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Abstract— Power system failures are often accompanied by
failure cascades which are difficult to model and predict.
The ability to predict the failure cascade is important for
contingency analysis and corrective control designs to prevent
large blackouts. In this paper, we study an influence model
framework to predict failure cascades. A hybrid learning
scheme is proposed to train the influence model from simulated
failure cascade sample pools. The learning scheme firstly applies
a Monte Carlo approach to quickly acquire the pairwise
influences in the influence model. Then, a convex quadratic
programming formulation is implemented to obtain the weight
of each pairwise influence. Finally, an adaptive selection of
threshold for each link is proposed to tailor the influence
model to better fit different initial contingencies. We test our
framework on a number of large scale power networks and
verify its performance through numerical simulations. The
proposed framework is capable of predicting the final state of
links within 10% error rate, the link failure frequency within
0.08 absolute error, and the failure cascade size within 7%
error rate expectedly. Our numerical results further show that
the influence model framework can predict failure cascade
two magnitudes faster than the power flow based prediction
approach with a limited compromise of accuracy, making it
very attractive for online monitoring and screening.

I. INTRODUCTION

Modern power systems frequently experience unpre-
dictable component failures which are caused by falling tree
branches, storms, lightening strikes, aged devices, wrong
protective actions, etc. These random failures, if not treated
properly, can propagate to other system components and
eventually incur blackouts. For example, in Northeast Amer-
ica on Aug. 14, 2003, a 345kV line tripped off after touching
a tree limb, which, within 1 hour, led to expansion of failures
from several links to over 500 generating units in the US and
Canada [1]. Recently, Midtown Manhattan in New York sank
into darkness due to a disabled transformer [2], and London
underwent a two-hour power interruption when a lightning
strike hit a transmission link and caused a simultaneous loss
of two power plants [3].

Past events have shown that large scale blackouts are
usually accompanied by a rapid propagation of failures
among many system components. This “rolling snowball”
phenomenon is referred to as a failure cascade in the power
system literature. Modeling and predicting failure cascades
is very difficult because a large scale power grid can have
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hundreds of thousands of components whose dynamic inter-
actions are nonlinear and whose parameters are varying with
time.

Many efforts have been devoted to constructing reasonable
models of failure cascades at different time scales. A com-
monly used failure cascade model attempts to solve the static
power flow problem step-by-step to determine the sequence
of (quasi) static transmission link overflows that occur before
the system finally satisfies all the engineering constraints [?],
[4]. In this failure cascade model, solving the AC power
flow problem suffers from a heavy computational burden. It
is also difficult to find an AC power flow solution when
the network configuration changes drastically [5]. Thus,
most works applied the simplified DC power flow model
in the failure cascade analysis. Although the DC power
flow is a linearized version of the AC model, it still bears
some computational efforts when solving it repeatedly in the
failure cascade screening process. A few works have been
done to derive a closed form solution for the link flows when
some links are tripped off [6], [7]. This approach has to take
the pseudo-inverse of the system admittance matrix, and has
to reformulate the solution when islanding occurs.

In order to further simplify the network model while
preserving the basic cascade dynamics, a number of existing
works completely ignore the power flow constraints and
concentrate on the contagious cascade process in which new
failures only happen over adjacent components. It is referred
to as the “contagion model” which originates from the
percolation model [8]–[10]. This model can capture a large
part of the cascade dynamics, but overlooks the non-adjacent
correlations among distant failures. Moreover, this abstract
model ignores power system dynamics, which renders it
rather inaccurate.

To evaluate the nonadjacent failure propagation, Savathi-
ratham et. al. proposed the Influence Model (IM) [11]. It is a
special graphic model that considers the influence of all the
network components on each individual component. It first
establishes the pairwise correlation between any two network
components; then, summarizes all the pairwise correlations
associated with each single component. This aggregated
correlation value of each component, which is called the
influence, is used to determine the component’s state in the
failure cascade prediction. The influence model is essentially
a Markovian model which is easy to construct and implement
for large scale applications. Thus, it is a powerful tool for
analyzing and predicting failure cascades in power networks
[12]–[14].

