
Optimal Network Control with Adversarial Uncontrollable
Nodes

Qingkai Liang, Eytan Modiano

LIDS, MIT

ABSTRACT
�e e�ectiveness of many well-known network control algorithms

(e.g., MaxWeight) relies on the premise that all of the nodes are

fully controllable. However, these algorithms may yield poor perfor-

mance in a partially-controllable network where a subset of nodes

are uncontrollable and may take arbitrary (possibly adversarial)

actions. Such a partially-controllable model is of increasing impor-

tance in real-world networked systems such as overlay-underlay

networks and uncooperative wireless networks. In this paper, we

study two fundamental network optimization problems in a net-

work with adversarial uncontrollable nodes. First, we investigate

the network stability problem where the objective is to stabilize the

network whenever possible. We develop a lower bound on the total

queue length that can be achieved by any causal policy, and pro-

pose a throughput-optimal algorithm, called Tracking-MaxWeight

(TMW), which enhances the original MaxWeight algorithm with

an explicit learning of the behavior of uncontrollable nodes. Sec-

ond, we study the network utility maximization problem where

the objective is to maximize cumulative utility subject to stability

constraints. We provide a lower bound on the utility-delay tradeo�,

and develop the Tracking Dri�-plus-Penalty (TDP) algorithm that

achieves tunable utility-delay tradeo�s.

1 INTRODUCTION
Network optimization has been an active area of research for many

decades due to its wide applicability in practice. �e objective is

usually to achieve network stability or maximize network utility un-

der unknown system statistics (e.g., exogenous arrival rates). Many

e�cient network optimization algorithms have been developed in

the past few decades, such as the well-known MaxWeight algorithm

[24]. �e e�ectiveness of these algorithms usually relies on the

premise that all of the nodes in a network are fully controllable

and adopt some optimal algorithm. Unfortunately, an increasing

number of real-world networked systems are only partially con-
trollable, where a subset of nodes are not managed by the network

operator and use some unknown (possibly adversarial) network

control policy, such as overlay-underlay networks.

�is work was supported by NSF Grant CNS-1524317 and by DARPA I2O and Raytheon

BBN Technologies under Contract No. HROO l l-l 5-C-0097.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

Mobihoc ’19, Catania, Italy
© 2019 ACM. 978-1-4503-6764-6/19/07. . .$15.00

DOI: 10.1145/3323679.3326508

An overlay-underlay network consists of overlay nodes and

underlay nodes [9, 20, 22]. �e overlay nodes can implement state-

of-the-art algorithms while the underlay nodes are uncontrollable

and could take arbitrary (possibly adversarial) actions. Figure 1

shows an overlay-underlay network where the communications

among overlay nodes rely on the uncontrollable underlay nodes.

Overlay networks have been used to improve the performance and

capabilities of computer networks for a long time (e.g., content

delivery [23]).

Overlay
Nodes

Underlay
Nodes

Overlay
Topology

Physical
Topology

Figure 1: An example of overlay-underlay networks.

Due to the unknown behavior of uncontrollable nodes, the exist-

ing routing algorithms may yield poor performance in a partially-

controllable environment. For example, Figure 2 shows an example

where the well-known Backpressure routing algorithm [24] fails to

deliver the maximum throughput when some nodes are uncontrol-

lable. In particular, uncontrollable node 3 adopts a policy that does

not preserve the �ow conservation law such that its backlog builds

up, but uncontrollable node 2 hides this backlog information from

node 1. As a result, if node 1 uses Backpressure routing, it always

transmits packets to node 2, although these packets will never be

delivered. A smarter algorithm should be able to learn the behavior

of the uncontrollable nodes such that node 1 only sends packets

along route 1→ 5→ 4.

As a result, it is important to develop new network control

algorithms that can achieve consistently good performance in a

partially-controllable environment. In this paper, we investigate

e�cient network optimization algorithms that achieve guaranteed

performance in the presence of uncontrollable nodes that may

exhibit arbitrary (possibly adversarial) behavior. In particular, we

study two fundamental problems in network optimization.

First, we investigate the network stability problem where the ob-

jective is to achieve network stability whenever the system is inside

the stability region. We provide a lower bound on the total queue

length that could be achieved by any causal policy with respect to

a “niceness” metric for the actions taken by uncontrollable nodes.

101

1 2 3

45

50 50

10

20

20

Figure 2: Counterexample where the well-known Back-
pressure routing algorithm fails to deliver the maximum
throughput in a partially-controllable network. �e num-
ber next to each link is its capacity. Each node can transmit
only to one of its neighbors in each time slot. �ere is only
one �ow: 1→ 4 (at rate 20). Black nodes are uncontrollable
nodes. Node 2 transmits any packet it received to node 3

at full rate, so that its queue length is always zero; node 3

adopts a non-work-conserving policy that holds any packet
it received. When node 1 uses Backpressure routing, it al-
ways transmits packets to node 2 since its queue length is
always zero, which hides the fact that backlog builds up at
node 3.

�en we propose a new algorithm called Tracking-MaxWeight

(TMW), which enhances the well-known MaxWeight algorithm [24]

with an explicit learning of the policy used by uncontrollable nodes.

We provide a queue length upper bound for Tracking-MaxWeight

and show that Tracking-MaxWeight is throughput-optimal even in

the presence of adversarial uncontrollable nodes.

Second, we study the network utility maximization problem

where the objective is to maximize network utility (e.g., throughput

and fairness) subject to the constraint that the network be stable.

In this context, the performance is measured with respect to the

tradeo� between delay (i.e., total queue length) and utility regret

(i.e., the utility di�erence between a causal policy and the optimal

oracle policy that knows the future). We provide a lower bound

on the utility-delay tradeo� that can be achieved by any causal

algorithm and develop a new Tracking-Dri�-plus-Penalty (TDP)

algorithm that achieves good utility-delay tradeo�s in the presence

of adversarial uncontrollable nodes.

1.1 Related Work
1.1.1 Network Optimization in Partially-Controllable Networks.

Most of the existing works on network optimization in a partially-

controllable environment are in the context of overlay-underlay

networks. An important feature of overlay-underlay networks is

that underlay nodes are uncontrollable and may take arbitrary con-

trol actions. �e objective is to �nd e�cient control policies for

the controllable overlay nodes in order to optimize certain perfor-

mance metrics (e.g., throughput). In [9], the authors showed that

the well-known BackPressure algorithm [24], which was shown

to be throughput-optimal in a wide range of scenarios, may lead

to a loss in throughput when used in an overlay-underlay se�ing,

and proposed a heuristic routing algorithm for overlay nodes called

Overlay Backpressure Policy (OBP). An optimal backpressure-type

routing algorithm for a special case, where the underlay paths

do not overlap with each other, was given in [20]. Recently, [22]

showed that the overlay routing algorithms proposed in [9][20]

are not throughput-optimal in general, and developed the Optimal

Overlay Routing Policy (OORP) for overlay nodes. However, all

of the existing overlay routing algorithms [9, 20, 22] impose very

stringent assumptions about the behavior of underlay nodes. In

particular, the underlay nodes are required to use �xed-path routing

(e.g., shortest-path routing) and maintain stability whenever possi-

ble, which fails to account for many important underlay policies

(e.g., underlay nodes may use multi-path routing).

