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Abstract—Age-of-information (AoI) is a newly proposed per-
formance metric of information freshness. It differs from the
traditional delay metric, because it is destination centric and
measures the time that elapsed since the last received fresh
information update was generated at the source. We show that
AoI and packet delay differ in a fundamental way in certain
systems, i.e. minimizing one can imply maximizing the other.

We consider two queueing systems, namely a single server
last come first serve queue with preemptive service (LCFSp) and
G/G/∞ queue, and show that a heavy tailed service distribution,
that results in the worst case packet delay or variance in packet
delay, respectively, minimizes AoI. For the specific case of M/G/1
LCFSp and G/G/∞ queue, we also prove that deterministic
service, that minimizes packet delay and variance in packet delay,
respectively, results in the worst case AoI.

I. INTRODUCTION

A source generates fresh information updates, encodes it
into a time stamped update packet, and sends it across a
network to the destination. The network, composed of sev-
eral routers or nodes, forwards the update packets, along an
appropriate path, to the destination. The routers may queue
the update packets, and even drop them at times depending
on the network conditions. The goal for the network designer
is to ensure that the destination receives fresh information.

Age of information (AoI) is a newly proposed metric for
information freshness [1], [2], that measures the time that
elapses since the last received fresh update was generated at
the source. A typical evolution of AoI for a single source-
destination system is shown in Figure 1. The AoI increases
linearly in time, until the destination receives a fresh packet.
Upon reception of a fresh packet i, at time t

′

i, the AoI drops
to the time since packet i was generated, which is t

′

i− ti; here
ti is the time of generation of packet i.

AoI was first studied for the first come first serve (FCFS)
M/M/1, M/D/1, and D/M/1 queues in [2]. Since then, AoI
has been analyzed for several queueing systems [2]–[15], with
the goal to minimize AoI. Two time average metrics of AoI,
namely, peak and average age are generally considered. Peak
age for FCFS G/G/1, M/G/1 and multi-class M/G/1 queueing
systems was analyzed in [3], while the discrete time FCFS
queue was studied in [4]. Preemptive and non-preemptive
last come first serve (LCFS) queue with Poisson arrival and
Gamma distributed service was analyzed in [5].

Age for M/M/2 and M/M/∞ systems was studied in [7],
[8] to demonstrate the advantage of having parallel servers,
while [11], analyzed parallel LCFS queues with preemptive
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Fig. 1. Age evolution in time. Update packets generated at times ti and
received, by the destination, at times t

′
i. Packet 3 is received out of order,

and thus, doesn’t contribute to age.

service (LCFSp). Average age for a series of LCFSp queues
in tandem was analysed in [13], [16]. Complexity of extending
the traditional queuing theory analysis to analyzing multi-hop,
multi-server systems has lead [12] to propose stochastic hybrid
system method to compute average age, and its moments.

Packet delay, and its variants, have traditionally been con-
sidered as measures of communication latency. Optimizing for
packet delay in a network, however, is known to be a hard
problem. For a single server system, it is known that less
variability in service time distribution usually improves packet
delay [17], while a heavy tailed service worsens it. The same is
true for age metrics, in the single server FCFS queue [9], [18].
In [19], it was proved that the minimum age and delay can
be achieved under LCFSp service discipline, when the service
times are exponentially distributed. LCFSp is also known to
reduce the variance in packet delay [20]. In this work, however,
we provide two instances of queueing systems, for which AoI
and packet delay differ in a fundamental way, and minimizing
one can imply maximizing the other.

We consider a single server G/G/1 LCFS queue with pre-
emptive service and an infinite server G/G/∞ queue. The
arrivals are modeled as a renewal process, while the service
is independent and identically distributed across update pack-
ets. For both, G/G/1 LCFS queue with preemptive service
and G/G/∞ queue, we show that three heavy tailed service
time distributions, namely Pareto, log-normal, and Weibull,
minimize AoI. For the specific case of M/G/1 LCFS queue
with preemptive service, we show that deterministic service,
which minimizes packet delay, results in the worst case age.
Similarly, for the G/G/∞ queue, we show that deterministic
service, that minimizes variability in packet delay, maximizes
average age, across all service time distributions.
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In most of the literature, an age metric is analyzed and
optimized over queue scheduling discipline, update generation
and service rate. This, and its extended works [18], [21], is
among the first work to consider age minimization over the
space of inter-generation and service time distributions, and
bring out a fundamental difference between age and delay.