In order to construct the influence model that can be
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used for power system failure cascade predictions, Hines et.
al. applied the Monte Carlo method to learn the influences
from historical data [15]. They focused on generating the
appropriate distribution of failure cascade sizes that best
match existing records. Zhou et. al. further extended the
pairwise influences to capture more complex influences [16]
for failure size prediction.

In this paper, we propose a hybrid learning framework that
can be used to train the influence model from either historical
data or synthetic data. Then, we apply our trained influence
model to predict the failure cascade sequences for a few
large scale power system test cases. Numerical simulations
show that our model results in relatively accurate prediction
and significant speed advantage as compared to brute force
computation of the power dynamics. The major contributions
are summarized below.

1) We proposed a hybrid learning framework that can
efficiently train the influence model for very large
systems. The proposed learning framework integrates
Monte Carlo method with quadratic programming, and
an adaptive threshold selection scheme to quickly train
the model for making good predictions.

2) We applied the influence model to a few large scale
power system test cases to predict their failure cascade
sequences. It is the first time that such large systems
are investigated through the influence model. The
prediction performances are thoroughly evaluated at
different levels of granularity.

3) We showed that the influence model can predict the
cascade sequence two orders of magnitude faster than
simulation based on power flow calculation, with small
compromise in accuracy. Such efficiency makes the
influence model very attractive for online contingency
analysis for large scale applications.

II. INFLUENCE MODEL

The IM is a Markovian model whose dynamics are de-
scribed by the state variable transitions. In power system
failure cascade analysis, the state variable of the IM is
typically chosen to be the binary operational state of each
transmission link1, which takes on values of either 0 (failed)
or 1 (normal) respectively [17]. Given the i-th link, we
use si[t] to denote its state at time step t. The collection
s[t] := [s1[t], . . . , sM [t]]′ ∈ {0, 1}M×1 of all the M link
state variables represents the network state at time t, and we
define s := {s[t]}Tt=0 as the state (failure cascade) sequence
where T is the termination time of the cascade.

According to the IM, the transition of a state variable si[t]
from the current time t to the next time t + 1 is described
by

s̃i[t+ 1] =

M∑
j=1

dij
(
A11

ji sj [t] + A01
ji (1− sj [t])

)
, (1)

1Other component can also be considered, for example, the generators
and transformers.

where

A11
ji := P

(
si[t+ 1] = 1 | sj [t] = 1

)
(2)

A01
ji := P

(
si[t+ 1] = 1 | sj [t] = 0

)
(3)

are the transition probabilities from the state of link j at t to
the state of link i at t+ 1; s̃i[t+ 1] is the estimated value of
si[t + 1]2. We collect all the A11

ji ’s into an M ×M matrix
A11, and similarly A01

ji ’s to obtain A01. We refer to each of
A11 and A01 as the “pairwise influence matrix”.

The weight dij in (1) represents the proportional affect
from the link pair-(i, j). If we further require

dij ≥ 0, (4a)∑M
j=1 dij = 1, (4b)

then with given link i, dij can be regarded as a probability
mass function for the pairwise influence of any link j on i.
We collect all the dij’s into an M ×M matrix D, referred
to as the “weighted influence matrix”.

When s̃i[t+1] is obtained, the IM assigns 1 to si[t+1] with
a probability s̃i[t+ 1], and 0 to si[t+ 1] with a probability
1 − s̃i[t + 1]. This is a randomized mapping from the unit
interval [0, 1] to the binary set {0, 1}

ŝi[t+ 1] =

{
1 w.p. s̃i[t+ 1]

0 w.p. 1− s̃i[t+ 1]
, (5)

where ŝi[t+1] is the predicted binary value of si[t+1] after
the randomized mapping.

This process can yield different prediction results from
the same initial contingencies. To make predictions consis-
tent, we reduce the randomized mapping to a deterministic
bisection scheme with a threshold εi for each link i:

ŝi[t+ 1] =

{
1 if s̃i[t+ 1] ≥ εi
0 if s̃i[t+ 1] < εi

, (6)

We collect ŝi[t] in ŝ[t] for all the links and refer to it as
the prediction of the network state at time t. Then, the time
sequence of ŝ[t], denoted as ŝ, is a predicted failure cascade
sequence.