1.1.2 Network Optimization in Adversarial Environments. �e

study of adversarial network models dates back more than two

decades. Cruz [7] provided the �rst concrete example of networks

with adversarial dynamics, which were later generalized by Borodin

et al. [4] under the Adversarial �euing �eory (AQT) framework.

In AQT, in each time slot, the adversary injects a set of packets

at some of the nodes. In order to avoid trivially overloading the

system, the AQT framework imposes a stringentwindow constraints:
the maximum tra�c injected in every link over any window ofW
time slots should not exceed the amount of tra�c that the link can

serve during that interval. �e AQT model has given rise to a large

number of results since its introduction, most of which are about

network stability under several simple scheduling policies such

as FIFO (see [6] for a review of these results). However, the AQT

model assumes that only packet injections are adversarial while the

underlying network topology and link states remain �xed. Andrews

and Zhang [2, 3] extended the AQT model to single-hop dynamic

wireless networks, where both packets injections and link states

are controlled by an adversary, and proved the stability of the

MaxWeight algorithm in this context. Jung et al. [1, 13] further

extended the results of [2, 3] to multi-hop dynamic networks. While

the above-mentioned works focused on network stability, Neely

[17] investigated the network utility maximization problem in an

adversarial environment. Algorithm performance was measured

with respect to a so-called “W -slot look-ahead policy”. Such a policy

has perfect knowledge about network dynamics over the nextW
slots and it is assumed that under this policy the total arrivals to

each queue should not exceed the total amount of service o�ered

to that queue during every window ofW slots.

Note that all of the aforementioned works considered the same

“window-based” adversarial model due to its analytical tractability.

Some recent works relaxed the window constraints. For exam-

ple, Walton [25] investigated queue stability under an arbitrary

arrival process; Paschos and Tassiulas [21] studied the problem of

stabilizing queues under a mixture of stochastic and adversarial

tra�c injections. However, these results are limited to very spe-

ci�c queueing systems and only exogenous tra�c injections are

adversarial. Recently, Liang and Modiano [10, 11] studied various

network optimization problems under a generalized adversarial

network model that relaxed the window constraints. �ey analyzed

the worst-case performance of di�erent network control algorithms

(e.g., MaxWeight [24] and Dri�-plus-Penalty [18]) under their pro-

posed adversarial models with respect to the notions of queue

length regret and utility regret.

2

102

Despite the advances in adversarial network optimization, none

of the existing works can be applied in a partially-controllable net-

work. For example, in Figure 2, it has been shown that MaxWeight

may achieve very poor performance even in face of a mildly-behaved

uncontrollable nodes, not to mention its worse-case performance

in the presence of adversarial uncontrollable nodes.

Another related area of research is Constrained Online Learning

(COL) [8, 15, 19, 26] where a reward and a set of cost functions are

generated by an adversary and the objective is to maximize the cu-

mulative rewards while keeping the long-term costs below a certain

threshold. However, the COL framework is stateless, meaning that

revealed reward and cost functions do not depend on any system

state, whereas most networking problems have queue length as a

system state whose evolution follows the Lindley recursion [14].

As a result, the COL framework cannot be directly applied to our

context. Some recent works [5] on COL also demonstrated their

applications in networking problems, but the queueing dynamics

is o�en relaxed such that the problems become stateless.

1.2 Our Contributions
We investigate network optimization under a generalized partially-

controllable network model whereas existing works (e.g., [9, 20,

22]) imposed very stringent assumptions about the behavior of

uncontrollable nodes for analytical tractability (e.g., underlay nodes

use shortest path routing). In addition, our framework allows for

both adversarial environment (e.g., adversarial exogenous packet

injections and link states) and adversarial uncontrollable nodes,

thus greatly extending previous adversarial network models that

do not account for uncontrollable nodes (e.g., [2, 10, 11, 17]). As

far as we know, this is the �rst work that establishes network

optimization results under the generalized adversarial partially-

controllable network model.

Moreover, we develop lower bounds on the total queue length

and the utility-delay tradeo� in the presence of adversarial un-

controllable nodes. �ese lower bounds reveal the fundamental

performance limits of a network with adversarial uncontrollable

nodes.

Finally, we propose new network optimization algorithms that

achieve guaranteed good performance even in the presence of ad-

versarial uncontrollable nodes. �e analysis of our algorithms is

fundamentally di�erent from the traditional equilibrium-based ar-

guments used in stochastic network optimization, since there may

not exist any steady state in the presence of adversarial uncontrol-

lable nodes. Our proof �rst establishes sampled-path bounds under

stringent window-based assumptions, and then carefully relaxes

the assumptions by using a load-shedding technique.

2 SYSTEM MODEL
2.1 Asymptotic Notations
Let f and д be two functions de�ned on some set of real num-

bers. �en f (x) = O(д(x)) if lim supx→∞
|f (x) |
д(x) < ∞. Similarly,

f (x) = Ω(д(x)) if lim infx→∞
f (x)
д(x) > 0. Also, f (x) = Θ(д(x)) if

f (x) = O(д(x)) and f (x) = Ω(д(x)). In addition, f (x) = o(д(x)) if

limx→∞
f (x)
д(x) = 0, and in this case we say that f (x) is sublinear in

д(x).

2.2 Network Model
Consider a networked system with N nodes (the set of all nodes

is denoted by N). Time is slo�ed with a �nite time horizon T =

{0, 1, · · · ,T − 1}. �ere are K �ows in the network and each node i
maintains a queue for bu�ering undelivered packets for each �ow k
(the queue is denoted by (i,k)). As a result, there are NK queues in

the network, and we denote by Q(t) the queue length vector at the

beginning of slot t , where its element Qik (t) represents the queue

length for �ow k at node i in slot t .
Let ωt be the network event that occurs in slot t , which includes

information about the current network parameters, such as a vec-

tor of channel conditions for each link and a vector of exogenous

arrivals to each queue. In particular, the vector of exogenous packet

arrivals is denoted by a(ωt) = {aik (t)}i,k , where aik (t) is the num-

ber of exogenous arrivals to queue (i,k) in slot t .
At the beginning of time slot t , a�er observing the current net-

work event ωt and the current queue length vector Q(t), each node

i needs to make a routing decision fi jk (t) indicating the o�ered

transmission rate for �ow k over link i → j. �e corresponding

network routing vector is denoted by f (t) = { fi jk (t)}i, j,k .

�ere are two types of nodes in the network: controllable nodes

(the set of controllable nodes is denoted by C) and uncontrollable

nodes (the set of uncontrollable nodes is denoted byU). �e net-

work operator can only control the routing behavior for controllable

nodes while the routing actions taken by uncontrollable nodes can-

not be regulated and are only observable at the end of each time slot.

