b) designing scheduling al-

gorithms that efficiently share limited communication resources

across all devices and ensure timely delivery of information.

However, existing work on communication scheduling [1]–[5]

disregards distributed processing, while related work on sensor

fusion [6]–[8] focuses on designing distributed algorithms,

rather than allocating computational resources at each node.

In this work, we explore the joint optimization of computa-

tion and communication resources for monitoring and control

tasks. We consider a multi-agent system where each agent is in

charge of monitoring a time-varying phenomenon and sending

information to a central base station. For instance, this setup

can model a team of robots mapping a dynamic environment

and sending map updates to a base station, which aggregates

a global map for centralized decision-making (Fig. 1).

The agents are capable of local processing before transmit-

ting the acquired information. This could involve operations

such as refining, denoising, or compressing the data or simply

gathering more informative updates. We assume that the more

time an agent spends in processing locally, the higher the

quality of the generated update. However, longer processing

also induces a delay in between subsequent updates. This

yields a delay-accuracy trade-off : is it better to send outdated

but high-quality updates, or to reduce the overall latency by

communicating low-quality information?
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We consider the realistic scenario where the total commu-

nication resources available are limited due to interference,

limited bandwidth, and/or power constraints. Thus, in any given

time-slot, only one of the agents is allowed to communicate

with the base station. The communication constraints mean

that, in addition to optimizing the local processing times, a

scheduling policy needs to be designed to specify which agents

can communicate in every time-slot.

Therefore, the goal of this work is to develop a general

framework to determine the optimal amount of local processing

at each agent in the network and design a scheduling policy to

prioritize communication in order to maximize performance.

Related Work. Over the past few years, there has been a

rapidly growing body of work using Age of Information (AoI)

as a metric for designing scheduling policies in communication

networks [3]–[5] and for control-driven tasks in networked con-

trol systems [9]–[12]. AoI captures the timeliness of received

information at the destination (see [13], [14] for recent surveys).

Our processing and scheduling co-design problem is motivated

by recent advances in embedded electronics, as well as the

development of efficient estimation and inference algorithms

for real-time applications on low-powered devices [15]–[18].

The output accuracy of such algorithms increases with the

runtime, in line with the delay-accuracy trade-off we consider

in this paper. Another application of such a trade-off involves

deciding on computation offloading in cloud robotics, which

has been the focus of recent works on real-time inference by

resource-constrained robots [19], [20]. In this context, sending

raw data can induce long transmission delays, but allow better

inference by shifting the computational burden to the cloud.

Contributions. We address the computation and communi-

cation co-design problem and develop a) a scheduling policy

that ensures timely delivery of updates, and b) an algorithm

to determine the optimal amount of local processing at each

agent. To do so, we use AoI to measure the lag in obtaining

information for monitoring and control of time-critical systems.

Our contribution is threefold. First, we develop a general

framework to jointly optimize computation and communication

for real-time monitoring and decision-making (Section II). This

framework extends existing work [21] by a) considering joint

optimization of scheduling in addition to processing, and b)

addressing a general model that goes beyond linear systems.

Second, we develop low-complexity scheduling and pro-

cessing allocation schemes that perform well in practice

(Sections III-IV). The co-design problem is a multi-period

resource allocation problem and is hard to solve in general due

to its combinatorial nature. We resolve this by considering a

Lagrangian relaxation that decouples the problem into multiple

single-agent problems, which can be solved effectively. To

solve the scheduling problem, we generalize the Whittle index

framework proposed in [5] for sources that generate updates

at different rates and of different sizes.