An illustrative example of the IM can be found in Fig. 1.
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Fig. 1: We consider a 5-component network and take the influence
on component 5 as an example. The left subfigure depicts the
pairwise influence of component 1 on 5, concerning A11

15 and A01
15

in (1). The right subfigure reflects that component 5 is mutually
influenced by component 1 and 3, where A11

15 and A01
15 take weight

d51, while A11
35 and A01

35 take weight d53 in (1).

To apply the IM in failure cascade analysis, the pairwise
influence matrices {A11,A01}, the weighted influence ma-
trix D, and the bisection thresholds εi’s need to be specified,

2s̃i[t + 1] can be interpreted as the expectation of si[t + 1], provided
equation (4).
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which serves as the main theme for the following two
sections.

III. GENERATING SAMPLE CASCADE SEQUENCES

The IM parameters A11, A01, D and εi’s are learned
from known failure cascade data. The historical failure data
of a real power grid is usually inaccessible because the power
grid is a critical infrastructure whose data should be kept
confidential, and because in a particular power grid large
scale failure cascades rarely happen. To get enough data for
training the IM, we generate synthetic failure cascades by the
power flow based simulation approach [15]. Specifically in
this paper, we solve the DC power flow problem using the
MATPOWER Toolbox3[18]. The procedures of generating
synthetic failure cascades are summarized below.

1) Given a loading condition, compute the initial link
flows to ensure no overflow.

2) Randomly initiate an M − k contingency (k initially
failed links) where k = 2 or 3.

3) Detect if islands (disconnected sub-graphs) appear.
4) If true, re-balance the power in each island by either

generation curtailment or load shedding depending on
whether the supply exceeds the demand.

5) Recompute the link flows in each island by solving the
DC power flow problem.

6) Detect new overflowed links.
7) If true, remove the overflowed links and return to Step

3). Otherwise, terminate.

Repeating this procedure we can build up the training
sample pool Strain. We denote the k-th cascade sequence
in Strain as

sk := {sk[t]}Tk
t=0, k = 1, 2, . . . ,K,

where superscript k is the sample index; K is the total
number of training samples; Tk denotes the final time that
the k-th cascade terminates; sk[t] is the network state at time
t; and sk records the k-th cascade sequence. We will use this
sample pool to train our IM parameters.

IV. LEARNING INFLUENCE MODEL PARAMETERS

In this section, we explore how to learn the best values of
A11, A01, D and εi’s from Strain. Recall (1) that s̃i[t+ 1]
estimates si[t + 1] from the IM parameters A11, A01, D
and the network state s[t] at time t. Hence, the objective is to
identify the values of A11, A01, D such that the estimation
s̃i[t+ 1] can best fit the existing sample si[t+ 1] for every
link at all the time steps. We achieve this goal by formulating
a constrained optimization problem as follows.

3AC power flow model will be one of our future research directions.

min
D,A11,A01

1

K

K∑
k=1

Tk∑
t=1

f(sk[t], s̃k[t])

s.t. s̃ki [t+ 1]=
M∑
j=1

dij
(
A11

ji s
k
j [t] +A01

ji (1− skj [t])
)
, ∀i, k;

M∑
j=1

dij= 1,∀i; dij ,A
11
ji ,A

01
ji ≥ 0, ∀i, j,

(7)
where f(sk[t], s̃k[t]) is the cost function that quantifies the
distance between sk[t] and s̃k[t]; M is the number of links;
K is the size of Strain; and Tk is the termination time step
in the k-th cascade sample.

The problem size of (7) is very large because for each
link pair (i, j) there exist two independent pairwise influence
values A11

ji and A01
ji . For example, in a system with 1, 000

links, we have altogether 3 × 106 variables concerning
{A11,A01,D}. In order to improve the computational ef-
ficiency, we train the pairwise influence {A11,A01} and
relative influence D separately.

A. Learning Pairwise Influence Matrices A11 and A01

We apply the Monte Carlo method to learn the pairwise
influence matrices A11 and A01 from the sample pool Strain
with size K.