In this case, the routing vector f (t) can be decomposed into two

parts: f (t) = (f c (t), f u (t)). Here, f c (t) = { fi jk (t)}i ∈C represents

the routing decisions made by controllable nodes (referred to as

the controllable action) and f u (t) = { fi jk (t)}i ∈U corresponds

to the routing decisions made by uncontrollable nodes (referred

to as the uncontrollable action). �e routing vectors f c (t) and

f u (t) are constrained within some action spaces F c
ωt and Fuωt , re-

spectively, that may depend on the current network event ωt . �e

action space for all nodes is denoted by Fωt = F
c
ωt ∪ F

u
ωt . �e ac-

tion space can be used to specify routing constraints (e.g., the total

transmission rate over each link should not exceed its capacity) or

describe scheduling constraints (e.g., each node can only transmit

to one of its neighbors in each slot).

Note that when there is not enough backlog to transmit, the

actual number of transmi�ed packets may be less than the o�ered

transmission rate. In particular, we denote by f̃i jk (Qik (t)) (or sim-

ply f̃i jk (t) if the context is clear) the actual number of transmi�ed

packets for �ow k over link i → j in slot t under the current queue

lengthQik (t). Clearly, we have f̃i jk (Qik (t)) ≤ min{ fi jk (t),Qik (t)}.
We further assume that the routing decision can always be cho-

sen to respect the backlog constraints (but the actual actions may

not necessarily be queue-respecting). �is can be done simply by

never a�empting to transmit more data than we have. Under such

notations, the queuing dynamics are given by

Qik (t + 1)

=Qik (t) + aik (t) +
∑
j ∈N

f̃jik (t) −
∑
j ∈N

f̃i jk (t)

≤

[
Qik (t) + aik (t) +

∑
j ∈N

fjik (t) −
∑
j ∈N

fi jk (t)
]+
,

3

103

where [z]+ = max{z, 0}.
�e sequence of network events {ωt }t ≤T and uncontrollable

actions { f u (t)}t ≤T are generated according to an arbitrary process

(possibly non-stationary or even adversarial), except for the bound-

edness assumption that the amount of exogenous arrivals and the

o�ered transmission rate in each time slot are bounded by some

constant D, i.e.,

0 ≤ aik (t) ≤ D, 0 ≤ fi jk (t) ≤ D, ∀i, j,k .
A policyπ generates a sequence of routing actions π = { f c (t)}t ≤T

within the time horizon. In each slot t , the queue length vector

under policy π is denoted by Qπ (t). A causal policy is one that

generates the current controllable action f c (t) only based on the

knowledge up until the current slot t . In contrast, a non-causal
(oracle) policy may generate the current controllable action based

on knowledge of the future.

One of the most important notions in network optimization

theory is network stability. In this paper, we focus on rate stability,

de�ned as follows.

De�nition 2.1. A network is rate-stable if

lim

T→∞

∑
i,k Qik (T)

T
= 0.

In other words, rate stability means that as the time horizon T
becomes large the average arrival rate asymptotically approaches

the average departure rate for each queue. From a �nite-time per-

spective, rate stability requires that the total queue length grows

sublinearly with the time horizon T , i.e.,

∑
i,k Qik (T) = o(T).

In this paper, we study the following two fundamental network

optimization problems.

• Network Stability. Our objective is to �nd a causal pol-

icy such that rate stability can be achieved whenever the

system is inside the stability region. �e corresponding

results are presented in Section 3.

• NetworkUtilityMaximization. Our objective is to max-

imize a network utility function (to be discussed later) sub-

ject to the constraint that the network should be rate-stable.

�e corresponding results are provided in Section 4.

3 NETWORK STABILITY
In this section, we focus on the network stability problem where

our objective is to �nd a causal policy such that stability can be

achieved whenever possible. Note that even under the mild case

where uncontrollable nodes use a stationary policy, existing net-

work optimization algorithms may fail to stabilize the network. For

example, as is illustrated in Figure 2, the well-known Backpressure

algorithm achieves low throughput when some uncontrollable node

uses a �xed control policy. Such a failure is due to the fact that

some uncontrollable node uses a non-stabilizing policy that does

not preserve �ow conservation but the Backpressure algorithm is

not aware of this non-stabilizing behavior.

In the following, we �rst characterize a lower bound on the

total queue length that can be achieved by any causal policy in an

adversarial partially-controllable network (Section 3.1). �en we

develop an algorithm called Tracking-MaxWeight that stabilizes a

network with adversarial uncontrollable nodes whenever possible

in Section 3.2 . Finally, we characterize the stability region for any

adversarial partially-controllable network in Section 3.3.

3.1 Lower Bound on�eue Length
We �rst introduce an important metric that measures the “niceness”

of a sequence of uncontrollable routing actions { f u (t)}t ≤T :

VT

(
{ f u (t)}t ≤T

)
, max

t ≤T

∑
i,k

Q∗ik (t),

where Q∗(t) is the queue length vector achieved by the optimal

oracle policy in slot t under the given sequence of uncontrollable

routing actions { f u (t)}t ≤T . In other words,VT

(
{ f u (t)}t ≤T

)
is the

peak queue length during the sample path of the optimal oracle
policy that knows the future and minimizes the total queue length∑
i,k Qik (T). Note that if there are multiple optimal solutions, the

one with the largest VT (·) is considered. For convenience, we may

simply write VT

(
{ f u (t)}t ≤T

)
as VT if the context is clear.

�e following theorem gives a lower bound on the total queue

length that can be achieved by any causal policy.

Theorem 3.1. For any causal policy π , there exists a sequence of
uncontrollable routing actions { f u (t)}t ≤T such that the total queue
length

∑
i,k Q

π
ik (T) = Ω(VT).

Proof. For any causal policy π , we construct a sequence of

uncontrollable routing actions such that the total queue length

never exceeds VT under the optimal oracle policy, but the total

queue length under the given causal policy π is at least cVT for a

constant c > 0. �e detailed proof is presented in the technical

report [12]. �

�eorem 3.1 shows that if VT = Ω(T), then no causal policy can

achieve sublinear queue length. On the other hand, if VT = o(T),
there might exist some causal policy that a�ains sublinear queue

length, which we investigate in the next section.

3.2 Tracking-MaxWeight Algorithm
Now we introduce an algorithm that achieves sublinear queue

length whenever VT = o(T). �e algorithm is called Tracking-

MaxWeight (TMW), which enhances the original MaxWeight al-

gorithm [24] with an explicit learning of the policy used by un-

controllable nodes. �roughout this section, we let { f u (t)}t ≤T
be the sequence of routing actions that are actually executed by

uncontrollable nodes.

�e details of the TMW algorithm are presented in Algorithm 1.

In each slot t , the TMW algorithm generates the routing actions

gc (t) = {дi jk (t)}i ∈C for controllable nodes, and also produces an

“imagined” routing action gu (t) = {дi jk (t)}i ∈U for uncontrollable

nodes, by solving the optimization problem (3) (we will explain

this problem later). With these calculated actions, the TMW al-

gorithm then updates two virtual queues. �e �rst virtual queue

X(t) tries to emulate the physical queue Q(t) but assumes that the

imagined uncontrollable action gu (t) is applied (while the physical

queue is updated using the true uncontrollable action f u (t)). �e

second virtual queue Y(t) tracks the cumulative di�erence between

the imagined uncontrollable actions {gu (t)}t ≥0 and the actual un-

controllable actions { f u (t)}t ≥0. In particular, we use ∆i jk (t) to

4

104

measure the di�erence between the imagined routing action дi jk (t)
and the true routing action fi jk (t) taken by uncontrollable node

i ∈ U, which is given by

∆i jk (t) = дi jk (t) − f̃i jk (t), ∀i ∈ U, (1)

where f̃i jk (t) is the actual number of transmi�ed packets under

the true routing action fi jk (t) given the current queue backlog

Q(t). Note that for each controllable node i ∈ C, we simply set

∆i jk (t) = 0.