Finally, we demonstrate the benefits of using our methods

in two practical applications from robotics and autonomous

systems: multi-agent occupancy grid mapping in time-varying

environments, and ride-sharing systems with local route op-

Agent 

Time (slotted)

Age 

agent acquires sample
new update deliveredB.S. requests update

Channel

agent sends processed sample

Fig. 2. AoI evolution for agent i. The agent acquires and processes new
samples every τi time-slots. When the base station (B.S.) requests a new
update, the agent sends the most recent sample that has finished processing,

taking ri(τi) time-slots for transmission. The variable δ
(k)
i

represents the
waiting time in the buffer for update k. Upon a new update delivery, the AoI
at the base station Ai(t) drops to the age of the delivered update.

timization (Section V). Our simulations show that we can

achieve performance improvements of 18−35% in the mapping

application and 75− 82% in the ride-sharing application with

respect to baseline approaches.

II. PROBLEM FORMULATION

We consider a discrete-time setting with N agents in a

networked system, where each agent is in charge of monitoring

a time-varying phenomenon and sending information updates to

a base station. Each agent processes the collected measurements

locally, before sending its updates. The i-th agent spends τi
time slots to process a new update. We refer to this quantity

as the processing time associated with agent i.
We assume that sensing and processing happen sequentially

at each agent. Thus, agent i acquires a new sample every τi
time slots. Further, each agent stores in a buffer the freshest

processed measurement. We will assume that the processing

time allocations τi, ∀i are constant during operation.

To communicate the acquired and processed updates, the

agents use a wireless communication channel. We assume that,

due to interference and bandwidth constraints, only one of the

agents can transmit to the base station in any given time-slot.

At every transmission opportunity, the base station polls one

of the agents regarding the state of its system and receives the

most recent measurement that has been processed.

Scheduling decisions are modeled as indicator variables ui(t)
where ui(t) = 1 if the i-th agent is scheduled at time t and zero

otherwise. We assume that a transmission from the i-th agent

takes ri(τi) time slots, with ri(·) a monotone sequence. This

captures one aspect of the delay-accuracy trade-off, namely

that the size of the update depends on the amount of time

spent in processing it. When the agents spend local processing

to collect more detailed information, e.g., in exploration tasks,

the measurements get larger overtime and ri(·) is increasing.

Conversely, when the agents compress the collected data, e.g.,

extracting visual features from images, ri(·) is decreasing.

To measure the freshness of the information at the base

station, we use a metric called Age of Information (AoI). The

AoI Ai(t) measures how old the information at the base station
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is regarding agent i at time t. Upon receiving a new update, it

drops to the age of the delivered update. Otherwise, it increases

linearly. The evolution is described below:

Ai(t+ 1) =

{
τi + ri(τi) + δ

(k)
i , if update k is delivered,

Ai(t) + 1, otherwise.

(1)

Here δ
(k)
i is the waiting time spent by the k-th update from

agent i in the buffer, i.e., the delay from the time the update

was processed to the time it was actually transmitted. Since

a new processed update is generated every τi time-slots, the

waiting time δ
(k)
i ranges from 0 to τi − 1 time-slots. Note

that, as we are dealing with centralized scheduling decisions,

the agents do not know in advance when they will be asked

for an update. Therefore, under our assumption of constant

processing time τi, the agents cannot set to zero such δ
(k)
i by

just choosing when to sample. Fig. 2 depicts the AoI process

for agent i. Observe that the lowest value that the AoI can

drop to is τi + ri(τi) time-slots, since every update spends

time τi in processing and ri(τi) in communication.

The AoI evolution in (1) is involved since it requires

analyzing waiting times that vary with each update. To simplify

the analysis, while still capturing the relevant features of the

AoI dynamics, we assume that the sequences δ
(k)
i are constant

over time, i.e., δ
(k)
i ≡ δi ∀k, ∀i ∈ V . Each δi accounts for the

average waiting time accumulated by a processed measurement

before it is sent by the i-th agent. This assumption is reasonable

since the waiting time’s contribution to the overall AoI is

negligible on average (being upper bounded by τi) as compared

to the time between subsequent requests from the base station,

which grows linearly with the number of agents N [3]. The

smallest AoI for agent i is defined as ∆i , τi + ri(τi) + δi,
which is the value that AoI resets to upon a new update delivery.

