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Abstract—Traditional network interdiction refers to the
problem of an interdictor trying to reduce the throughput of
network users by removing network edges. In this paper, we
propose a new paradigm for network interdiction that models
scenarios, such as stealth DoS attack, where the interdiction
is performed through injecting adversarial traffic flows. Under
this paradigm, we first study the deterministic flow interdiction
problem, where the interdictor has perfect knowledge of the
operation of network users. We show that the problem is highly
inapproximable on general networks and is NP-hard even when
the network is acyclic. We then propose an algorithm that
achieves a logarithmic approximation ratio and quasi-polynomial
time complexity for acyclic networks through harnessing the
submodularity of the problem. Next, we investigate the robust
flow interdiction problem, which adopts the robust optimization
framework to capture the case where definitive knowledge of
the operation of network users is not available. We design an
approximation framework that integrates the aforementioned
algorithm, yielding a quasi-polynomial time procedure with poly-
logarithmic approximation ratio for the more challenging robust
flow interdiction. Finally, we evaluate the performance of the
proposed algorithms through simulations, showing that they can
be efficiently implemented and yield near-optimal solutions.

I. INTRODUCTION

Network interdiction, originally proposed in [1], [3] models
the scenarios where a budget-constrained interdictor tries
to limit the throughput available for users of a capacitated
network by removing network edges. The throughput is given
by the optimal value of a single-commodity max-flow problem
and the goal of the interdictor is to compute an interdiction
strategy that specifies which edges to remove in order to min-
imize the throughput, or maximize the throughput reduction,
subject to the budget constraint. Since the problem is NP-
hard even when the network has special topologies, previous
works focus on designing approximation algorithms [3], [5],
[6] or formulating integer programs and solving them using
traditional optimization techniques (e.g. branch and bound)
[1], [7]. Subsequent generalizations include extensions to the
case where the throughput is given by multi-commodity max-
flow problem [2] and allowing the interdictor to use mixed
strategy that takes advantage of randomization [4], [8]. We
refer the readers to [17] for a comprehensive survey.

As a generalization of the renowned max-flow min-cut
theorem, network interdiction provides valuable insights to
the robustness of networks. Projecting the interdictor to an
adversarial position, network interdiction can characterize the
impact of natural disasters on fiber-optic networks [9], evaluate
the vulnerability of network infrastructures [10], and provide
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guidelines to the design of security-enhancing strategies for
cyber-physical systems [11].

In this paper, we propose a new paradigm for network inter-
diction where the interdiction is performed through injecting
adversarial traffic flow to the network in an intelligent way,
encroaching the capacity of network links, thereby reducing
the throughput of network users. It captures applications that
have eluded the traditional network interdiction paradigm
based on edge removals. One of the most prominent examples
is the stealth denial of service (DoS) attack in communication
networks, including wireless ad hoc networks [12], software
defined networks [13] and cloud services [14]. The interdictor
(attacker) injects low-rate data into the network that consumes
network resources and compromises the capacity available
to the users. In this paradigm, we model the network as a
capacitated directed graph with n nodes, where the network
users are sending flow on a set P of user paths and the
interdictor aims to reduce the throughput of the users through
sending adversarial flow from its source s to its destination
t. Mirroring the situations in [12], [13], [15], we assume
the interdictor to be low-rate and undetectable, which will
be formally defined later. The interdiction strategy is defined
as a probability distribution over the set of s-t flows with
value less than the given budget, which resembles the mixed
strategy in the game theory literature [4]. The throughput
reduction achieved is equal to the difference between the
network throughput before the interdiction, which is defined
as the sum of initial flow values on paths in P and the
network throughput after the interdiction, which is determined
by the optimal value of a path-based max-flow problem on
the residual network that subsumes both single and multi-
commodity max-flows.

Under the proposed interdiction paradigm, we study two
problems that differ in the availability of the knowledge on
the operation of network users captured by the set of user
paths P . The first, deterministic flow interdiction, assumes
that the interdictor has perfect knowledge of P and seeks an
interdiction strategy that maximizes the (expected) throughput
reduction with respect to P . We show that there does not
exist any polynomial time algorithm that approximates the
problem on general networks within an O(n1−δ) factor for
any δ > 0 unless P = NP, and the problem is NP-hard even
when the network is acyclic. Thus, we focus on designing
efficient algorithms with good performance guarantees on
acyclic networks. Specifically, utilizing the submodularity of
the problem, we propose a recursive algorithm that is capable
of achieving O(log n)-approximation. The second problem, ro-
bust flow interdiction, deals with the situation where definitive
knowledge of P is not available. In particular, we assume that



the set of user paths lies in some uncertainty set U that contains
all possible candidates for P . The goal of the interdictor
is to compute an interdiction strategy that maximizes the
throughput reduction for the worst case in U . As a generaliza-
tion of its deterministic counterpart, robust flow interdiction
inherits the computational complexity results and is more
challenging to solve due to its inherent maximin objective.
In this context, we design an approximation framework that
integrates the algorithm for deterministic flow interdiction
and yields a quasi-polynomial time procedure with a poly-
logarithmic approximation guarantee. Finally, we evaluate the
performance of the proposed algorithms through simulations.
The simulation results suggest that our algorithms compute
solutions that are at least 70% of the optimal and are efficiently
implementable.

The rest of the paper is organized as follows. We formally
present our paradigm on acyclic networks in Section II. In
Sections III and IV, we introduce formal definitions, show
the computational complexity and describe our proposed al-
gorithms for the two flow interdiction problems, respectively.
We evaluate the performance of our algorithms through sim-
ulations in Section V. Section VI is devoted to the extension
of our paradigm and the interdiction problems to general
networks. We conclude the paper in Section VII. Some of the
proofs are omitted due to space constraints, and interested
readers can refer to our technical report [26] for the details.