Let τki be the time step that link i changes to failure state
in the k-th cascade sequence sk. If link i does not fail in sk,
we set τki to be the termination time of sk. Then, the value
of A11

ji for any link i and j is computed by

A11
ji :=

∑K
k=1 C

11
ji (sk, τki )∑K

k=1 C
1
j (sk, τki )

(8)

where C1
j (sk, τki ) is the number of time steps before τki in

sk such that link j is normal; C11
ji (sk, τki ) is the number of

time steps before τki in sk such that link i is normal, given
link j is normal on the adjacent upstream time step.

Similarly, we can estimate A01
ji via

A01
ji :=

∑K
k=1 C

01
ji (sk, τki )∑K

k=1 C
0
j (sk, τki )

(9)

where C0
j (sk, τki ) is the number of time steps before τki in sk

such that link j is failed; C01
ji (sk, τki ) is the number of time

steps before τki in sk such that link i is normal, given link j
is failed on the adjacent upstream time step. In this counting
process, we should exclude the samples where link i fails
initially because it results from external factors independent
of flow dynamics.

We take the following toy example to gain a more intuitive
view of (8) and (9). We consider two cascade sequences, s1

and s2, over 2 links, where

s1 =

[
1 1 1 1 1 0
1 1 0 0 0 0

]
, s2 =

[
1 1 1 0 0 0
1 1 1 1 1 0

]
.

We can observe that τ11 = 6 and τ21 = 4. For A11
21, we have

C1
2 (s1, τ11 ) = 2 and C11

21 (s1, τ11 ) = 2 in s1, and meanwhile
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C1

2 (s2, τ21 ) = 3 and C11
21 (s2, τ21 ) = 2 in s2. According to (8)

and (9),

A11
21 =

C11
21 (s1, τ11 ) + C11

21 (s2, τ21 )

C1
2 (s1, τ11 ) + C1

2 (s2, τ21 )
=

2 + 2

3 + 2
=

4

5
,

A01
21 =

C01
21 (s1, τ11 ) + C01

21 (s2, τ21 )

C0
2 (s1, τ11 ) + C0

2 (s2, τ21 )
=

2 + 0

3 + 0
=

2

3
.

B. Learning Weighted Influence Matrix D

Once {A11,A01} have been obtained, their values can be
substituted into (7) to form a reduced optimization problem
whose decision variables are only from D. We choose the
objective function f(·) to be the least square error function,
which induces a convex quadratic programming problem as
follows.

min
D

1

K

K∑
k=1

Tk∑
t=1

M∑
i=1

(
ski [t+ 1]

−
M∑
j=1

dij(A
11
ji s

k
j [t] +A01

ji (1− skj [t]))
)2

s.t.
M∑
j=1

dij = 1, ∀i; dij ≥ 0,∀i, j.

(11)

The formulation (11) can be solved efficiently by numer-
ical methods such as the Frank-Wolfe algorithm [19]. The
optimal solution to this problem serves as the Bayes least-
squares estimator when s̃i[t+ 1] = E[si[t+ 1] | s[t]]. More-
over, the weighted influences on each link i are independent
of the influences on any other link j, which further supports
a problem decomposition into M sub-problems. We solve
these small optimization problems in parallel in practice to
further reduce the training time.

C. Learning Bisection Threshold εi
To make a deterministic prediction of a failure cascade,

the value of εi in (6) should be provided. A naive way
is to set an universal εi = 0.5 for every link i. However,
this undifferentiated threshold value can easily incur wrong
predictions. For example in Fig. 2, the third row shows that
link 2 fails at the fourth time step. However, the fourth row
indicates that the predicted state value at the fourth time step
is 0.63 which is greater than 0.5. Thus, by (6) the state of
link 2 will be assigned to 1 instead of 0, misidentifying the
failure. Therefore, the threshold value εi should be selected
adaptively according to differential initial contingencies. We
summarize our adaptive threshold selection scheme for a
specific link i as follows.