It has been shown in recent works [9]–[12] that real-time

monitoring error for linear dynamical systems can be seen as an

increasing function of the AoI. Intuitively, fresher updates lead

to higher monitoring accuracy and better control performance.

Motivated by this, we assume that each agent has an associated

cost function Ji(τi, Ai(t)) that maps the processing time and

the current AoI to a cost that reflects how useful the current

information at the base station is for monitoring or control.

Assumption 1 (Delay-Accuracy Trade-off). The cost functions

Ji(τi, Ai(t)) are increasing with the AoI Ai(t) and decreasing

with the processing time τi. Thus, longer processing leads

to more useful measurements (for a fixed age), while fresher

information induces a lower cost than outdated information.

Remark 1 (Task-related cost function). The specific functional

form of Ji(τi, Ai(t)) depends on the underlying dynamics of

the system i and on the impact of agent processing on the

quality of updates. These functions are typically estimated

using domain knowledge or learned from data offline. The

approach in this paper holds for any functions Ji(τi, Ai(t)) that

satisfy the above assumption. We discuss numerical examples

in Section V.

Our goal is to design a causal scheduling policy π and

find the processing times τ1, ..., τN for every agent so as to

minimize the sum of the time-average costs.

Problem 1 (Computation and Computation Co-design).

Given the set of agents V = {1, . . . , N}, cost functions

{Ji (·, ·)}i∈V , and AoI evolution (1), find the processing

times {τi}i∈V and the scheduling policy π that minimize

the infinite-horizon time-averaged cost:

min
τi∈Ti ∀i∈V

π∈Π

∑

i∈V

lim sup
T→+∞

Eπ

[
1

T

T∑

t=t0

Ji (τi, A
π
i (t))

]

s.t.
∑

i∈V

uπ
i (t) ≤ 1, ∀t

(P1)

where Π is the set of causal scheduling policies, uπ
i (t) = 1

if policy π schedules agent i at time t and uπ
i (t) = 0

otherwise. Ti is the set of admissible processing times for

agent i, and Aπ
i (t) is the AoI of the i-th agent at time t

under policy π.

Finding the optimal processing times requires iterating over

the combinatorial space Ti× ...×TN , while finding the optimal

scheduling policy requires solving a dynamic program which

suffers from the curse of dimensionality.

III. A LAGRANGIAN RELAXATION

We now discuss a relaxation of Problem 1 that enables us

to develop efficient algorithms. This approach is motivated

by the work of Whittle [22] and its applications to network

scheduling [5]. The relaxation will be useful not only for finding

a scheduling policy, but also in optimizing the processing times.

We start by considering a relaxation of (P1) where the

scheduling constraint is to be satisfied on average, rather than

at each time slot. The relaxed problem is given by

min
τi∈Ti ∀i∈V

π∈Π

∑

i∈V

lim sup
T→+∞

Eπ

[
1

T

T∑

t=t0

Ji (τi, A
π
i (t))

]

s.t.
∑

i∈V

lim sup
T→+∞

∑T

t=t0
ui(t)

T
≤ 1.

(2)

To solve (2), we introduce a Lagrange multiplier C > 0 for

the average scheduling constraint. The Lagrange optimization

is given by the following equation:

max
C>0

min
τi∈Ti ∀i∈V

π∈Π

∑

i∈V

J̄i(τi, C)− C (3)

J̄i(τi, C) , lim sup
T→+∞

Eπ

[
1

T

T∑

t=t0

(
Ji (τi, A

π
i (t)) + Cui(t)

)]

Due to the Lagrangian relaxation, the inner minimization

can be decoupled as the sum of N independent problems.
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Problem 2 (Decoupled Problem i). Given a constant cost

C > 0, find a scheduling policy πi = {ui(t)}t≥t0 and a

processing time τi ∈ Ti that minimize the infinite-horizon

time-averaged cost of agent i:

min
τi∈Ti

π∈Π

lim sup
T→+∞

Eπ

[
1

T

T∑

t=t0

(
Ji (τi, A

πi

i (t)) + Cui(t)

)]

(P2)

In Problem 2, the multiplier C can be interpreted as a

transmission cost: whenever ui(t) = 1, agent i has to pay a

cost of C for using the channel. Further, transmitting an entire

update costs Cri(τi), since i transmits for ri(τi) time-slots.