�e optimization problem (3) aims at maximizing a weighted

sum of �ow variables, which is similar to the optimization problem

solved in the original MaxWeight algorithm [24] except for the set-

ting of weights. In the original MaxWeight algorithm, the weight is

Wi jk (t) = Qik (t)−Q jk (t), which corresponds to the physical queue

backlog di�erential, while in the Tracking-MaxWeight algorithm

the weightWi jk (t) = Xik (t)−X jk (t)−Yi jk (t) accounts for both the

backlog di�erential for virtual queue X(t) and the backlog of virtual

queue Y(t). �e derivation of (3) is based on the minimization of

quadratic Lyapunov dri� terms for the two virtual queues:

min

g(t)∈Fωt

∑
i,k

Xik (t)
[
aik (t) +

∑
j
дjik (t) −

∑
j
дi jk (t)

]
+

∑
i, j,k

Yi jk (t)
(
дi jk (t) − f̃i jk (t)

)
,

(2)

where the �rst term corresponds to the Lyapunov dri� of virtual

queue X(t) and the second term corresponds to the Lyapunov dri�

of virtual queue Y(t). Note that the minimization is done over

controllable actions gc (t) and “imagined” uncontrollable actions

gu (t). Cleaning up irrelevant constants, i.e., aik (t) and f̃i jk (t), and

rearranging terms yield the optimization problem (3).

Algorithm 1 Tracking-MaxWeight (TMW)

1: In each slot t , observe the current network event ωt and solve

the following optimization problem to obtain the controllable

action gc (t) and the imagined uncontrollable action gu (t):

max

g(t)∈Fωt

∑
(i, j)

∑
k

дi jk (t)Wi jk (t), (3)

where

Wi jk (t) = Xik (t) − X jk (t) − Yi jk (t).

2: Controllable nodes execute the routing decision gc (t).
3: Observe the true routing action f u (t) taken by uncontrollable

nodes and update virtual queues:

Xik (t + 1) =
[
Xik (t) + aik (t) +

∑
j∈N

дjik (t) −
∑
j∈N

дi jk (t)
]+

Yi jk (t + 1) = Yi jk (t) + ∆i jk (t)

where ∆i jk (t) is de�ned in (1).

�e following theorem gives the performance of TMW.

Theorem 3.2. �e worst-case queue length achieved by Tracking-
MaxWeight is ∑

i,k

Qik (T) = O
(
T 2/3V

1/3

T

)
.

Proof. �e high-level idea is to �rst prove a queue length upper

bound achieved by Tracking-MaxWeight under a stronger “nice-

ness” assumption, calledW -constraints, and then show that the VT
metric can be used to relax theW -constraints. �e detailed proof

is presented in the technical report [12]. �

An important observation about the above theorem is that Tracking-

MaxWeight achieves sublinear queue length whenever VT = o(T).
Noticing that sublinear queue length cannot be achieved by any

causal policy ifVT = Ω(T) (see �eorem 3.1), we have the following

corollary.

Corollary 3.3. Sublinear queue length is achievable if and only
if VT = o(T).

�is corollary shows that Tracking-MaxWeight achieves sublinear

queue length whenever possible. We will formalize this observation

in terms of the notion of stability region in Section 3.3.

3.3 Stability Region
In this section, we characterize the stability region for a network

with adversarial uncontrollable nodes. �e notion of stability region

describes a necessary and su�cient condition such that rate stability

could be achieved, as is given in the following theorem.

Theorem 3.4. A network can be stabilized by some causal policy
under a given sequence of uncontrollable actions { f u (t)}t ≤T if and

only if VT
(
{ f u (t)}t ≤T

)
= o(T).

Proof. �e su�ciency follows from �eorem 3.2, and the ne-

cessity is proved in the technical report [12] �

We say that a network control algorithm is throughput-optimal
if it achieves rate stability whenever the network is inside the

stability region. Combining �eorem 3.2 and �eorem 3.4, we have

the following corollary.

Corollary 3.5. �e TMW algorithm is throughput-optimal with
respect to any given sequence of uncontrollable actions { f u (t)}t ≤T .
�at is, as long as there exists some causal policy that achieves rate
stability under { f u (t)}t ≤T , the TMW algorithm is also stable.

4 NETWORK UTILITY MAXIMIZATION
In the previous section, we studied the network stability problem

where the objective is to achieve rate stability whenever the net-

work is inside the stability region. However, when exogenous

packet arrivals are outside the stability region, admission control

needs to be performed in order to maintain network stability. In

this section, we extends the previous network stability problem

by accounting for joint admission control and routing decisions,

such that a certain network utility metric can be maximized while

keeping the network stable. �is is referred to as the Network
Utility Maximization (NUM) problem.

Speci�cally, letγ (t) be the vector of admi�ed exogenous arrivals

in slot t , whereγik (t) ∈ [0,aik (t)] is the number of admi�ed packets

for �ow k to node i in slot t . Similar to the routing vector f (t),
the admission control vector γ (t) can be decomposed into two

parts: γ (t) = (γc (t),γu (t)) where γc (t) and γu (t) is the vector of

admi�ed arrivals to controllable nodes and uncontrollable nodes,

5

105

respectively. Note that γu (t) is determined by the uncontrollable

nodes and cannot be regulated by the network operator. In this

context, the couple (γc (t), f c (t)) is called a controllable action
while (γu (t), f u (t)) is referred to as an uncontrollable action.

Denote by U (γ (t)) =
∑
i,k Uik (γik (t)) the network utility func-

tion, where eachUik (γik (t)) is the utility gained by admi�ingγik (t)
exogenous arrivals in �ow k to node i . Typical examples include

U (γ (t)) =
∑
i,k γik (t) (total throughput), U (γ (t)) =

∑
i,k log(1 +

γik (t)) (proportional fairness), etc. Since the admi�ed arrival vector

γ (t) can be decomposed into γ (t) = (γc (t),γu (t)), we may also

write the network utility function as U (γ (t)) = U (γc (t),γu (t)). In

addition, we assume that the utility function is bounded:

Umin ≤ U (γ) ≤ Umax, ∀γ .
A policy π generates a sequence of admission control and routing

decisions for controllable nodes, i.e., π = {γc (t), f c (t)}t ≤T . Let

{γu (t), f u (t)}t ≤T be the sequence of uncontrollable actions. Our

objective is to �nd a causal control policy for controllable nodes

that maximizes the cumulative network utility while keeping the

total queue length small.