II. NETWORK INTERDICTION PARADIGM

In this section, we first formalize our network interdiction
paradigm, and then show two important structural properties
of it. Note that currently, we focus on acyclic networks, and
provide extensions to general networks in Section VI.

Consider a network represented as a directed acyclic graph
G(V,E) with vertex set V and edge set E ⊆ V × V . Let
n = |V | be the number of nodes and m = |E| be the number
of edges. We assume G to be simple (with no multi-edges).
Let C be an |E|-dimensional non-negative capacity vector with
C(e) indicating the capacity of edge e. We define s, t ∈ V as
the source and the destination of the interdictor, and assume
without loss of generality that they are connected. An s-t
flow is defined as an |E|-dimensional vector f that satisfies
capacity constraints: ∀e ∈ E, 0 ≤ f(e) ≤ C(e) and flow
conservation constraints: ∀v ∈ V \{s, t},

∑
(u,v)∈E f(u, v) =∑

(v,u)∈E f(v, u). We define val(f) =
∑

(s,u)∈E f(s, u) to be
the value of f , i.e., the total flow out of the source.

The interdiction is performed by injecting flow from s to t.
The interdictor has a flow budget γ that specifies the maximum
value of flow that it can inject. In this paper, we are primarily
concerned with low-rate interdictor, and thus assume that γ ≤
mine∈E C(e) and is bounded by some polynomial of n. Let
F≤γ be the set of s-t flows f with val(f) ≤ γ. We allow the
interdictor to use randomized flow injection, which is captured
by the concept of interdiction strategy formally defined below.

Definition 1 (Interdiction Strategy). An interdiction strategy
w is a probability distribution w : F≤γ 7→ [0, 1] such that∑

f∈F≤γ w(f) = 1

The interdiction strategy bears resemblance to the mixed
strategy in the game theory literature. It can be alternatively in-
terpreted as injecting flows in a time sharing way. Furthermore,
a deterministic flow injection f (similar to a pure strategy in
game theory) can be represented as a strategy with w(f) = 1.

Before the interdiction, the network users are sending flow
on a set of user paths P = {p1, p2, . . . , pk} in the network.
Each path is a subset of edges and we use e ∈ pi to
represent that edge e is on path pi. The user paths may not
share the same source and destination, and are not necessarily
disjoint. Initially, the values of the flows on the paths are
λ1, λ2 . . . , λk respectively, which satisfy capacity constraints:
∀e ∈ E,

∑
pi3e λi ≤ C(e). The network throughput of the

users before the interdiction is defined as
∑k
i=1 λi. Note that

the involvement of the initial flows gives our paradigm the
flexibility to capture the case where the users are not fully
utilizing the paths before interdiction.

After the interdictor injects flow f , the residual capacity of
the edges becomes C̃f such that C̃f (e) = C(e)− f(e) for all
e ∈ E. The throughput of the users after interdiction is given
by the optimal value of the (path-based) max-flow problem:

maximize
∑
i λ̃i (1)

s.t.
∑
pi3e λ̃i ≤ C̃f (e), ∀e ∈ E (2)

0 ≤ λ̃i ≤ λi, ∀i (3)

where constraints (2) are the capacity constraints after the
interdiction and constraints (3) specify that the users will not
actively push more flows on the paths after the interdiction,
which can be attributed to the undetectability of the interdictor
or that the users have no more flow to send. Let T (f , P ) be
the optimal value of (1). We define the throughput reduction
achieved by injecting flow f as the difference between the
throughput of the network before and after interdiction, i.e.,
Λ(f , P ) =

∑
i λi − T (f , P ). Naturally, under an interdiction

strategy w, the expected throughput reduction achieved by the
interdictor is defined as Λ(w,P ) =

∑
f∈F≤γ w(f)Λ(f , P ).

A. Structural Properties of the Paradigm
The proposed network interdiction paradigm has two im-

portant structural properties that will play a key role in
the problems we study. The first property shows that if we
want to maximize the throughput reduction, we can restrict
our consideration to the set of s-t flows with value γ. It
follows straightforwardly from the monotonicity of Λ(f , P )
with respect to the value of f and that γ ≤ mine C(e).

Observation 1. For any s-t flow f with val(f) < γ, there
exists a flow f ′ such that val(f ′) = γ and Λ(f ′, P ) ≥ Λ(f , P )
for all possible P .

We denote Fγ to be the set of flows with value γ. We further
define single-path flows as the s-t flows that have positive val-
ues on edges of one s-t path. The second property establishes
the optimality of interdiction strategies taking positive value
on only single-path flows in the maximization of Λ.
Proposition 1. For any interdiction strategy w, there exists
an interdiction strategy w′ that is a probability distribution on
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Fig. 1. An example network of the flow interdiction problems.

the set of single-path flows such that Λ(w′, P ) ≥ Λ(w,P ) for
all possible P .

Proof. We prove the proposition through flow decomposition
and linear programming duality. The proof is omitted due to
space constraints.

III. DETERMINISTIC FLOW INTERDICTION

In this section, we study the deterministic flow interdiction
problem. We first formally define the problem, then prove its
computational complexity, and finally introduce our proposed
approximation algorithm.

A. Problem Formulation

The deterministic flow interdiction deals with the case
where the interdictor has full knowledge of P and seeks
the interdiction strategy that causes the maximum expected
throughput reduction.

Definition 2 (Deterministic Flow Interdiction). Given the set
of user paths P = {p1, . . . , pk} with initial flow values
{λ1, . . . , λk}, the deterministic flow interdiction problem seeks
an interdiction strategy w that maximizes Λ(w,P ).