In the next section, we look at the single-agent problem (P2)

in greater detail, and show how to solve it exactly. Since the

problem involves a single agent, it is much easier to solve

than the original combinatorial formulation. The solution also

provides key insights in choosing both the scheduling policy

and the processing times for the original problem (P1).

A. Solving the Decoupled Problem

We now solve Problem 2 for each agent separately. First,

we characterize the structure of the optimal scheduling policy

π∗
i given a fixed value of τi. Then, we optimize over the latter.

Theorem 1. The solution to Problem 2, given a fixed value of

τi, is a stationary threshold-based policy: let H̃i , Hi+ ri(τi)
and suppose there exists an age Hi that satisfies

Ji(τi, H̃i − 1) ≤ JW
i (τi, Hi) ≤ Ji

(
τi, H̃i) (4)

where

JW
i (τi, Hi) ,

∑H̃i−1
h=∆i

Ji(τi, h) + Cri(τi)

H̃i −∆i

. (5)

Then, an optimal scheduling policy π∗
i is to start sending an

update whenever Ai(t) ≥ Hi and to not transmit otherwise. If

no such Hi exists, the optimal policy is to never transmit. The

quantity JW
i (τ,Hi) represents the time-average cost of using

a threshold policy with the AoI threshold Hi.

Proof: See Appendix A in the technical report [23].

The structure of the optimal scheduling policy π∗
i according

to Theorem 1 is intuitive, due to the monotonicity of the cost

functions Ji(τi, ·) in the AoI. If it is optimal to transmit and

pay the cost C for ri(τi) time-slots at a particular AoI, it

should be also be optimal to do so when the AoI is higher,

since the gain from AoI reduction would be even more. Given

τi and C , a way to compute the optimal threshold is to start

from H = ∆i and increase H until condition (4) is satisfied.

Let the value that this procedure terminates at be denoted by

Hi(τi). Then, Hi(τi) is an optimal threshold for agent i.
Next, we look at how to compute the optimal processing

time τ∗i to solve Problem 2. To do so, given the admissible

set Ti, we find the value of τi ∈ Ti that induces the lowest

time-averaged cost for agent i by enumerating over the set,

τ∗i = argmin
τi∈Ti

J̃W
i (τi) (6)

where J̃W
i (τi) , JW

i

(
τi, Hi(τi)

)
. The optimal processing

times τ∗i and policies π∗
i , with thresholds Hi(τ

∗
i ), computed

for each decoupled problem provide an optimal solution to the

inner minimization of (3).

B. Optimizing Processing Times in Problem 1

Leveraging the solution of the decoupled problems found

in Section III-A, we now design a procedure to optimize the

processing times for the original multi-agent Problem 1.

Given a cost C > 0, we can use (4) and (6) to compute

the optimal processing times τ∗i and the corresponding AoI

thresholds Hi(τ
∗
i ) for the N decoupled problems in (3). Further,

observe that, for the i-th decoupled problem, the optimal

scheduling policy for agent i chooses to send a new update

every time the AoI exceeds Hi(τ
∗
i ) and the AoI drops to ∆i

after each update delivery. Thus, the fraction of time that agent

i occupies the channel (on average) is given by

fi(τ
∗
i ) =

ri(τ
∗
i )

Hi(τ∗i ) + ri(τ∗i )−∆i

. (7)

The total channel utilization given the Lagrange multiplier

C is f =
∑

i∈V fi(τ
∗
i ). From (2), f must lie in the interval

[0, 1] to represent a feasible allocation of computation and

communication resources. If not, then more than one agent

is transmitting in every time-slot on average, which is not

possible given the (relaxed) interference constraint.