1) Identifying a threshold value of link i in a sample
sequence sk. Three situations can happen. 1) Link
i fails initially in the sample sequence sk. In this
situation, there is no way to know the threshold value.
2) Link i fails but not from the beginning of the
sample sequence sk. Then, we recursively compute the
estimated state variable s̃ki [t+ 1] by assigning s̃kj [t] to
skj [t] on the right hand side of (1). The critical time
step where link i fails is determined. We choose the
threshold value for this sequence to be the intermediate

t

Link 1

0

Link 2

Link 3

0 0 0 0 0 0

1 1 1 1 0 0

1 1 1 1 1 1

0 0.45 0.36 0.29 0.28 0.26

1 0.78 0.71 0.67 0.63 0.62

1 0.91 0.85 0.80 0.77 0.76

No Way to 
Estimate!

(0.67+0.63)/2=0.65

0.8*0.76=0.608

[t]s1
~

1 2 3 4 5

[t]s2
~

[t]s3
~

Fig. 2: This is an example of determining thresholds on all 3 link
categories in a cascade sample. Each link representative has two
rows of records: the first row denotes the real state value at each
time step, while the second row denotes the iterative values of s̃i[t]
for every link i based on (1). For link 2 we set εk2 as the average
of s̃2[4] and s̃2[5], while for link 3 we set εk3 to be 0.8× s̃3[Tk] =
0.8 × 0.76 = 0.608, where 0.8 can be replaced by any real value
within (0, 1).

value of the estimated state at the critical time step and
the estimated state at its upstream adjacent time step.
3) Link i never fails in the sample sequence sk. In this
situation, we recursively compute the estimated state
variable s̃ki [t], and choose the threshold value to be
α × s̃ki [Tk] at the final time Tk, where α ∈ (0, 1) can
be selected arbitrarily. Fig. 2 shows the identification
of εi among these three situations by a toy example.

2) Forming the threshold pool of link i from all sample
sequences. For each link i, we compute the threshold
value εki for every sample sequence sk and collect them
in a set Ωi.

3) Selecting an appropriate threshold value of link i
for a new contingency. The basic idea is to select the
threshold value εi from the known threshold set Ωi

such that the associated known contingency is “closest”
to the new contingency denoted as snew[0]. The closest
known contingency to snew[0] is defined by4

k∗ = arg mink=1,2,··· ,K ||snew[0]− sk[0]||1 (12)

where k is the index of the known contingency; sk[0] is
the known contingency; snew[0] is the new contingen-
cy; and ||snew[0] − sk[0]||1 is the L1-norm, denoting
the number of links that have different initial states in
snew[0] and sk[0]. Then, we select the threshold value
ε̂i to be

ε̂i = εk
?

i . (13)

Sometimes multiple solutions for k? exist for (12).
We choose ε̂i to be the median value among multiple
options.

ε̂i = median{εki }k∈K∗ (14)

where K? is the optimal solution set of (12).

D. Overall Procedure

The overall procedure of learning the IM and using it for
failure cascade predictions is presented in Algorithm 1. In
the learning modular, finding the weighted influence matrix

4Other ways to select the closest contingency is also possible.
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D is the most computationally expensive part because it
requires solving a convex quadratic programming problem.
After that, the remaining computational efforts are much
less demanding. The prediction modular in Algorithm 1 is
computationally inexpensive since it only requires multipli-
cation and addition manipulations. Therefore, using the IM
to predict failure cascades is potentially much faster than
using flow equations to make predictions. This claim will be
numerically verified later in the performance evaluations in
Section V.

Algorithm 1: Learning Approach and Failure Cascade
Prediction based on Influence Model

Input: Training Sample Pool Strain = {sk[t]}k=1,...,K
t=0,...,Tk

;
New Initial State snew[0].

Output: Weighted Influence Matrix D; Pairwise
Influence Matrices {A11,A01}; Sequence
Prediction ŝnew.