Example: We give an example of the problem. Consider the
network in Figure 1, where the capacities are labeled along
the edges. The source and the destination of the interdictor
are nodes s and t. The interdictor has budget γ = 2. The user
paths P = {p1, p2, p3} all have an initial flow value of 3. Let
f be the s-t flow such that f(s, v1) = f(v1, v3) = f(v3, v4) =
f(v4, t) = 2 . In this example, the interdiciton strategy w such
that w(f) = 1 is optimal with Λ(w,P ) = 4.

B. Computational Complexity

Before establishing the computational complexity, we first
show a structural property that is specific to the deterministic
flow interdiction problem. Following from Proposition 1, there
exists an interdiction strategy on the set of single-path flows
that is optimal for the deterministic flow interdiction. We
further extend this property, showing that there exists an
optimal pure interdiction strategy.

Proposition 2. For the deterministic flow interdiction problem,
there exists an optimal (pure) interdiction strategy w such that
w(f∗) = 1 for some single-path flow f∗.

Proof. Building on proposition 1, let w be an optimal inter-
diction strategy that takes positive values only on single-path
flows q1, . . . ,qr. Let q∗ ∈ arg maxi Λ(qi, P ). Consider the
pure strategy w′ with w′(q∗) = 1. It follows that Λ(w′, P ) =

Λ(q∗, P ) ≥
∑
i w(qi)Λ(qi, P ) = Λ(w,P ), which proves the

existence of an optimal pure strategy.

Based on Propositions 1 and 2, we prove the NP-hardness
of the deterministic flow interdiction problems.

Proposition 3. The deterministic flow interdiction problem is
NP-hard.

Proof. The proof is done by reduction from the 3-satisfiability
problem, which is a classical NP-Complete problem [25]. We
refer to [26] for the full proof.

Remark: From the proof of Proposition 3, we have that
even when the user paths are disjoint, the deterministic prob-
lem is still NP-hard.

C. Approximation Algorithm

Before presenting the algorithm, we extend some previous
definitions. For any subset of edges A ⊆ E, imagine that
the interdictor can interdict the edges in A by reducing their
capacities by γ. We extend the definition of Λ(·, P ) to A as
Λ(A,P ) =

∑
i λi − T (A,P ), where T (A,P ) is the optimal

value of the maximization problem (1) with C̃A(e) = C(e)−
γ · 1{e∈A}. This provides an interpretation of Λ(·, P ) as a set
function on all subsets of E. Note that each single-path flow
f can be equivalently represented as a set of edges Ef with
f(e) = γ if and only if e ∈ Ef . It follows that Λ(f , P ) =
Λ(Ef , P ), which links the definition of Λ(·, P ) on single-path
flows to that on sets of edges.

Our algorithm works on the optimization problem below.

maximize Λ(Ef , P ) (4)
s.t. Ef forms an s-t path.

Let Ef∗ be the optimal solution to (4) and f∗ be its
corresponding single-path flow. By Proposition 1, the strat-
egy w with w(f∗) is an optimal interdiction strategy, and
Λ(Ef∗ , P ) = Λ(w,P ). Therefore, through approximating
problem (4), our algorithm translates to an approximation to
the deterministic flow interdiction problem. In the sequel, to
better present the main idea of our algorithm, we first discuss
the case where the user paths are edge-disjoint. After that, we
generalize the results to the non-disjoint case.

1) Disjoint User Paths: When the user paths are edge-
disjoint, for some interdicted edges A ⊆ E and user paths
{p1, . . . , pk} with initial values {λ1, . . . , λk}, the optimal
solution to the max-flow problem (1) can be easily obtained as
λ̃iA = min

(
λi,mine∈pi C̃A(e)

)
for all i. It follows that the

throughput reduction can be written as the sum of the through-
put reduction on each paths, i.e., Λ(A,P ) =

∑
i(λi − λ̃iA).

Based on this, we reason below that the set function Λ(·, P )
has two important properties: monotonicity and submodularity.
Lemma 1. Consider Λ(·, P ) : 2E 7→ R∗ as a set function. Λ
is:

1) Monotone: Λ(A,P ) ≤ Λ(B,P ) for all A ⊆ B;
2) Submodular: for all A,B ⊆ E, e ∈ E, if A ⊆ B, then

Λ(A∪ {e}, P )−Λ(A,P ) ≥ Λ(B ∪ {e}, P )−Λ(B,P ).
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Fig. 2. Illustration of the Recursive Greedy algorithm (with some intermediate
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Proof. The monotonicity is easily seen from the definition of
Λ. The proof of submodularity is also straightforward. Note
that for each user path i,

λi − λ̃iA = λi −min(λi,min
e∈pi
{C(e)− 1{e∈A}})

= λi + max(−λi,max
e∈pi
{−C(e) + 1{e∈A}})

Since constant and linear functions are submodular, and the
maximum of a set of submodular functions is also submodular,
it follows that Λ(A,P ) =

∑
i(λi − λ̃iA) is submodular.

Intuitively, an s-t path with large throughput reduction
should have many intersections with different user paths. This
intuition, combined with the monotonicity and submodularity
of Λ, may suggest an efficient greedy approach to the op-
timization problem (4) that iteratively selects the edge with
the maximum marginal gain with respect to Λ while sharing
some s-t path with the edges that have already been selected.
However, this is not the whole picture since such greedy
selection might get stuck in some short s-t path and lose the
chance of further including the edges that contribute to the
throughput reduction. The latter aspect indicates the necessity
of extensive search over the set of all s-t paths, but the
number of s-t paths grows exponentially with n. Therefore, an
algorithm with good performance guarantee and low time com-
plexity must strike a balance between greedy optimization that
harnesses the properties of Λ, and extensive search that avoids
prematurely committing to some short path. The algorithm we
propose, named as the Recursive Greedy algorithm, achieves
such balance. It is based on the idea of [18]. The details of the
algorithm are presented in Algorithm 1 . In the description and
analysis of the algorithm, ΛX(A,P ) = Λ(A∪X,P )−Λ(X,P )
for X,A ⊆ E represents the marginal gain of set A with
respect to X . We use log to denote the logarithm with base
two. For two nodes u1, u2 ∈ V , the shortest u1-u2 path is
defined as the u1-u2 path with the smallest number of edges.