This suggests a natural way to optimize over both the

Lagrange cost C and the processing times τi, which is presented

in Algorithm 1. In particular, we optimize the processing times

τi by using (4) and (6) (line 4 in Algorithm 1), and update C
via a dual-ascent scheme (lines 6–7) using the average channel

utilization fcurr.

Algorithm 1 Optimizing Processing Times

Input: Costs JW
i (·), set of admissible processing times Ti for

each agent i ∈ V , stepsize α > 0.

Output: Locally optimal processing times {τ∗i }i∈V .

1: C ← C0;

2: loop

3: for sensor i ∈ V do // optimization (6)

4: τ∗i ← argminτi∈Ti
J̃W
i (τi);

5: end for

6: fcurr ←
∑

i∈V fi(τ
∗
i );

7: C ← C + α(fcurr − 1);
8: end loop

9: return {τ∗i }i∈V .

Intuitively, the algorithm keeps increasing the virtual com-

munication cost (quantified by the Lagrange multiplier C) until

the processing times computed at step 4 become compatible

with the scheduling constraint. The decoupling reduces the
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complexity of finding the optimal processing times from

combinatorial O
(∏

i∈V |Ti|
)

to linear search O
(∑

i∈V |Ti|
)
.

IV. WHITTLE-INDEX SCHEDULING

In the previous section, we established a threshold structure

for the optimal scheduling policy of the relaxed problem (2),

where each agent transmits when its AoI exceeds Hi(τ
∗
i ).

Next, we exploit this threshold structure to design an efficient

scheduling policy for Problem 1. Given the processing times

τ∗i computed via Algorithm 1, we need to solve:

min
π∈Π

∑

i∈V

lim sup
T→+∞

Eπ

[
1

T

T∑

t=t0

Ji (τ
∗
i , A

π
i (t))

]

s.t.
∑

i∈V

ui(t) ≤ 1, ∀t.

(8)

Minimizing the time-average of increasing functions of AoI

was considered in [5]. There, the authors introduced a low-

complexity near-optimal scheduling policy using the Whittle

index approach. Unlike the setting in [5], our agents generate

updates at different rates (every τi time-slots for agent i) and

induce different communication delays (ri(τi) time-slots). We

now generalize the Whittle index approach for our setting.

The Whittle index approach consists of four steps: 1)

converting the problem into an equivalent restless multi-armed

bandit (RMAB) formulation, 2) decoupling the problem via a

Lagrange relaxation, 3) establishing a structural property called

indexability for the decoupled problems, and 4) using this

structure to formulate a Whittle index policy for the original

scheduling problem. We go through these steps below.

Step 1. We first need to establish (8) can be equivalently

formulated as a restless multi-armed bandit problem. We do

so in Appendix B in the technical report [23].

Step 2. As we observed in Section III, the original scheduling

problem can be split into N decoupled problems of the form

(P2) via a Lagrange relaxation. Further, through Theorem 1,

we know that the optimal scheduling policy for each decoupled

problem has a threshold structure, i.e., agent i should transmit

only if its associated AoI Ai(t) exceeds the threshold Hi(τ
∗
i ).

Step 3. Whittle showed in [22] that when there is added

structure in the form of a property called indexability for the

decoupled problems, then the RMAB admits a low-complexity

solution called the Whittle index, that is known to be near

optimal [24]. The indexability property for the i-th decoupled

problem requires that, as the transmission cost C increases

from 0 to ∞, the set of AoI values for which it is optimal for

agent i to transmit must decrease monotonically from the entire

set (all ages Ai(t) ≥ ∆i) to the empty set (never transmit). In

other words, the optimal threshold Hi(τ
∗
i ) should increase as

the transmission cost C increases. Next, we use Theorem 1

and the monotonicity of the cost functions Ji(τ
∗
i , ·) to establish

that the decoupled problems are indeed indexable.

Lemma 1. The indexability property holds for the decoupled

problems (2), given an allocation of processing times τi.

Proof: See Appendix C in the technical report [23].