NUM:
max

γ c (t), f c (t)

∑
t≤T

U (γ c (t), γu (t)) (4)

s.t.

∑
t≤T

(
γik (t) +

∑
j
f̃jik (t) −

∑
j
f̃i jk (t)

)
= 0, ∀i, k . (5)

�e objective (4) is to maximize the total network utility gained

within the time horizon. �e constraint (5) requires that the total

actual arrivals to each queue should not exceed the total amount of

actual departures from that queue during the time horizon. Any

optimal solution to NUM is a utility maximizing policy subject

to the constraint (5) that it clears all the backlogs within the time

horizon. We assume that there is at least one feasible solution to

NUM.

Note that a network with adversarial uncontrollable nodes may

not have any steady state or well-de�ned time averages, so we

introduce the notion of utility regret to measure the �nite-time

performance achieved by a network control policy.

De�nition 4.1. Given the time horizonT , the utility regret achieved

by a policy π = {γc (t), f c (t)}t ≤T under a sequence of uncontrol-

lable actions {γu (t), f u (t)}t ≤T is de�ned to be

RπT =
∑
t≤T

U (γ c∗(t), γu (t)) −
∑
t≤T

U (γ c (t), γu (t)), (6)

where {γc∗(t)}t ≤T is an optimal solution to NUM generated by

an “oracle” that knows the sequence of uncontrollable actions in

advance.

Intuitively, the notion of utility regret captures the utility di�erence

between a causal policy and an ideal T -slot lookahead non-causal

policy. Note that a causal policy may trivially maximize the network

utility by simply ignoring the constraint (5) (e.g., admi�ing all

exogenous tra�c) such that the utility regret become zero or even

negative
1
. However, such an action may signi�cantly violate the

1
�e negative regret may happen since we are comparing against an optimal oracle

policy for NUM that must satisfy the constraint (5)

constraint (5) and lead to large total queue length. As a result, there

is a tradeo� between the utility regret and the total queue length

achieved by a causal control policy, referred to as the utility-delay
tradeo�. In the following, our objective is to �nd a causal policy

that achieves good utility-delay tradeo�s where the constraint (5)

may be violated by a bounded amount (note that as the benchmark

in de�ning utility regret, the optimal oracle policy for NUM still

need to satisfy the constraint (5)).

A desirable �rst order characteristic of a “good” policy π is

that it simultaneously achieves sublinear utility regret and sub-

linear queue length w.r.t. the time horizon T , i.e., RπT = o(T) and∑
i,k Q

π
ik (T) = o(T). Sublinear utility regret guarantees that RπT /

T → 0 as the time horizon T →∞, meaning that the time-average

utility gained under policy π asymptotically approaches that un-

der the optimal non-causal policy. In other words, the long-term

time-average utility is optimal. Sublinear queue length ensures∑
i,k Q

π
ik (T)/T → 0 asT →∞, which is equivalent to rate stability.

Note that simultaneously achieving sublinear utility regret and

sublinear queue length is equivalent to maximizing long-term time-

average utility subject rate stability, which is the goal of traditional

stochastic network optimization [16].

In addition, similar to that in the network stability problem,

our analysis utilizes the “niceness” metric VT for a sequence of

uncontrollable actions {γu (t), f u (t)}t ≤T :

VT

(
{γu (t), f u (t)}t ≤T

)
, max

t ≤T

∑
i,k

Q∗ik (t),

where Q∗(t) is the queue length vector achieved by the optimal

policy to NUM in slot t under the given sequence of uncontrollable

actions. Note that if there are multiple optimal solutions to NUM,

the one with the largest VT (·) is considered. We may simply write

VT

(
{γu (t), f u (t)}t ≤T

)
as VT if the context is clear.

In the following, we �rst provide a lower bound on the utility-

delay tradeo� in Section 4.1. �en we develop an e�cient algorithm

for solving NUM and analyze its performance in Section 4.2.

4.1 Lower Bound on Utility-Delay Tradeo�
�e following theorem provides a lower bound on the utility-delay

tradeo� in a network with adversarial uncontrollable nodes

Theorem 4.2. For any causal policy π , there exists a sequence of
uncontrollable actions {γu (t), f u (t)}t ≤T such that

RπT + c
∑
i,k

Qπik (T) ≥ c ′VT ,

where c, c ′ > 0 are constants.

Proof. �e proof constructs a similar example to that used in

the proof of �eorem 3.1 but accounts for admission control actions.

See the technical report [12] for details. �

�eorem 4.2 shows that if VT = Ω(T), then no causal policy can

simultaneously achieve sublinear utility regret and sublinear queue

length. On the other hand, if VT = o(T), there might exist some

causal policy that a�ains sublinear utility regret and sublinear

queue length simultaneously, which we investigate in the next

section.

6

106

4.2 Tracking Dri�-plus-Penalty (TDP)
Algorithm

Now we develop an algorithm that achieves sublinear utility regret

and sublinear queue length whenever VT = o(T). �e algorithm is

called Tracking Dri�-plus-Penalty (TDP), which enhances the well-

known Dri�-plus-Penalty algorithm [18] with an explicit tracking

of the actions taken by uncontrollable nodes. �roughout this

section, let {γu (t), f u (t)}t ≤T be the sequence of actions that were

actually taken by uncontrollable nodes in the time horizon.

�e detailed algorithm description is given in Algorithm 2. It is

almost the same as the Tracking-MaxWeight algorithm (see Algo-

rithm 1) except that the dri� minimization problem (2) is replaced

by the minimization of a dri�-plus-penalty term:

min

γ c (t),g(t)

∑
i,k

Xik (t)
[
γik (t) +

∑
j
дjik (t) −

∑
j
дi jk (t)

]
+

∑
i, j,k

Yi jk (t)
(
дi jk (t) − f̃i jk (t)

)
−VU (γ c (t), γu (t)),

(7)

where VU (γc (t),γu (t)) is the additional penalty term for utility

maximization. �e parameterV > 0 tunes the utility-delay tradeo�:

the larger V is, the more penalty it creates for utility loss, thus

achieving larger utility at the price of a larger queue length. Note

that γc (t) and д(t) can be optimized separately and thus we fur-

ther decompose (7) into two sub-problems: the admission control

problem (step 1) and the routing/scheduling problem (step 3). Note

also that the optimization problems presented in step 1 and step

3 have cleaned up irrelevant constants (i.e., f̃i jk (t) and γu (t)), and

rearranged terms to simplify the expressions. Finally, it should be

mentioned that the TDP algorithm does not produce any “imagined

admission control action” for the true uncontrollable admission con-

trol action γu (t) (only “imagined routing action” gu (t) is needed).

�e performance of the TDP algorithm is given in the following

theorem.

Theorem 4.3. �e TDP algorithm with parameter V achieves

O
(V 2/3

T T 4/3

V +
V 1/3

T T 7/6

V 1/2

)
utility regret and the total queue length is

O
(
V

1/3

T T 2/3 +T 1/2V 1/2 +V 1/4V
1/6

T T 7/12

)
.