The recursive function RG lies at the heart of the Recursive
Greedy algorithm. RG takes four parameters: source u1,
destination u2, constructed subpath X and recursion depth
i. It constructs a path from u1 to u2 that has a large value
of ΛX(·, P ) by recursively searching for a sequence of good
anchors and greedily concatenating the sub-paths between
anchors. The base case of the recursion is when the depth
i reaches zero, then RG returns the shortest path between u1
and u2 if there exists one (step 2). Otherwise, it goes over all
the nodes v in V (step 8), using v as an anchor to divide

the search into two parts. For each v, it first calls a sub-
procedure to search for sub-path from u1 to v that maximizes
ΛX(·, P ), with i decremented by 1 (step 9). After the first
sub-procedure returns Ef1 , it calls a second sub-procedure
for sub-paths from v to u2 (step 10). Note that the second
sub-procedure is performed on the basis of the result of the
first one, which reflects the greedy aspect of the algorithm.
The two sub-paths concatenated serve as the u1-u2 path that
RG obtains for anchor v. Finally, RG returns the path that
maximizes ΛX(·, P ) over the ones that it has examined over
all anchors (steps 11, 12 and 13).

The Recursive Greedy algorithm starts by invoking
RG(s, t, ∅, I) with I as the initial recursion depth. In the
following, we show that the algorithm achieves a desirable
performance guarantee as long as I is greater than certain
threshold. An illustration of the algorithm with I = 2 on the
previous example is shown in Figure 2. The optimal solution
is the path with anchors v1, v3, v4.

Algorithm 1 The Recursive Greedy Algorithm
Input: Network graph G(V,E), user paths P = {p1, . . . , p2}

with initial flow values {f1, . . . , fk}
Output: The optimal s-t path Ef

1: Run: RG(s, t, ∅, I)
The Recursive Function RG(u1, u2, X, i):

2: Ef := shortest u1-u2 path.
3: if Ef does not exist then
4: return Infeasible
5: if i = 0 then
6: return Ef

7: r := ΛX(Ef , P ).
8: for all v ∈ V do
9: Ef1 := RG(u1, v,X, i− 1).

10: Ef2 := RG(v, u2, X ∪ Ef1 , i− 1).
11: if ΛX(Ef1 ∪ Ef2 , P ) > r then
12: r := ΛX(Ef1 ∪ Ef2 , P ), Ef := Ef1 ∪ Ef2 .
13: return Ef

Theorem 1. If I ≥ dlog de, the Recursive Greedy algorithm
returns an s-t path Ef with Λ(Ef , P ) ≥ 1

dlog de+1Λ(Ef∗ , P ),
where d is the length of Ef∗ .

Proof. We prove a more general claim, that for all
u1, u2 ∈ V, X ⊆ E, if I ≥ dlog de, the procedure
RG(u1, u2, X, I) returns an u1-u2 path Ef with ΛX(Ef , P ) ≥

1
dlog de+1ΛX(Ef∗ , P ), where Ef∗ is the u1-u2 path that maxi-
mizes Λ(·, P ) and d is the length of Ef∗ . The theorem follows
from the claim by setting u1 = s, u2 = t and X = ∅.

Let the nodes on the path Ef∗ be {u1 = v0, . . . , vd = u2}.
The proof is done by induction on d. First, for the base step,
when d = 1, it means that there exists an edge between u1
and u2, which must be the shortest u1-u2 path. Obviously the
procedure examines this path at step 2, and the claim follows.
Next, suppose the claim holds for d ≤ l. When d = l + 1,
I ≥ 1. Let v∗ = vd d2 e

and Ef∗1
, Ef∗2

be the subpaths of Ef∗

from u1 to v∗ and v∗ to t, respectively. When RG uses v∗
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as an anchor, it first invokes RG(u1, v
∗, X, I−1) that returns

Ef1 and then invokes RG(v∗, u2, X ∪Ef1 , I − 1) that returns
Ef2 . Let E′f = Ef1 ∪ Ef2 . Our goal is to show that

ΛX(E′f , P ) ≥ 1

dlog de+ 1
ΛX (Ef∗ , P ) , (5)

which proves the induction step, since the path Ef

that RG(u1, u2, X, I) returns must satisfy ΛX(Ef , P ) ≥
ΛX(E′f , P ). The goal is achieved by invoking the induction
hypothesis on the two sub-procedures RG(u1, v

∗, X, I − 1)
and RG(v∗, t,X∪Ef1 , I−1), and combining the results using
the monotonicity and submodularity of Λ (Lemma 1). Further
details are deferred to [26] due to space constraints.

Time Complexity: As we invoke at most 2n sub-
procedures at each level of recursion and the computation of
Λ takes O(m) time, the time complexity of the algorithm is
O((2n)Im). Taking I = log n+ 1 ≥ dlog de, we get an algo-
rithm with a logarithmic approximation ratio of 1/(dlog de+1)
with a quasi-polynomial time complexity of O((2n)logn+1m).

Remark: Note that the proof of Theorem 1 only relies
on the monotonicity and submodularity of Λ. Therefore, the
Recursive Greedy algorithm works for any monotone and
submodular function on the subsets of E.