// Learning Influence Model Parameters
1 Estimate A11 and A01 based on Monte-Carlo Method;
2 Learn D from the quadratic optimization (11);
3 Build the threshold set Ωi for each link i;
4 Find k∗ based on equation (12) and form the set K∗

containing all k∗s;
5 Obtain ε̂i by equation (14) for each link i;
// Failure Cascade Prediction

6 t← 0;
7 while there are new links predicted failed at time t do

8 s̃newi [t+1]←
M∑
j=1

dij(A
11
ji s

new
j [t]+A01

ji (1−snewj [t]))

for each link i;
9 ŝnewi [t+ 1]← 0 if s̃newi [t+ 1] < ε̂i,

ŝnewi [t+ 1]← 1 otherwise;
10 snew[t+ 1]← s̃new[t+ 1], t← t+ 1;

11 T ← t− 1;
12 return D, A11, A01, ŝnew.

V. PERFORMANCE EVALUATION

In this section, we present a comprehensive numerical
study of the proposed method for failure cascade prediction.

A. Dataset Information

We consider three large scale power systems, namely,
1354-bus, 2383-bus, and 3012-bus, which can be found in
Matlab MATPOWER toolbox [18]. These systems are mostly
equipped with given transmission link capacities, with only a
few not given5. We assume that these unrated links are free
from overloading in simulations. We further exclude links
that never fail in the training sample pool Strain, and term
the rest as effective links. In our experiments, Strain contains
50, 000 cascade samples under M − 2 contingencies, out of
a total of

(
M
2

)
where M is the number of links in a system.

5The rateA in MATPOWER toolbox denotes given capacity value [18].

Table I displays a brief summary of cascade samples for all
test systems under default loadings in MATPOWER, where
‘Eff. Rate’ is the portion of effective links, and ‘Fail Size’ is
the number of link outages in a cascade. Note that the initial
outages for training in each system accounts for very small
portion: 50, 000/

(
1710
2

)
= 3.4% in 1354-bus system and even

lower in larger systems. We will show that our approach can
capture most of the cascade patterns with these samples.

TABLE I: Default Cascade Sample Information

System 1354-Bus 2383-Bus 3012-Bus
#Generators 260 327 297

#Links 1710 2886 3566
#Eff. Links 762 2088 2083
Eff. Rate 44.6% 72.4% 58.4%

Avg. Fail Size 179 598 263
Max Fail Size 314 862 792
Min Fail Size 2 110 11

B. Performance Metrics

To evaluate prediction performance, we consider 4 metrics.
• Avg. Failure Size Error Rate lsize: lsize =

1
K

∑K
k=1 l

k
size, where lksize is the failure size prediction

error, relative to real failure size, in the k-th test sample.
• Avg. Failure Frequency Error lfreq: lfreq =

1
M

∑M
i=1 l

i
freq , where lifreq is the absolute difference

between real and predicted failure frequency of link i
among all test samples.

• Avg. Final State Error Rate lf : lf = 1
K

∑K
k=1 l

k
f ,

where lkf is the ratio of links whose final states are
mistakenly predicted, in the k-th test sample.

• Avg. Failure Time Error lt: lt = 1
K

∑K
k=1 l

k
t , where

lkt is the failure time prediction error among all links
that fail eventually in the k-th test sample.

Fig. 3 illustrates the way we calculate lksize, lifreq , lkf , and
lkt for each test sample sktest and each link i. For lksize, lifreq ,
and lkf , we use Venn graph, divided into four disjoint subsets
A,B,C,D, to show the calculation. Inside, A ∪ C denotes
the set of real failures, B ∪ C denotes the set of predicted
failures, C is the set of correctly predicted failures, while D
represents links not failed and meanwhile not predicted to
be failed, under each metric.
• For lksize, |Ak

size ∪ Ck
size| is the real failure size while

|Bk
size∪Ck

size| is the predicted failure size in sktest, and

lksize =

∣∣|Bk
size ∪ Ck

size| − |Ak
size ∪ Ck

size|
∣∣

|Ak
size ∪ Ck

size|
× 100%.

• For lifreq , |Ai
freq ∪ Ci

freq| is the total number of test
samples in which link i fails but not from the beginning,
while |Bi

freq ∪Ci
freq| is our prediction towards it, and

lifreq =
∣∣|Bi

freq ∪ Ci
freq| − |Ai

freq ∪ Ci
freq|

∣∣.
• For lkf , |Ak

f ∪ Bk
f | is the number of links whose final

states we mistakenly predict in sktest, while |Ak
f ∪Bk

f ∪
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Ck

f ∪Dk
f | denotes the number of effective links, and

lkf =
|Ak

f ∪Bk
f |

|Ak
f ∪Bk

f ∪ Ck
f ∪Dk

f |
× 100%.