Organization: A generic definition of AoI, peak age, and
average age is provided in Section II. LCFS queues with
preemptive service is considered in Section III and the infinite
server queue G/G/∞ is considered in Section IV. We conclude
in Section V.

II. AGE OF INFORMATION

Let a source generate update packets at times t1, t2, . . .. Age
of a packet i is defined as the time since it was generated:
Ai(t) = (t − ti)I{t>ti}, which is 0 for time prior to its
generation t < ti. The generated packet traverses a queueing
system, to reach the destination. Let the packet i reach the
destination at time t

′

i. The update packets may not reach
the destination in the same order as they were generated. In
Figure 1, packet 3 reaches the destination before packet 2.

Age of information at the destination node, at time t, is
defined as the minimum age across all received packets up to
time t:

A(t) = min
i∈P(t)

Ai(t), (1)

where P(t) ⊂ {1, 2, 3, . . .} denotes the set of packets received
by the destination, up to time t. Age A(t) increases linearly,
till the destination receives an informative packet [7], whose
age is less than the age at the destination. The age A(t) is then
set to the age of this informative packet, and then continues
to increase linearly till the next reception.

We consider two time average metrics of age of information,
namely, peak age and average age. The average age is defined
to be the time averaged area under the age curve:

Aave = lim sup
T→∞

E

[
1

T

∫ T

0

A(t)dt

]
, (2)

where the expectation is over the packet generation and packet
service processes. Notice that the age A(t) peaks just before
reception of an informative packet. Peak age is defined to be
the average of all such peaks:

Ap = lim sup
T→∞

E

 1

N(T )

N(T )∑
k=1

P k

 , (3)

where P k denotes the kth peak and N(T ) denotes the number
of peaks till time T . The expectation is, again, over the
packet generation and packet service processes. The systems
we consider will bear the property that N(T ) → ∞ almost
surely as T →∞.

In the following sections, we analyze and optimize peak
and average age for the single server, G/G/1 LCFS queue with
preemptive service, and the average age for the G/G/∞ queue.
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Fig. 2. Plotted is the average age under deterministic, exponential, and Pareto
(α = 1.5, 1.1, 1.01, and 1.001) distributed service times distributions for the
LCFS queue with preemptive service. Packets are generated according to a
Poisson process. The service rate µ = 1, while the packet generation rate λ
varies from 0.5 to 0.99.

III. LCFS QUEUES

Consider a LCFS G/G/1 queue with preemptive service, in
which a newly arrived packet gets priority for service imme-
diately. Update packets are generated according to a renewal
process, with inter-generation times distributed according to
FX . The service times are distributed according to FS , i.i.d.
across packets. Next, we derive explicit expressions for peak
and average age for general inter-generation and service time
distributions.

Lemma 1: For the LCFS G/G/1 queue, the peak and
average age is given by

Ap
G/G/1 =

E [X]

P [S < X]
+

E [SIS<X ]

P [S < X]
,

and

Aave
G/G/1 =

1

2

E
[
X2
]

E [X]
+

E [min (X,S)]

P [S < X]
,

where X and S denotes the independent inter-generation
and service time distributed random variables, respec-
tively.

Proof: See our technical report [18].
We now prove that a heavy tailed continuous service time

distribution minimizes both peak and average age. In Figure 2,
we plot average age as a function of packet generation rates
λ, for three different service time distributions: deterministic
service, exponential service, and Pareto service. The cumula-
tive distribution function for a Pareto service distribution, with
mean 1/µ, is given by

FS(s) =

{
1−

(
θ(α)
s

)α
if s ≥ θ(α)

0 otherwise
, (4)
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where θ(α) = 1
µ

(
1− 1

α

)
and α > 1 is the shape parameter.

The shape parameter α determines the tail of the distribution.
The closer the shape parameter is to 1, the heavier is the tail.