2) Non-disjoint User Paths: When the user paths are not
disjoint, the problem becomes more challenging. First, notice
that λ̃iA = min

(
λi,mine∈pi C̃A(e)

)
no longer holds due to

the constraints in (2) that couple different λ̃i’s together. More
importantly, Λ actually loses the submodular property,which
prevents the direct application of the Recursive Greedy al-
gorithm. We tackle the issues through approximating Λ with
a submodular function Λ̄, and run the Recursive Greedy
algorithm on Λ̄. The performance guarantee of the algorithm
can be obtained by bounding the gap between Λ and Λ̄.

Let E0 ⊆ E be the set of edges that belong to some user
path. This is also the set of edges that appear in constraints (2).
We partition E0 into two sets E1 and E2, where E1 is the set
of edges that belong to only one user path, and E2 is the set
of edges that belong to at least two (intersecting) user paths.
Following this, we define Λ̄(A,P ), A ⊆ E to be evaluated
through the two-phase procedure below. The procedure first
goes edges in E1 (Phase I), setting

λ̃
(1)
iA := min

(
λi, min

e∈pi,e∈E1

{C̃A(e)}
)
, ∀i.

Then, it goes over edges in E2 (Phase II), setting

λ̃
(2)
iA := λ̃

(1)
iA ·

∏
e∈pi,e∈E2,C̃A(e)≤

∑
pj3e

λj

C̃A(e)∑
pj3e λj

, ∀i.

Finally, it sets Λ̄(A,P ) =
∑
i λi −

∑
i λ̃

(2)
iA .

The procedure uses {λ̃(2)iA }, a set of flow values on user
paths, as an approximate solution to the max-flow problem (1).
The solution is obtained through first setting the flow values to
{λi} and then gradually decreasing them until the constraints
are satisfied. In Phase I, the flow values are decreased to

satisfy the capacity constraints posed by edge in E1. In Phase
II, the flow values are further reduced to compensate for the
capacity violations on edges in E2 through multiplying a factor
C̃A(e)∑
pj3e

λj
, which is equal to the ratio between the capacity of

e after the interdiction and the sum of flow values on e before
the interdiction, to the flow value of each user path containing
e, for each e ∈ E2. Typically, Phase II overcompensates and
thus Λ̄ is an upper bound of Λ. But as we will show, the
gap between Λ̄ and Λ is moderate and such overcompensation
guarantees the submodularity of Λ̄.

Substituting Λ with Λ̄ in Algorithm 1, we obtain the Recur-
sive Greedy algorithm for the case of non-disjoint user paths.
We will refer to this algorithm as the Extended Recursive
Greedy algorithm. The name is justified by noting that when
the user paths are disjoint, E2 = ∅ and Λ̄ = Λ, the Extended
Recursive Greedy algorithm degenerates to Algorithm 1.

Before analyzing the performance of the algorithm, we
establish two lemmas that show the monotonicity and submod-
ularity of Λ̄, and bound the gap between Λ̄ and Λ, respectively.
The proofs of the lemmas are deferred to [26].

Lemma 2. Consider Λ̄(·, P ) : 2E 7→ R∗ as a set function.
Λ̄(·, P ) is monotone and submodular.

Lemma 3. Λ(A,P ) ≤ Λ̄(A,P ) ≤ (b + 1) · Λ(A,P ) for all
A ⊆ E, where b = maxi |E2 ∩ pi|, i.e., the maximum number
of edges that a user path shares with other user paths.

Now, we are ready to analyze the performance of the
Extended Recursive Greedy algorithm.

Theorem 2. If I ≥ dlog de, then the Extended Recursive
Greedy algorithm returns an s-t path Ef that satisfies

Λ(Ef , P ) ≥ 1

(b+ 1) · (dlog de+ 1)
Λ(Ef∗ , P ),

where d is the length of Ef∗ and b = maxi |E2 ∩ pi|.
Proof. By Lemma 2 and Theorem 1, we have Λ̄(Ef , P ) ≥

1
(dlog de+1) Λ̄(Ef∗ , P ) when I ≥ dlog de. Invoking Lemma 3,
we obtain that

Λ(Ef , P ) ≥ 1

b+ 1
Λ̄(Ef , P ) ≥ 1

(b+ 1) · (dlog de+ 1)
Λ̄(Ef∗ , P )

≥ 1

(b+ 1) · (dlog de+ 1)
Λ(Ef∗ , P ),

which concludes the proof.
Note that the computation of Λ̄ takes O(m) time. Therefore,

taking I = log n+ 1 we get a 1
(b+1)·(dlog de+1) -approximation

algorithm with a time complexity of O((2n)logn+1m). Al-
though in the worst case, b can be at the same order as n. In
most cases, b is of O(log n), and the algorithm still enjoys a
logarithmic approximation ratio.

IV. ROBUST FLOW INTERDICTION

In this section, we investigate the robust flow interdiction
problem. Following the road map of deterministic flow inter-
diction, we first describe the formal definition of the problem,
then show its computational complexity, and finally present
the approximation framework for the problem.
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A. Problem Formulation

While deterministic flow interdiction considers the case
where the interdictor has definitive knowledge of the user
paths, robust flow interdiction concerns scenarios where such
knowledge is not available. We model this more complicated
situation using the robust optimization framework [16]. Instead
of having certain knowledge of P , the interdictor only knows
that P lies in an uncertainty set U = {P1, . . . , Pξ}. Each
Pl = {pl1, . . . , plkl} ∈ U , associated with initial flow values
{λl1, . . . , λlkl}, is a candidate set of paths that the users are
operating on. The interdictor aims to hedge against the worst
case, maximizing the minimum throughput reduction achieved
over all candidates P .
Definition 3 (Robust Flow Interdiction). Given the uncertain
set U = {P1, . . . , Pξ} of the user paths and the associated
initial flow values on user paths for each P ∈ U , the
robust flow interdiction problem seeks an interdiction strategy
w that maximizes the worst case throughput reduction, i.e.,
w ∈ arg maxw′ minP∈U Λ(w′, P ).