Step 4. Having established indexability for the decou-

pled Problem 2, we can derive a functional form for the Whittle

index which solves the scheduling for the original Problem 1.

Definition 1. For the i-th decoupled problem, the Whittle

index Wi(H) is defined as the minimum cost C that makes

both scheduling decisions (transmit, not transmit) equally

preferable at AoI H . Let H̃ , H+ ri(τi). The expression

for Wi(H), given a processing time τi, is:

Wi(H) ,

(
H̃ −∆i

)
J
(
τi, H̃

)
−

H̃−1∑
k=∆i

J(τi, k)

ri(τi)
. (9)

We derive the expression above in Appendix C. Using (9),

we can now design the Whittle index policy to solve (8).

Whenever the channel is unoccupied, the agent with the most

critical update should be asked for an update. This leads to the

scheduling policy presented in Algorithm 2. The Whittle index

policy chooses the agent with the highest index (line 4), since

it represents the minimum cost each agent would be willing

to pay to transmit at the current time-slot. When the channel

is occupied, no other transmission is allowed (line 6). The

variable z keeps track of ongoing communication and drops

to zero when a new transmission can be scheduled.

Algorithm 2 Whittle Index Scheduling

Input: Processing time τi, communication delay ri(·), and

cost Ji(·, ·) for each agent i ∈ V , time horizon T .

1: t = t0, z = 0;

2: while t ≤ T do

3: if z = 0 then // schedule transmission at time t
4: π ← argmax

i∈V
Wi(Ai(t)); // trigger agent π

5: z ← rπ(τπ)− 1;

6: else // continue ongoing transmission

7: z ← z − 1;

8: end if

9: end while

The Whittle index is known to be asymptotically optimal as

N →∞, if a fluid limit condition is satisfied [24], [25]. These

results, along with our simulations, suggest that the Whittle

index is a very good low-complexity heuristic for scheduling

in real-time monitoring and control applications.

V. APPLICATIONS

We demonstrate our co-design algorithms in two applications:

multi-agent occupancy grid mapping in time-varying environ-

ments (Section V-A), and ride sharing in autonomous vehicle

networks (Section V-B). The results show that we can achieve

performance improvements of 18− 35% for grid mapping and

75 − 82% for ride-sharing compared to baseline approaches.

We also provide a video briefly summarizing and visualizing

our simulation results [26].
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Fig. 3. Multi-agent mapping over 9 regions: each agent monitors and
builds a local grid map of a region, and sends map updates to a base station.
The occupancy in the regions is time-varying. A scheduling policy specifies
how to share the communication channel among the agents. Processing times
specify how much time each agent spends in generating new map updates.

A. Multi-agent Mapping of Time-Varying Environments

Setup. We co-design computation and communication for a

multi-agent mapping problem. We assume there are N separate

regions each of which is being mapped by an agent. The agents

send updates —in the form of occupancy grid maps of their

surroundings— to a base station over a single communication

channel, where the local maps are aggregated into a global

map for centralized monitoring (Fig. 3).

In our tests, each region is 40m × 40m in size and is

represented by an occupancy grid map with 1m×1m cells. The

state of each cell can be either occupied (1) or unoccupied (0).

We consider a dynamic environment where the state of each

cell within region i evolves according to a Markov chain, with

cells remaining in their original state with probability 1− pi
and switching from occupied to unoccupied and vice-versa

with probability pi. This is a common model for grid mapping

in dynamic environments in the robotics community [27], [28].

Each agent is equipped with a range-bearing sensor (e.g.,

lidar), with a fixed maximum scanning distance (25m) and

angular range [−π/2, π/2]. The agents move around the regions

randomly, taking scans of the area round them. Scanning an

entire region takes an agent multiple time-slots. We use the

Navigation toolbox in MATLAB to create sensors such that the

resolution of the readings θmin improves with the processing

time. We set θmin = 0.5/τ . We also set the noise variance in

angle and distance measurements to be inversely proportional

to τ . These settings capture the delay-accuracy trade-off. We

further set the update communication times to increase linearly

with the amount of processing, i.e., r(τ) = 5 + ⌈τ/2⌉.