Proof. �e proof �rst derives an upper bound on the dri�-plus-

penalty term. �en we carefully constructs a quadratic inequality

with respect to the maximum virtual queue length

∑
i,k Xik (T)

using the dri�-plus-penalty upper bound and the de�nition of VT ,

which further yields an upper bound on

∑
i,k Xik (T). Finally, we

bound the virtual queue length

∑
i, j,k |Yi jk (T)|, the physical queue

length

∑
i,k Qik (T) and the utility regret RT . �e detailed proof is

presented in the technical report [12]. �

�ere are several observations about �eorem 4.3. First, by se-

lecting a proper value of V , the TDP algorithm simultaneously

achieves sublinear utility regret and sublinear queue length when-

ever VT = o(T). For example, if VT = Θ(T 1/2) and we set V =

Θ(T 4/5), then the utility regret is O(T 14/15) and the total queue

length is O(T 9/10). Noticing that sublinear utility regret and sublin-

ear queue length cannot be simultaneously achieved by any causal

policy if VT = Ω(T) (�eorem 4.2), we have the following corollary.

Algorithm 2 Tracking Dri�-plus-Penalty (TDP)

Input: parameter V > 0 that tunes the utility-delay tradeo�

1: (Admission Control) For each controllable node i ∈ C, de-

termine the amount of admi�ed tra�c γik (t) by solving the

following problem

max

γik (t)≤aik (t)

∑
k

[
VUik

(
γik (t)

)
− γik (t)Xik (t)

]
. (8)

2: (Routing and Scheduling) Determine the controllable routing

action gc (t) and the imagined uncontrollable routing action

gu (t) by solving the following problem:

max

g(t)∈Fωt

∑
(i, j)

∑
k

дi jk (t)Wi jk (t), (9)

where

Wi jk (t) = Xik (t) − X jk (t) − Yi jk (t).

3: Controllable nodes execute the routing decision gc (t).
4: Observe the true routing action f u (t) taken by uncontrollable

nodes and update virtual queues:

Xik (t + 1) =
[
Xik (t) + γik (t) +

∑
j∈N

дjik (t) −
∑
j∈N

дi jk (t)
]+

Yi jk (t + 1) = Yi jk (t) + ∆i jk (t)

where ∆i jk (t) is de�ned in (1).

Corollary 4.4. Sublinear utility regret and sublinear queue length
are simultaneously achievable if and only if VT = o(T).

Moreover, by the de�nition of utility regret and rate stability,

we can conclude that the TDP algorithm achieves the optimal long-

term average utility while keeping the network rate stable whenever

possible.

5 SIMULATION RESULTS
In this section, we numerically evaluate the performance of TMW

and TDP in di�erent scenarios.

5.1 Scenario I: Stochastic
Partially-Controllable Network

We �rst study a mild case where uncontrollable nodes use some

�xed randomized policy. Speci�cally, consider the partially-controllable

network shown in Figure 3. �ere are two �ows: 1→ 4 and 6→ 4.

Each node in the network needs to make a routing and scheduling

decision in every time slot. �e constraint is that each node can

transmit to only one of its neighbors in each time slot and the

transmission rate over each link cannot exceed its capacity. Node 2

and node 3 are uncontrollable nodes that use randomized policies.

Speci�cally, uncontrollable node 2 uses a randomized routing al-

gorithm that transmits any packets it received to either node 3 or

node 5 with an equal probability in each time slot. Uncontrollable

node 3 uses a randomized scheduling policy that serves �ow 1→ 4

or �ow 6 → 4 with an equal probability in each time slot. �e

arrival rate of �ow 6→ 4 is 5. In this case, it can be shown that the

maximum supportable arrival rate for �ow 1→ 4 is 25 given the

routing constraints and the behavior of uncontrollable nodes.

7

107

1 2 3

45

40 40

10

20

20 40

6
5

Figure 3: Network topology used in simulation scenario I.
�e number next to each link is its capacity. Each node can
only transmit to one of its neighbors in each slot. Black
nodes are uncontrollable nodes that use randomized poli-
cies.

In Figure 4(a), we compare Tracking-MaxWeight with the well-

known MaxWeight algorithm (i.e., BackPressure routing), in terms

of the supportable rate for �ow 1 → 4. Speci�cally, Figure 4(a)

shows the total queue length achieved by MaxWeight and Tracking-

MaxWeight under di�erent system loads (if the load is ρ, then the

arrival rate of �ow 1→ 4 is 25ρ while the arrival rate of �ow 6→ 4

is �xed to 5). It is observed that MaxWeight can only support a

load of 0.4 (the queue length under MaxWeight blows up at load

≈ 0.4). By comparison, our Tracking-MaxWeight achieves the

optimal throughput, i.e., ρ = 1.

We further examine the behavior of the Tracking-MaxWeight

algorithm in Figure 4(b) and Figure 4(c). Speci�cally, Figure 4(b)

shows the queue length trajectory for the physical queue Q(t) and

the two virtual queues X(t),Y(t). As our theory predicts, both the

physical queue Q(t) and the two virtual queues X(t),Y(t) are stable

under the TMW algorithm. In addition, Figure 4(b) also validates

the queue length upper bound of the TMW algorithm (�eorem

3.2). Figure 4(c) shows the learning curve of the TMW algorithm

for the uncontrollable policy used by node 3. In particular, node

3 uses randomized scheduling that serves �ow 1 → 4 and �ow

6 → 4 with an equal probability 0.5. It is observed in Figure 4(c)

that the TMW algorithm quickly learns the service probability for

�ow 1→ 4 at node 3 (i.e., the “imagined uncontrollable action” in

TMW approaches the true uncontrollable action).

5.2 Scenario II: Adaptive Adversarial Nodes
(stability)

Next, we study an adversarial scenario where uncontrollable nodes

behave maliciously. Consider a similar example as used in the

proof of �eorem 3.1, where the network topology is shown in

Figure �. Node 2 is uncontrollable while the remaining nodes are

controllable. �ere are two �ows in the network: 1→ 3 (�ow index

k = 1) and 1→ 4 (�ow index k = 2). �e controllable action is the

routing decision for node 1. �e only constraint is the link capacity

constraint, i.e.,

∑
k fi jk (t) ≤ Ci j . In our construction, the capacity

of each link is 2, i.e., Ci j = 2 for any i → j. Time is divided into

frames of Z = VT slots. In the �rst Z/2 slots of each frame r , the

exogenous arrival rate for both �ows is 2, and the uncontrollable

node (i.e., node 2) allocates full link capacity to the two �ows:

f231(t) = 2, f242(t) = 2, ∀t = rZ , · · · , rZ + Z/2 − 1.

In the remaining Z/2 slots of each frame, there are no exogenous

arrivals to either �ow, and uncontrollable node 2 allocates zero rate

to the �ow with a larger total backlog in the network while allocates

full rate to the other �ow. Speci�cally, suppose that �ow k ′ has a

larger total queue backlog and �ow k ′′ has a smaller backlog. �en

the routing decision at uncontrollable node 2 is

f
23k ′(t) = 0, f

24k ′′(t) = 2, ∀t = rZ + Z/2, · · · , rZ + Z − 1.

If the two �ows have the same queue backlog in the network, ties

are broken randomly. Our objective is to stabilize the network.