Example: As an example of the robust flow interdiction
problem, we again consider the network in Figure 1. The in-
terdictor has source s, detination t and budget γ = 2. Assume
that the interdictor only knows that the users are sending flow
on either {p1, p2} or {p1, p3}, and the initial flow values on
p1, p2, p3 are all three. This corresponds to the robust flow in-
terdiction with U = {{p1, p2}, {p1, p3}}. Let f1 be the single-
path flow with value two on {(s, v1), (v1, v3), (v3, v4), (v4, t)}
and f2 be that on {(s, v1), (v1, v3), (v3, v2), (v2, t)}. The op-
timal strategy is w(f1) = 1/3, w(f2) = 2/3, and the worst
case throughput reduction equals 8/3 as Λ(w, {p1, p2}) =
Λ(w, {p1, p3}) = 8/3. Note that in this example, no pure
interdiction strategy can achieve a worst case throughput
reduction of 8/3, which demonstrates the superiority of mixed
strategies in the robust flow interdiction setting.

The robust flow interdiction problem subsumes the deter-
ministic one as a special case by setting U = {P}. Therefore,
we immediately have the following proposition.

Proposition 4. The robust flow interdiction problem is NP-
hard.

Before presenting our approximation framework, we present
a linear programming (LP) formulation that serves as an
alternative solution to the robust flow interdiction problem.
According to Proposition 1, we can restrict our attention to
distributions on the set of single-path flows with value γ.
Therefore, in the following, the distributions we refer to are
all on the set of single-path flows in Fγ . We enumerate such
single-path flows in an arbitrary order and associate with each
single-path flow fi a variable wi. Consider the linear program:

maximize z (6)

s.t.
∑

i
wiΛ(fi, P ) ≥ z, ∀P ∈ U∑
i
wi = 1

wi ≥ 0, ∀i

Clearly, the solution to the LP corresponds to an optimal
interdiction strategy w to the robust flow interdiction problem
with w(fi) = wi. Hence, formulating and solving the LP is a
natural algorithm for the robust flow interdiction. However,
as the number of single-path flows can be exponential in
the number of nodes n, the LP may contain an exponential
number of variables. It follows that the algorithm has an un-
desirable exponential time complexity. We use this algorithm
in the simulations to obtain optimal interdiction strategies for
comparisons with our approximation framework. Furthermore,
when the number of single-path flows is exponential in n, even
outputting the strategy may take exponential time. This makes
it impractical and unfair to compare any sub-exponential
time approximation procedure to the optimal solution. We get
around this issue by comparing our solution to the optimal
interdiction strategy that takes non-zero values on at most
N0 single-path flows, where N0 is a pre-specified number
bounded by some polynomial of n. We refer to such strategies
as N0-bounded strategies. The optimal N0-bounded strategy
corresponds to the best strategy that uses at most N0 different
interdicting flows. Note that such restriction does not trivialize
the problem since we place no limitation on the set but just
the number of single-path flows that the interdictor can use.

B. Approximation Framework

In this section, we present the approximation framework
we propose for the robust flow interdiction problem. As a
generalization of the deterministic version, the robust flow
interdiction is more complicated since it involves maximizing
the minimum of a set of functions. The (Extended) Recursive
Greedy algorithm cannot be directly adapted to this case.
Instead, we design an approximation framework that integrates
the Extended Recursive Greedy algorithm as a sub-procedure.
The framework only incurs a logarithmic loss in terms of
approximation ratio. The description and analysis of the ap-
proximation framework are carried out in three steps. First, we
justify that it is sufficient to consider the robust flow interdic-
tion problem with parameters taking rational/integral values.
In the second step, building on the rationality/integrality of
parameter values, we convert the problem to a sequence of
integer linear programs. Finally, we solve the sequence of
integer programs through iteratively invoking the Extended
Recursive Greedy algorithm.

1) Rationalizing the Parameters: In the first step, we show
that not much is lost if we only consider the interdiction
strategies that take rational values and restrict the throughput
reduction to take integer values. Specifically, let N = N2

0 +N0

and QN = { βN : β ∈ N, 0 ≤ β ≤ N} be the set of
non-negative rational numbers that can be represented with
N as denominator. Further, we define WN to be the set of
strategies that take value in QN , i.e., WN = {w : Fγ 7→
QN ,

∑
f w(f) = 1}. We use w∗ to represent the optimal N0-

bounded interdiction strategy, and w∗N to represent optimal
strategy in WN . The following lemma states that w∗ can be
well approximated by w∗N .
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Lemma 4. For all P ∈ U , Λ(w∗N , P ) ≥ N0

N0+1Λ(w∗, P ).

We now proceed to argue that it suffices to consider the
throughput reduction function Λ to take integral values that are
bounded by some polynomial of n. First, when the integrality
of Λ is not satisfied, we can always use standard scaling and
rounding tricks to get a new instance of the problem, where
Λ takes integral values. Our framework can be applied to the
new instance, yielding an interdiction strategy that has almost
the same performance guarantee for both the original and the
new instances. We omit the formal statement and its proof
here. Second, since γ is bounded by some polynomial of n,
maxw,P Λ(w,P ) is also bounded by some polynomial of n.
Now, let M = N maxw,P Λ(w,P ). We can thus without loss
of generality assume that M is an integer bounded by some
polynomial of n.