We observe in Figure 2 that the Pareto service yields
better age than the exponential and deterministic service.
Furthermore, observe that the heavier the tail of the Pareto
distribution, i.e. the closer α is to 1, the lower is the age.
Also plotted is the age lower-bound 1/λ, as no matter what
the service, the age cannot decrease below the inverse rate at
which packets are generated.

Similar behavior is observed for two other heavy tailed
service distributions: log-normal and Weibull. Log-normal
service distribution, with mean 1/µ, is given by:

S = exp

{
− logµ− σ2

2
+ σN

}
, (5)

where N ∼ N (0, 1) is the standard normal distribution.
Weibull service distribution, with mean 1/µ, is given by:

FS(s) = 1− e−(s/β)
κ

, (6)

for all s ≥ 0, where β = [µΓ(1 + 1/κ)]
−1, as κ ↓ 0; here

Γ(x) =
∫∞
0
tx−1e−tdt is the gamma function. The parameters

σ and κ determine the tail of the log-normal and Weibull
service time distributions, respectively. Higher σ and lower
κ imply heavier tails.

We now prove simple lower-bounds on the peak and average
age, and show that the peak and average age approaches the
lower-bound for the three heavy tailed service time distribu-
tions.

Theorem 1: The peak and average age for the LCFS
G/G/1 queue are lower bounded by

Ap
G/G/1(λ, µ) ≥ E [X] and Aave

G/G/1(λ, µ) ≥ 1

2

E
[
X2
]

E [X]
.

Further, both the lower-bounds are simultaneously
achieved for

1) Pareto distributed service (4) as α→ 1,
2) Log-normal distributed service (5) as σ → +∞,
3) Weibull distributed service (6) as κ→ 0,

for all packet generation and service rates, λ and µ,
respectively.

Proof: The lower-bounds follow directly from the
age expressions obtained in Lemma 1, and noticing that
P [S < X] ≤ 1. The distributions, namely the Pareto, log-
normal, and Weibull, are all parametric distributions param-
eterized here by α, σ, and κ, respectively. We, therefore,
prove the following generic result, which gives us a sufficient
conditions for the optimality of peak and average age for a
general, parametric continuous service time distribution FS ,
parameterized by η.

Lemma 2: Let a parametric, continuous, service time
distribution, with parameter η, satisfy

1) E [S] = 1/µ,
2) E

[
I{S>x}

]
→ 0 as η → η∗, and

3) E
[
SI{S≤x}

]
→ 0 as η → η∗,

for all x ≥ x0, and some x0 > 0 and η∗. Then the
peak and average age for LCFS queue, with preemptive
service, is minimized by the service time distribution FS
as η → η∗.

Proof: Let for a parametric, continuous, service time dis-
tribution FS the stated properties hold. Notice that conditions
2 and 3 in the Lemma, along with bounded convergence
theorem [22], imply P [S < X] → 1 and E [SIS<X ] → 0
as η → η∗. This proves that the peak age, given in Lemma 1,
approaches its lower-bound:

Ap
G/G/1 =

E [X]

P [S < X]
+

E [SIS<X ]

P [S < X]
→ E [X] ,

as η → η∗.
For the average age, notice that

E [min{X,S}] = E
[
XI{S≥X}

]
+ E

[
SI{S<X}

]
,

Once again, using conditions 2 and 3 in the Lemma, and
bounded convergence theorem, we have E

[
XI{S≥X}

]
→ 0

and E
[
SI{S<X}

]
→ 0 as η → η∗. We already know that

P [S < X] → 1 as η → η∗ from the arguments for peak age
optimality. Substituting all this in the average age expression

in Lemma 1, we obtain Aave
G/G/1 → 1

2

E[X2]
E[X] as η → η∗.

It, therefore, suffices to prove that the sufficient conditions
in Lemma 2 are satisfied by Pareto, log-normal, and Weibull
distributions. We know, by definition, that all these distribu-
tions are continuous and have mean E [S] = 1/µ. The other
conditions are verified in our technical report [18].