Figure 5 shows the performance of Tracking-MaxWeight and

MaxWeight in this scenario. �e queue length lower bound, as

given by �eorem 3.1, is also plo�ed in the �gures for compari-

son. Speci�cally, Figures 5(a)-5(c) illustrate the growth of queue

length w.r.t. the time horizonT under di�erent values ofVT . When

VT = Θ(1), i.e., VT does not grow with the time horizon T , the

queue lengths achieved by both algorithms remain at some con-

stants when T is su�ciently large. When VT = Θ(
√
T), the queue

lengths achieved by both algorithms increase with the time hori-

zon T , yet the growth rate is sublinear. When VT = Θ(T), both

algorithms have linearly-increasing queue length w.r.t. T . In fact,

even the queue length lower bound becomes linear in T , implying

that no algorithms can have sublinear queue length in this case.

In addition, Tracking-MaxWeight achieves a smaller queue length

than MaxWeight, although their overall queue length growth rates

are quantitatively the same, given the adaptive adversarial behavior

of the uncontrollable node. Figure 5(d) shows the growth of queue

length w.r.t. the increase of the niceness metric VT , where we �x

the time horizon T = 10
4

slots. It is observed that the Tracking-

MaxWeight algorithm empirically achieves a queue length that

grows linearly inVT , which shows that the analysis in �eorem 3.2

is not tight in this scenario.

5.3 Scenario III: Adaptive Adversarial Nodes
(utility)

Finally, we evaluate the performance of the Tracking Dri�-plus-

Penalty (TDP) algorithm for the network utility maximization prob-

lem in a similar scenario as in Section 5.2, where the uncontrollable

node behave maliciously. �e di�erence is that node 1 also needs

to make an admission control decision to determine the amount of

tra�c entering the network for the two �ows. Let γ (k)(t) be the

amount of admi�ed packets for �ow k in slot t . �e utility function

is U (γ (t)) =
∑
k log(1 + γ (k)(t)) (proportional fairness). Such a

scenario is also similar to the example that we use for proving the

lower bound on utility-delay tradeo� (see �eorem 4.2).

Figure 6 illustrates the growth rate of the total queue length and

the utility regret with the time horizon T under the TDP algorithm.

First, when VT = Θ(
√
T), the TDP algorithm can simultaneously

achieve sublinear utility regret and sublinear queue length, if the pa-

rameterV is set appropriately (for example,V = Θ(T 3/4)). Note that

se�ing V to some very large value (e.g., V = Θ(T 2)) still achieves

sublinear utility regret and sublinear queue length, though the theo-

retical bound on queue length (see �eorem 4.3) is at least linear in

T whenV = Ω(T), which shows that the performance upper bound

is not tight in this scenario. When VT = Θ(T), the TDP algorithm

fails to achieve desirable performance: either the utility regret or

the queue length grows linearly with T . In fact, the lower bound in

8

108

0.0 0.2 0.4 0.6 0.8 1.0
Load

0

250

500

750

1000

1250

1500

1750

Ph
ys

ic
al

 Q
ue

ue
 L

en
gt

h

Tracking-MaxWeight
MaxWeight

(a) �roughput performance of MaxWeight and

Tracking-MaxWeight.

0 1000 2000 3000 4000 5000
Time

100

101

102

103

104

Qu
eu

e
Le

ng
th

Physical Queue Q
Virtual Queue X
Virtual Queue |Y|
Upper Bound

(b) �eue length under the TMW algorithm (load =

0.99).

0 1000 2000 3000 4000 5000
Time

0.0

0.1

0.2

0.3

0.4

0.5

Se
rv

ice
 P

ro
ba

bi
lit

y

Imagined uncontrollable action by TMW
Actual uncontrollable action

(c) �e TMW algorithm quickly learns that node 3 serves

�ow 1→ 4 with probability 0.5.

Figure 4: Performance of the Tracking-MaxWeight (TMW) algorithm in Scenario 1.

0 5000 10000 15000 20000 25000 30000 35000 40000
Time Horizon T

0

200

400

600

800

1000

1200

1400

Q
ue

ue
 L

en
gt

h

MaxWeight
Tracking-MaxWeight
Lower Bound

(a) VT = O (1)

0 2000 4000 6000 8000 10000
Time Horizon T

0

100

200

300

400

500

600

700

Q
ue

ue
 L

en
gt

h

MaxWeight
Tracking-MaxWeight
Lower Bound

(b) VT = O (
√
T)

0 5000 10000 15000 20000 25000 30000 35000 40000
Time Horizon T

0

2500

5000

7500

10000

12500

15000

17500

Q
ue

ue
 L

en
gt

h

MaxWeight
Tracking-MaxWeight
Lower Bound

(c) VT = O (T)

0 100 200 300 400 500
VT

0

2000

4000

6000

8000

10000

Q
ue

ue
 L

en
gt

h

Tracking-MaxWeight
Lower Bound
Upper bound

(d) �eue Length vs. VT

Figure 5: Performance of the Tracking-MaxWeight (TMW) algorithm in Scenario II. (a)-(c): growth of queue length w.r.t. the
time horizon T under di�erent values of VT ; (d) growth of queue length w.r.t. the niceness metric VT where we �x the time
horizon T = 10

4 slots.

�eorem 4.2 shows that no causal policy can achieve both sublinear

utility regret and sublinear queue length if VT = Θ(T).
Figure 7 shows the utility-delay tradeo� achieved by the TDP

algorithm, where we �x the time horizon to be T = 10
4

slots and

VT = Θ(
√
T). �e lower bound (�eorem 4.2) and the performance

upper bound (�eorem 4.3) are validated in the �gure.

6 CONCLUSIONS
In this paper, we study e�cient network control algorithms for

a partially-controllable network with adversarial uncontrollable

nodes. First, we investigate the network stability problem and pro-

vide a lower bound on the total queue length that can be achieved by

any causal policy. A throughput-optimal algorithm, called Tracking-

MaxWeight, is developed to stabilize any adversarial partially-

controllable network. Next, we study the network utility maxi-

mization problem and develop a lower bound on the utility-delay

tradeo�. We propose the Tracking Dri�-plus-Penalty (TDP) algo-

rithm and show that TDP achieves good utility-delay tradeo�s in

any adversarial partially-controllable network.

REFERENCES
[1] Ma�hew Andrews, Kyomin Jung, and Alexander Stolyar. 2007. Stability of the

Max-weight Routing and Scheduling Protocol in Dynamic Networks and at

Critical Loads. In Proceedings of the �irty-ninth Annual ACM Symposium on
�eory of Computing (STOC ’07). ACM, 145–154.

[2] M. Andrews and L. Zhang. 2002. Scheduling over a time-varying user-dependent

channel with applications to high speed wireless data. In �e 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proceedings. 293–302. h�ps:

//doi.org/10.1109/SFCS.2002.1181952

[3] M. Andrews and L. Zhang. 2006. Scheduling Over Nonstationary Wireless

Channels With Finite Rate Sets. IEEE/ACM Transactions on Networking 14, 5 (Oct

2006), 1067–1077. h�ps://doi.org/10.1109/TNET.2006.882835

[4] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P

Williamson. 2001. Adversarial queuing theory. Journal of the ACM (JACM) 48, 1

(2001), 13–38.