With the above results, we move into the second step, that
converts the robust flow interdiction problem into a sequence
of integer linear programs.

2) Converting into Integer Linear Programs: Recall the
enumeration of single-path flows in the LP (6). This time, we
associate each flow fi with an integral variable xi. Consider the
following integer program ILP (κ) parameterized by a positive
integer κ ≤M .

minimize
∑
i xi (7)

s.t.
∑

i
xiΛ(fi, P ) ≥ κ, ∀P ∈ U (8)

xi ∈ N, ∀i (9)

Each xi indicates the number of times fi is selected. ILP (κ)
can be interpreted as selecting the single-path flows for the
minimum total number of times that achieve a throughput
reduction of κ for all candidate P . For each κ, we denote by
Nκ the optimal value of ILP (κ). If we can obtain an optimal
solution {x} to ILP (κ), then the strategy w with w(fi) =
xi/Nκ satisfies minP∈U Λ(w,P ) ≥ κ/Nκ. In the following
lemma, we show that the strategy constructed according to
the solution to the integer program with the maximum value
of κ/Nκ is a close approximation to the optimal N0-bounded
strategy in terms of worst case throughput reduction.

Lemma 5. Let κ∗ = arg max1≤κ≤M (κ/Nκ). We have κ∗

Nκ∗
≥

minP∈U Λ(w∗N , P ) ≥ N0

N0+1 minP∈U Λ(w∗, P ).

Connecting the analysis so far, we have a clear procedure
to compute a near-optimal interdiction strategy for the robust
flow interdiction. First, we construct and solve ILP (κ) for 1 ≤
κ ≤ M . Second, we take optimal solution with the maximal
κ/Nκ and obtain its corresponding interdiction strategy, which
is within a factor of N0

N0+1 to the optimal N0-bounded strategy.
The final step of our framework is devoted to solving ILP (κ).

3) Solving the Integer Linear Programs: Resembling (6),
each ILP (κ) involves potentially exponential number of vari-
ables. What is different and important is that, we can obtain a

1
logM -approximation through a greedy scheme that iteratively
chooses a single-path flow according to the following criterion:
let {x} indicate the collection of flows that have been chosen

so far, i.e., each fi has been chosen for xi times. Let i∗ be

arg max
i

∑
P∈U,κ≥

∑
j xjΛ(fj ,P )

min{κ−
∑

j
xjΛ(fj , P ),Λ(fi, P )}.

(10)

The greedy scheme chooses fi∗ at the current iteration and
increments xi∗ by 1. The above procedure is repeated until
we have

∑
i xiΛ(fi, P ) ≥ k for all P ∈ U . Moreover, if

we apply an α-approximate greedy scheme, which chooses fi
that is an α-optimal solution to (10), then the final solution
we obtain is α logM -optimal. Essentially, (10) selects the
flow that provides the maximum marginal gain with respect
to satisfying the constraints (8) for all P ∈ U . That the (α-
approximate) greedy scheme achieves an logarithmic approx-
imation follows from the relation of ILP (κ) to the multiset-
multicover problems and the results therein [19], which we
omit here due to space limitation. Now recall the equivalence
between Λ(f , P ) and Λ(Ef , P ) established in Section III. We
proceed to show that the Recursive Greedy algorithm can be
used to construct an approximate greedy scheme. First, we
have the following lemma.

Lemma 6. If Λ is monotone and submodular, then the
objective function of (10) is also monotone and submodular.

By Lemma 6, the Recursive Greedy algorithm (or the
Extended Recursive Greedy algorithm using Λ̄ instead of
Λ when the user paths are not disjoint) can be applied to
the maximization of (10) and enjoys the same performance
guarantee as in Theorems 1 and 2. Hence, the final step can
be completed by an approximate greedy scheme that iteratively
invokes the (Extended) Recursive Greedy algorithm. We now
summarize the three steps of our approximation framework
for the robust flow interdiction as Algorithm 2 and analyze
its performance.

Theorem 3. Algorithm 2 returns an interdiction strategy w
that satisfies

min
P∈U

Λ(w,P )

≥
(

N0

(N0 + 1)(b+ 1) logM · (dlog de+ 1)

)
min
P∈U

Λ(w∗, P ),

where w∗ is the optimal N0-bounded strategy.

Proof. Let ILP (κ) and {x} be the integer linear program and
its solution that correspond to w. We inherit the definition of
κ∗ in Lemma 5 and further define {x∗} to be the solution that
Algorithm 2 computes for ILP (κ∗). We have

min
P∈U

Λ(w,P ) = min
P∈U

∑
i
w(fi)Λ(fi, P )

= min
P∈U

∑
i

xi∑
j xj

Λ(fi, P ) ≥ κ∑
j xj
≥ κ∗∑

j x
∗
j

≥
(

1

(b+ 1) logM · (dlog de+ 1)

)
κ∗

Nκ∗
(11)

≥
(

N0

(N0 + 1)(b+ 1) logM · (dlog de+ 1)

)
min
P∈U

Λ(w∗, P ), (12)

where inequality (11) follows from Theorem 2 and the results
in [19], and inequality (12) follows from Lemma 5.
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Time Complexity: Note that Algorithm 2 solves M integer
linear programs, and it takes at most Mξ calls of the (Ex-
tended) Recursive Greedy algorithm for each program since
the number of iterations is bounded by Mξ, where ξ = |U|.
Furthermore, at the third step, there are at most Nκ ≤ Mξ
variables with non-zero values in the solution {x}, which
implies that w can be output in O(Mξ) time. Therefore, the
time complexity of Algorithm 2 is O

(
m(Mξ)2(2n)logn+1

)
.