A. M/G/1 Queue

To highlight the contrast between packet delay and AoI met-
rics, we consider the special case of M/G/1 queue. Here, the
update packets are generated according to a Poisson process.
The inter-generation times X are exponentially distributed
with rate λ. In [5], comparing the performance of LCFS
queues M/M/1 and M/D/1 with preemptive service, it was
shown numerically that deterministic service performed worse
than exponential service. We now show that deterministic
service yields the worst peak and average age, across all
service time distributions.

Theorem 2: For the LCFS M/G/1 queue,

Ap
M/G/1(λ, µ) ≤ Ap

M/D/1(λ, µ) and
Aave

M/G/1(λ, µ) ≤ Aave
M/D/1(λ, µ),

for all packet generation and service rates, λ and µ,
respectively.
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Proof: See technical report [18].
It should be intuitive that if the packets in service are often

preempted, then very few packets will complete service on
time, and this will result in a very high AoI. It turns out that
deterministic service maximizes the probability of preemption.
For the LCFS M/G/1 queue, the probability of preemption is
given by P [S > X] = 1 − E

[
e−λS

]
, as X is exponentially

distributed with rate λ. This can be upper-bounded by 1 −
e−λE[S] = P [E [S] > X], using Jensen’s inequality, which is
nothing but the probability of preemption under deterministic
service: S = E [S] almost surely.

Age of Information vs Packet Delay: Comparing age with
packet delay for the LCFS queue with preemptive service
results in a peculiar conclusion. The packet delay for a LCFS
M/G/1 queue is given by [17]:

E [D] =
λ

2

E
[
S2
]

1− ρ
+ E [S] ,

where ρ = λ
µ . Note that this expression of packet delay

E [D] is minimized when the service time S is deterministic,
namely S = E [S] almost surely; follows from Jensen’s
inequality E

[
S2
]
≥ E [S]

2. However, from Theorem 2 we
know that deterministic service time maximizes age. This
leads to the conclusion that, for the LCFS M/G/1 queue, the
service time distribution that minimizes delay, maximizes age
of information. It is also noteworthy that the three heavy tailed
service time distributions, which minimize peak and average
age, have E

[
S2
]
→ +∞, and therefore, result in unbounded

packet delay.
In the next section, we consider a queueing system with

infinite servers, and show that a service time distribution that
minimizes delay variance, maximizes age of information.

IV. INFINITE SERVERS

Next, consider the G/G/∞ queue, where every newly gen-
erated packet is assigned a new server. Let FX and FS denote
the inter-generation and service times, respectively. We focus
only on the average age metric, and leave the optimization of
peak age for future work. We first derive an expression for
average age for the system.

Lemma 3: For the G/G/∞ queue, the average is given
by

Aave
G/G/∞ =

1

2

E
[
X2
]

E [X]
+ E

[
min
l≥0

{
l∑

k=1

Xk + Sl+1

}]
,

where X and {Xk}k≥1 are i.i.d. distributed according to
FX , while {Sk}k≥1 are i.i.d. distributed according to FS .

Proof: See our technical report [18].
We now prove that deterministic service yields the worst

average age, across all service time distributions.

Theorem 3: For the infinite server G/G/∞ system,

Aave
G/G/∞(λ, µ) ≤ Aave

G/D/∞(λ, µ),

for all packet generation and service rates, λ and µ,
respectively.

Proof: When the service times are deterministic, i.e.
Sl = 1/µ a.e., we have minl≥0

{∑l
k=1Xk + Sl+1

}
= S1.

However, in general we have the inequality
minl≥0

{∑l
k=1Xk + Sl+1

}
≤ S1. Applying this in the

average age expression of Lemma 3, we get the result. See
technical report [18] for the detailed proof.

Intuitively, in the G/G/∞ queue, packets do not get serviced
in the same order as they are generated. A swap in order
helps improve age, because it means that a packet that arrived
later was served earlier. Therefore, the service that swaps the
packet order the least maximizes age. The packet order is
retained exactly under a deterministic service, and therefore,
it maximizes age.

We now prove a simple lower bound on the average age,
and show that the average age converges to this lower bound
for the three heavy tailed service time distributions.