[5] Tianyi Chen, Qing Ling, and Georgios B Giannakis. 2017. An online convex

optimization approach to dynamic network resource allocation. arXiv preprint
arXiv:1701.03974 (2017).

[6] Vicent Cholvi and Juan Echagüe. 2007. Stability of FIFO networks under adver-

sarial models: State of the art. Computer Networks 51, 15 (2007), 4460–4474.

[7] Rene L Cruz. 1991. A calculus for network delay. I. Network elements in isolation.

IEEE Transactions on information theory 37, 1 (1991), 114–131.

[8] Rodolphe Jena�on, Jim Huang, and Cédric Archambeau. 2015. Adaptive algo-

rithms for online convex optimization with long-term constraints. arXiv preprint
arXiv:1512.07422 (2015).

[9] Nathaniel M Jones, Georgios S Paschos, Brooke Shrader, and Eytan Modiano. 2017.

An overlay architecture for throughput optimal multipath routing. IEEE/ACM
Transactions on Networking (2017).

[10] Qingkai Liang and Eytan Modiano. 2018. Minimizing �eue Length Regret

Under Adversarial Network Models. ACM SIGMETRICS (2018).

[11] Qingkai Liang and Eytan Modiano. 2018. Network Utility Maximization in

Adversarial Environments. IEEE INFOCOM (2018).

[12] Qingkai Liang and Eytan Modiano. 2019. Technical Report:. h�ps://www.

dropbox.com/s/x952j5vgny6hbou/uncontrollable-adversarial-tech-report.pdf?

dl=0. (2019).

9

109

https://doi.org/10.1109/SFCS.2002.1181952
https://doi.org/10.1109/SFCS.2002.1181952
https://doi.org/10.1109/TNET.2006.882835
https://www.dropbox.com/s/x952j5vgny6hbou/uncontrollable-adversarial-tech-report.pdf?dl=0
https://www.dropbox.com/s/x952j5vgny6hbou/uncontrollable-adversarial-tech-report.pdf?dl=0
https://www.dropbox.com/s/x952j5vgny6hbou/uncontrollable-adversarial-tech-report.pdf?dl=0

0 100000 200000 300000 400000 500000
Time Horizon T

0.0

0.2

0.4

0.6

0.8

1.0

Qu
eu

e
Le

ng
th

1e4

V= (1)
V= (T3 4)
V= (T2)

(a) �eue Length VT = Θ(
√
T)

0 100000 200000 300000 400000 500000
Time Horizon T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ut
ili

ty
 R

eg
re

t

1e5

V= (1)
V= (T3 4)
V= (T2)

(b) Utility Regret VT = Θ(
√
T)

0 20000 40000 60000 80000 100000
Time Horizon T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
ue

ue
 L

en
gt

h

1e4

V= (1)
V= (T3 4)
V= (T2)

(c) �eue Length VT = Θ(T)

0 20000 40000 60000 80000 100000
Time Horizon T

0.0

0.2

0.4

0.6

0.8

Ut
ili

ty
 R

eg
re

t

1e5

V= (1)
V= (T3 4)
V= (T2)

(d) Utility Regret VT = Θ(T)

Figure 6: Performance of the Tracking Dri�-plus-Penalty (TDP) algorithm in Scenario III.

102

Queue Length

102

103

104

105

Ut
ilit

y
Re

gr
et

TMW
Lower Bound
Upper Bound

Figure 7: Tradeo�s between utility and total queue length
(double log scale) achieved by the TDP algorithm in Scenario
III. �e time horizon is �xed to be T = 10

4 slots and VT =
Θ(
√
T).

[13] Sungsu Lim, Kyomin Jung, and Ma�hew Andrews. 2014. Stability of the Max-

weight Protocol in Adversarial Wireless Networks. IEEE/ACM Trans. Netw. 22, 6

(Dec. 2014), 1859–1872.

[14] David V Lindley. 1952. �e theory of queues with a single server. In Mathematical
Proceedings of the Cambridge Philosophical Society, Vol. 48. Cambridge University

Press, 277–289.

[15] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. 2012. Trading regret for ef-

�ciency: online convex optimization with long term constraints. Journal of
Machine Learning Research 13, Sep (2012), 2503–2528.

[16] Michael J Neely. 2010. Stochastic network optimization with application to

communication and queueing systems. Synthesis Lectures on Communication
Networks 3, 1 (2010), 1–211.

[17] Michael J Neely. 2010. Universal scheduling for networks with arbitrary tra�c,

channels, and mobility. In Decision and Control (CDC), 2010 49th IEEE Conference
on. IEEE, 1822–1829.

[18] Michael J Neely, Eytan Modiano, and Chih-Ping Li. 2008. Fairness and opti-

mal stochastic control for heterogeneous networks. IEEE/ACM Transactions on
Networking (TON) 16, 2 (2008), 396–409.

[19] Michael J Neely and Hao Yu. 2017. Online Convex Optimization with Time-

Varying Constraints. arXiv preprint arXiv:1702.04783 (2017).

[20] Georgios S Paschos and Eytan Modiano. 2014. �roughput optimal routing in

overlay networks. In Communication, Control, and Computing (Allerton), 2014
52nd Annual Allerton Conference on. IEEE, 401–408.

[21] George S Paschos and Leandros Tassiulas. 2016. Sustainability of Service Pro-

visioning Systems under Stealth DoS A�acks. IEEE Transactions on Control of
Network Systems (2016).

[22] Anurag Rai, Rahul Singh, and Eytan Modiano. 2016. A Distributed Algo-

rithm for �roughput Optimal Routing in Overlay Networks. arXiv preprint
arXiv:1612.05537 (2016).

[23] Ramesh K Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and Manish Jain.

2014. Overlay networks: An akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services 51, 4 (2014), 305–328.

[24] Leandros Tassiulas and Anthony Ephremides. 1992. Stability properties of con-

strained queueing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE transactions on automatic control 37, 12 (1992),

1936–1948.

[25] NS Walton. 2014. Two queues with non-stochastic arrivals. Operations Research
Le�ers 42, 1 (2014), 53–57.

[26] Hao Yu, Michael Neely, and Xiaohan Wei. 2017. Online Convex Optimization

with Stochastic Constraints. In Advances in Neural Information Processing Systems.
1427–1437.

10

110

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 System Model
	2.1 Asymptotic Notations
	2.2 Network Model

	3 Network Stability
	3.1 Lower Bound on Queue Length
	3.2 Tracking-MaxWeight Algorithm
	3.3 Stability Region

	4 Network Utility Maximization
	4.1 Lower Bound on Utility-Delay Tradeoff
	4.2 Tracking Drift-plus-Penalty (TDP) Algorithm

	5 Simulation Results
	5.1 Scenario I: Stochastic Partially-Controllable Network
	5.2 Scenario II: Adaptive Adversarial Nodes (stability)
	5.3 Scenario III: Adaptive Adversarial Nodes (utility)

	6 Conclusions
	References