For lkt , we take an example on a cascade sequence over 6
links that fail during the cascade. Each number in the first
row denotes the time step a link changes to failure, while
each number in the second row denotes our prediction on
the time step6. We ignore counting in initially failed links in
all 4 metrics.

k
sizeA k

sizeBk
sizeC

k
sizeD

i
freqA i

freqBi
freqC

i
freqD

k
fA k

fBk
fC

k
fD

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6
Real 4 3 5 4 2 1
Pred. 2 5 5 1 5 3

  2 |3-1||5-2||1-4||5-5||5-3||2-4| 
6
1

t kl

Fig. 3: An illustrative example of all metrics

These metrics represent four levels of granularity shown
in Fig. 4. lsize focuses on the number of failures but does
not care about the accuracy on each link. lfreq casts light on
failure risk of each link, but does not specify in which case
a link will fail. lf reflects the binary prediction accuracy
on each link in each cascade, while lt further unveils the
prediction performance at each time step. To the best of our
knowledge, this is the first attempt to evaluate these four
levels of metrics.

Final 
State

Failure
Time

Failure
Freq.

Failure
Size

Higher Evaluation Granularity

Fig. 4: Four levels of granularity in performance evaluation

C. Test Results

In this part, we summarize our main results for failure
cascade prediction in order of granularity. To study the
performance under different loading conditions, we propor-
tionally increase power generation and loading. In the 1354-
bus system, we take 1, 1.5 and 2 times of original condition,
while in the 2383-bus and the 3012-bus system we take 1,
1.25, and 1.5 times, where the lower loading increment is
because the data for these two systems are measured at peak
power in winter.

Under all settings, we evaluate the prediction performance
on 2, 000 test samples (different from any training sequence

6If we predict a link to be normal, then the corresponding number in the
second row is our predicted termination time of this cascade.
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Fig. 5: Results on lsize: 1353, 2383, 3012-bus systems in order

in Strain). For each metric, we present two categories of
results. The first is how the performance varies from 5, 000
to 50, 000 training samples. The second is the cumulative
distribution function (CDF) of the corresponding error metric
on each test sample when learning with 50, 000 training
samples.

1) Level 1–Failure Size lsize: Fig. 5 shows the results
on lsize. Generally, by incorporating more training samples,
lsize becomes lower and drops below 7%, indicating reason-
able prediction. For example, if 200 links fail eventually, then
our predicted failure size will be within [186, 214] on aver-
age. Note that the decreasing trend diminishes after 20, 000
training samples, indicating that our approach can offer good
enough failure size prediction with limited cascade records.
From CDF plots, on the other hand, we can find that in
each case, lsize is less than 10% in more than 80% of test
samples, and almost all predictions will not make lsize larger
than 30%.

2) Level 2–Failure Frequency lfreq: Fig. 6 presents the
results on lfreq . Generally, lfreq ≤ 0.08 in almost all cases,
which indicates that the absolute frequency prediction error
will not deviate much. For example, if a link fails with
frequency 0.3, then our prediction on it will lie within
[0.22, 0.38] in expectation. Unlike lsize, however, lfreq does
not decrease monotonically in our simulations. Fig. 6 shows
some fluctuations of lfreq when we tested on different sam-
ple sets. It may require more sample data to stabilize. From
the CDF plots, we can observe that under most conditions
around 75% of the links have lfreq < 0.1. However, the
medium loading conditions (1.5 and 1.25 times loading) in
1354-bus and 3012-bus systems yield the worst CDF results.
It is caused by the fact that a light loading condition or
a heavy loading condition induces a rather simple failure
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Fig. 6: Results on lfreq: 1353, 2383, 3012-bus systems in order

cascade situation (either mostly in small scale or mostly
in large scale), however, a medium loading can introduce
a more complicated failure cascade situation, sometimes in
small scale and sometimes in large scale.