Theorem 4: For the infinite server G/G/∞ system, the
average age is lower-bounded by

Aave
G/G/∞(λ, µ) ≥ 1

2

E
[
X2
]

E [X]
.

Further, the lower-bound is achieved for
1) Pareto distributed service (4) as α→ 1,
2) Log-normal distributed service (5) as σ → +∞,
3) Weibull distributed service (6) as κ→ 0,

for all packet generation and service rates, λ and µ,
respectively.

Proof: The lower-bound immediately follows from the
average age expression in Lemma 3. We use a similar approach
to that followed in the LCFS queue case, we show that the
same sufficient conditions as in Lemma 2 suffices for the
average age optimality for the G/G/∞ queue.

Lemma 4: Let a parametric, continuous, service time
distribution, with parameter η, satisfy

1) E [S] = 1/µ,
2) E

[
I{S>x}

]
→ 0 as η → η∗, and

3) E
[
SI{S≤x}

]
→ 0 as η → η∗,

for all x ≥ x0, and some x0 > 0 and η∗. Then the average
age for the G/G/∞ queue is minimized by the service time
distribution FS as η → η∗.

Proof: From Lemma 3, we deduce the following upper-
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bound:

Aave
G/G/∞ ≤

1

2

E
[
X2
]

E [X]
+ E [min{S1, X1 + S2}] .

It, therefore, suffices to argue that E [min{S1, X1 + S2}]→ 0
as η → η∗.

Let S1 and S2 be independent copies of a parametric,
continuously distributed service time random variable, with
parameter η, that satisfies all the conditions in the Lemma.
Then, by conditions 2 and 3, and the bounded convergence the-
orem [22], we have E

[
S1I{S1≤X1}

]
→ 0, E

[
X1I{S1>X1}

]
→

0, and P [S1 > X1] → 0 as η → 0. This is because
S1I{S1≤X1}, X1I{S1>X1}, and IS1>X1

are bounded by X1,
X1, and 1, respectively, all of which are independent of the
parameter η. This implies

E [min{S1, X1 + S2}]
= E

[
S1I{S1≤X1}

]
+ E

[
[X1 + min{S1 −X1, S2}] I{S1>X1}

]
,

≤ E
[
S1I{S1≤X1}

]
+ E

[
[X1 + S2] I{S1>X1}

]
,

= E
[
S1I{S1≤X1}

]
+ E

[
X1I{S1>X1}

]
+ E

[
S2I{S1>X1}

]
,

→ 0, as η → η∗.

This proves Aave
G/G/∞ → 1

2

E[X2]
E[X] , which is the lower-bound, as

η → η∗.
It, now, suffices to argue that the three heavy tailed service

time distributions satisfy the conditions in Lemma 4. All the
three heavy tailed distributions are continuous, and have mean
E [S] = 1/µ, by definition. The other two properties are
verified in our technical report [18].

Age of Information vs Packet Delay Variance: For the
G/G/∞ queue as well, a comparison of age with packet
delay leads to an interesting conclusion. The packet delay for
the G/G/∞ system, is nothing but the service time S. The
variance of packet delay, therefore, is minimized, when S is
deterministic. This observation, and Theorem 3, imply that for
the G/G/∞ queue, the service time distribution that reduces
packet delay variance, maximizes average age of information.
Furthermore, the heavy tailed service time distributions, that
minimize average age, results in the worst case, unbounded,
variance in packet delay; as for all the age minimizing distri-
butions we have E

[
S2
]
→ +∞.

V. CONCLUSION

Age of information (AoI) is a newly proposed, destination
centric, measure of information freshness, and differs signif-
icantly from the traditional latency metric of packet delay.
By considering two simple queueing systems, we exposed
a fundamental difference between these two performance
metrics. We showed that minimizing one can result in the
worst case behavior for the other.

For the M/G/1 LCFS queue with preemptive service, we
showed that a heavy tailed service minimizes both peak and
average AoI. Whereas, deterministic service, which minimizes
packet delay, results in the worst case peak and average AoI.
For the G/G/∞ queue, we showed that a heavy tailed service
minimizes average age. Whereas, deterministic service, which

minimizes variance in packet delay, yields the worst case
average AoI.
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