The base station maintains an estimate of the current map

for each region based on the most recent update it received

and the Markov transition probabilities {pi}i∈V associated

with each region. As is common in mapping literature [29],

[30], we measure uncertainty at the base station in terms of

entropy of the current estimated occupancy grid map for each

region and set the cost functions Ji(·, ·) to be the entropy of

region i. In Appendix D in the technical report [23], we show

that the entropy cost increases monotonically with the AoI of

a region and satisfies the assumptions of our framework. It

Fig. 4. Transition probabilities and optimal processing time allocations plotted
for each region. The probabilities are plotted on a logarithmic scale while the
processing times are plotted in number of time-slots.

drops to a lower value if more time was spent in processing,

since the base station is more certain about the quality of the

received update. Our goal is to minimize the time-average of

the entropies summed across each region through the joint

optimization of processing times and the scheduling policy.

Results. Fig. 4 shows an example of transition probabilities

pi (for each of the 9 regions) and the corresponding optimal

processing times τ∗i found using Algorithm 1. We observe that

for regions that change quickly (i.e., have large value of pi),
the corresponding processing time allocated is smaller. This is

because there is not much benefit to spending large amounts of

time generating high quality updates if they become outdated

very quickly. Conversely, for slowly changing regions (with

low values of pi), Algorithm 1 assigns much longer processing

times. In this case, high quality useful updates can be created

by taking longer time since the regions don’t change quickly.

Further, we compare the performance of various scheduling

algorithms in Fig. 5. We consider the setting where the

processing times τi are fixed to be the same parameter τ
for every region (uniform processing allocation). We then plot

the performance of three scheduling algorithms –a uniform

stationary randomized policy, a round-robin policy, and the

proposed Whittle index-based policy– for different values of τ .

We also plot the performance of the Whittle index policy and the

stationary randomized policy under the optimized processing

times, computed using Algorithm 1, shown via dotted lines

in Fig. 5. We observe that Algorithm 1 can find processing

times that perform well in practice. We also observe that the

Whittle index policy outperforms the two “traditional” classes

of scheduling policies for every value of the parameter τ .

Overall, choosing the processing times using Algorithm 1

and using the Whittle schedule from Algorithm 2 together

leads to a performance improvement of 28 − 35% over

the baseline versions of randomized policies. Similarly, our

proposed approach leads to a performance improvement of

17− 28% over the baseline versions of round-robin policies.

B. Smart Ride Sharing Control in Vehicle Networks

Setup. We consider the scenario in which a ride-sharing

taxi fleet serves a city coordinated by a central scheduler,

which receives riding requests and assigns them to the drivers.

Assigned requests are enqueued into a FIFO-like queue for

each driver. In particular, a rider is matched to the driver whose

predicted route has the shortest distance to the pick-up location.
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Fig. 5. Performance of different scheduling policies vs. processing times τ .
Solid lines represent performance of different classes of scheduling policies
as the processing time τ varies. The dotted lines represent the scheduling
performance with processing times computed using Algorithm 1.

In our setup, routes are calculated locally by drivers and

transmitted on demand to the scheduler, which uses this infor-

mation to match future requests. Such distributed processing for

route optimization is different from current architectures, which

are usually centralized. However, it allows for much greater

scalability and is envisioned as a key component in increasing

efficiency and scale of future ride-sharing systems [31]–[33].

Given communication constraints, only one driver can

transmit at a time. Drivers update their route periodically to

embed real-time road conditions and remove served requests

from the queue. Routes are calculated via the Travelling

Salesman Problem (TSP) involving the first R pick-up and

drop-off locations in the request queue (Fig. 6). Processing

many requests ensures more efficient paths for enqueued riders,

thus shortening their travel time from pick up to drop off.