3) Level 3–Final State lf : Fig. 7 presents the results on
lf . We can observe that lf declines generally as more training
samples are involved, and lf can be lower than 10% in most
cases. This means that among 1, 000 effective links, we can
predict more than 900 of them correctly under different initial
outages. The CDF plots further demonstrate that for at least
half of the test samples, lf will be smaller than 10% among
all tested conditions, and altogether more than 95% of all
the predictions cause lf smaller than 30%.

4) Level 4–Failure Time lt: Fig. 8 illustrates the results on
lt. lt mostly decreases under more training samples, while
in other settings the error keeps stable at a low level. In
most of cases, lt is within 1 time step, showing that failure
time prediction is valid. For example, in 1354-bus system
the cascade generally lasts for 10 time steps, if it lasts for
20 minutes in reality, then our prediction can cause error
within 2 minutes in most situations. In perspective of CDF,
we can further draw that in most cases around 90% of test
samples can achieve time error within 2 steps, where medium
loading conditions are generally harder to predict. This may
stem from longer cascade duration under medium loading, as
failure propagates rapidly and terminates in few steps under
high loading, and also stops early under low loading.

5) Prediction Time Cost: We show the superiority of the
influence model based prediction to power flow calculation
by MATPOWER Toolbox in time cost reduction. Specifi-
cally, we test both methods in MATLAB 2019a on Intel(R)
Core(TM) i9-7920X CPU@2.90GHz Processor with 128GB
installed memory. In each case, we run 1, 000 test sample
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Fig. 7: Results on lf : 1353, 2383, 3012-bus systems in order

via each method and compute its total time cost.
We summarize the results in Table II. We use ‘a | b | c’

structure to present our results, where a denotes total seconds
by DC flow calculation, b denotes total seconds by our
method, and c = a/b, reflecting how many times faster
the IM is compared to the traditional power flow method.
Results show that our method works better in larger systems
and under higher loading conditions that tend to cause large
failures, which demonstrates its effectiveness and scalability.
For example, the time cost by our method is 1/136 of that
by flow calculation under medium loading in the 3012-bus
system. The main reason is that more islands appears under
these conditions, which requires to solve DC flow equations
for more times, while the prediction by influence model
discards all such calculations.

TABLE II: Prediction Time Cost on 1,000 Samples

Low Load Medium Load High Load
1354-bus 808 | 21.3 | 38 1930 | 19.8 | 97 1740 | 19.6 | 89
2383-bus 2597 | 43.3 | 60 3490 | 37.8 | 92 3603 | 34.7 | 104
3012-bus 3891 | 59.4 | 66 8020 | 58.9 | 136 5864 | 46.9 | 125

VI. CONCLUSION AND FUTURE WORK

In this paper, we build an influence model framework
to study and predict failure cascades in large scale power
systems. We propose a hybrid learning scheme to train the
influence model based on simulated failure cascade samples.
The scheme consists of three steps in sequel. Firstly, it
adopts a Monte-Carlo approach to learn pairwise influence
between any two transmission links. Then it formulates a
convex quadratic programming problem to learn the weight
of each pairwise influence in determining network state
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Fig. 8: Results on lt: 1353, 2383, 3012-bus systems in order

transitions. Finally, it selects the bisection threshold for each
transmission link in an adaptive manner to better capture
different cascades. Experimental results on large scale power
systems demonstrate acceptable prediction performance over
4 levels of evaluation granularity. Moreover, we show that
our approach can be two orders of magnitude faster than
power flow simulation based approach, which is promising
for online screening and M − k contingency analysis.

One of the future research directions is to predict failure
cascades under the AC power flow model. The AC model
will not change the underpinning of the proposed hybrid
learning scheme. A potential faster prediction speed (com-
pared to the power flow based prediction) is expected, since
solving the AC power flow problem is much slower than
solving the DC one. Another potential research direction
will be exploring failure cascade features for different power
systems from their D matrices. From our observations, the
weighted influence matrix D has shown certain clustering
patterns and sparsity structure, which may reveal some
intrinsic information about the system.
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