Conversely, the computational complexity of the TSP (i.e., its

delay) increases with the amount of processed requests R. As

a consequence, the information collected by the scheduler gets

outdated more quickly (Fig. 7), inducing larger gaps with the

actual route followed by the driver. This leads to worse driver-

request matching and increases the waiting time experienced

by riders before they are actually picked up. Since the overall

Quality of Service (QoS) is measured through the service time,

given by the sum of travel and waiting times of riders, the

drivers face a trade-off: processing many requests shortens the

travels, while processing few reduces the waiting time.

In our tests, we model the city as a 200-node graph where

each driver travels one edge per time slot. Requests are

randomly generated according to a Poisson process of unit

intensity and assigned immediately to the matching driver

by the scheduler. Each request contributes one time slot to

the processing time of the TSP (e.g., τ = 2 corresponds

to processing two requests) and we set r(τ) = τ (longer

processing yields a longer route to transmit). To exploit the

advantage of the Whittle index, we simulate an heterogeneous

1P
1D

2P
2D

3P
3D

4P
4D

5P
5D

Request queue

6P
6D

TSP
R=2

1P

1D

2P

2D

3P

3D

4P

4D

5P

5D

Fig. 6. Drivers calculate their route by processing the oldest R requests
(green queue portion). The TSP solver starts from the current driver location
and involves pick ups (P) and drop offs (D) of the processed requests.

Fig. 7. Left: long processing causes large gaps between the route followed
by the driver (solid gray) and the one stored at the scheduler (dashed gray),
yielding bad matches (red dots). Right: with short computations, the matched
requests are closer to the actual route (green dots). The traveled path is black.

fleet with five “myopic” drivers, which can only process the

oldest request (τm = 1), and five “smart” drivers whose

processing can be designed: in particular, we assign the same

processing time τs to all such “smart” drivers. The cost of each

driver, given by its average service time (AST), is modeled as

Ji (τi, Ai(t)) = Pi(τi) +Ai(t) (10)

where the estimated contribution of the local processing (TSPs)

Pi(τi)
.
=

(
2 + 2e−0.2τi

)
q̂i(t) (11)

was fitted from simulations with an initial queue and no

assignments. Because the number of enqueued requests affects

the AST but cannot be computed offline, we modeled Pi(τi) as

linear with the queue length. The scheduler approximates the

queue length at time t with the latest received value q̂i(t). The

dependence on Ai(t) is hard to assess and we let it linear.1

Results. We compute statistics over 1000 Monte Carlo

runs. Fig. 8 shows the AST with 10000 requests assigned

during the simulation for τs ∈ {1, ..., 7}. The circles refer

to the performance obtained with the Whittle index policy,

while the squares to Stationary Randomized which is used

as a benchmark. Combining Whittle index-based scheduling

with processing optimization (green circle) yields a striking

improvement of the QoS (AST = 41) compared to the

Stationary Randomized with standards policies (red squares)

such as FIFO request service (τs = 1, AST = 225), or back-

to-back trips [34] (τs = 2, AST = 165). In particular, the

minimum at τ∗s = 5 indicates that it is optimal to process

the five oldest requests in the queue. Also, the Whittle index

outperforms Stationary Randomized for all values of the

1Other cost functions decreasing with τi and increasing with Ai(t) also
yield good performance, suggesting that our approach is indeed robust.
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Fig. 8. Average service time with varying “smart” processing time τs.

processing time, with a decrease at the optimum of 25%.

VI. CONCLUSION

In this work, we developed a novel framework for com-

putation and communication co-design for real-time multi-

agent monitoring and control. We designed efficient algorithms

that jointly allocate the processing time for each agent and

schedule the available network communication resources.

Through simulations, we further demonstrated that the proposed

approach works well for two different applications: multi-agent

occupancy grid mapping in time-varying environments and

distributed ride sharing in autonomous vehicle networks.

Possible directions of future work involve extending the

theoretical framework to consider more complex and realistic

cost functions that are coupled across multiple agents, time-

varying or unknown, requiring learning-based approaches.
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