Algorithm 2 Algorithm for the Robust Flow Interdiction
Input: Network graph G, Uncertainty set U = {P1, . . . , Pξ}
Output: Interdiction Strategy w

1: Formulate ILP (κ) for 1 ≤ κ ≤M .
2: Solve each ILP (κ) using the approximate greedy scheme

based on the (Extended) Recursive Greedy algorithm.
3: Take the solution {x} to ILP (κ) with the maximum

value of κ/
∑
j xj and construct w by setting w(fi) =

xi/
∑
j xj for all i.

V. SIMULATIONS

In this section, we present our evaluation of the performance
of the proposed algorithms. We first introduce the simulation
environment in the following and then show the detailed results
in subsequent sections.

A. Simulation Setting

We adopt the Gnutella network data set from [23]. We
extract 20 networks of 1000 nodes, and make the networks
acyclic by removing a minimal feedback edge set from each of
them. The capacities of the edges are sampled from a normal
distribution with mean 20 and standard deviation 3. The budget
of the interdictor is set to the minimum capacity of the edges
in each network.

B. Deterministic Flow Interdiction

In the deterministic flow interdiction, we divide our sim-
ulations into two parts, where the user paths are disjoint
and non-disjoint respectively. In the first part, we designate
k disjoint paths in each network as user paths with k vary-
ing in {10, 20, . . . , 100}. In the second part, we follow the
similar route, except that the user paths are randomly chosen
without guaranteeing their disjointness. For each network, we
randomly select five connected node pairs as the source and
destination of the interdictor. Thus, for each number of user
paths, we have 100 simulation scenarios in total (20 networks
times 5 s-t pairs).

1) Algorithms Involved in Performance Comparisons: We
apply the Recursive Greedy algorithm when the user paths
are disjoint and run the extended one when the user paths are
non-disjoint. We vary the recursion depth, i.e., the value of I
in Algorithm 1 to evaluate its influence on the algorithms’
performance. Our algorithms are compared to a brute force
algorithm that enumerates all the paths between the inter-
dictor’s source and destination, which computes the optimal
interdiction strategy.

2) Performance Metric: We calculate the ratio of the
throughput reduction of the interdiction strategies by our
algorithms to that of the optimal solutions obtained by the
brute force algorithm. The results reported are the average
over all the 100 scenarios.

3) Simulation Results: We plot the results of our algo-
rithms on deterministic flow interdiction with disjoint and non-
disjoint user paths in Figures 3(a) and 3(b).

From Figure 3(a), we can see that: (i). by setting the
recursion depth to two, we get interdiction strategies with
throughput reduction more than 90% of the optimal (0.9-
approximation) and (ii). by setting the recursion depth to three,
we recover the optimal interdiction strategies. Furthermore, we
find that when the recursive depth is three, the number of paths
examined by the Recursive Greedy algorithm is just about one
fifth of the total number of s-t paths. This suggests that the
typical performance and running time are even better than what
the theoretical analysis predicts. Finally, we observe that, in
general, our algorithms perform better when the number of
user paths is large. This observation also holds in subsequent
cases. One possible explanation for this is that more user paths
present more opportunities for throughput reduction, making
(near-)optimal interdicting flows easier to find.

As demonstrated in Figure 3(b), the deterministic flow
interdiction is harder to approximate when the user paths are
non-disjoint. But we can still get 0.8-approximations with
a recursion depth of three and 0.95-approximations with a
recursion depth of four. Also, though we have not plotted in the
figure, we have seen that increasing the recursion depth to five
or six does not further improve the performance. Therefore, the
gap between the Extended Recursive Greedy algorithm with
depth of four and the optimal can be attributed to the loss
brought by the approximate throughput reduction function Λ̄.

C. Robust Flow Interdiction

In the robust flow interdiction, we randomly select 10
groups of k paths as the uncertainty set U for k ∈
{10, 20, . . . , 100}. Similar as before, we randomly selected
5 source-destination pairs for the interdictor in each network
and form 100 scenarios for each k.

1) Algorithms Involved in Performance Comparisons: We
embed the Extended Recursive Greedy algorithm with differ-
ent recursion depths in our proposed approximation framework
(Algorithm 2). The optimal solution in this case is obtained
by solving the LP (6).

2) Performance Metric: For all strategies w computed by
our algorithms, we calculate the ratio of worst-case throughput
reduction minP∈U Λ(w,P ) to that of the optimal. The results
reported are again averaged over all the scenarios.

3) Simulation Results: We plot the results in Figure 3(c).
Taking the depth as four, our approximation framework
achieves interdiction strategies that are more than 70% of the
optimal (0.7-approximation). As in the previous case, we have
implemented the framework with recursion depth of five and
six but found that it did not improve the performance.
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Fig. 3. Ratio of throughput reduction of the solutions by our algorithms to the optimal.

VI. EXTENSION TO GENERAL NETWORKS

In this section, we extend our network interdiction paradigm
and the two flow interdiction problems to general networks.
Our network interdiction paradigm can be straightforwardly
extended to general networks by allowing the network graph
to be a general directed graph. One caveat is that we need to
additionally restrict the flows that the interdictor injects to be
free of cycles. Since otherwise, as the flow value of a cycle is
zero, the interdictor would be able to consume the capacities
of the edges in any cycle without spending any of its budget,
which would lead to meaningless solutions. Under the gener-
alized paradigm, the deterministic and robust flow interdiction
problems can be defined in the same way as Definitions 2 and
3. For the network interdiction paradigm on general networks,
Proposition 1 still holds. But the Recursive Greedy algorithm
will break down since the edge set it returns will be an s-t walk
instead of an s-t path (i.e. it may contain cycles). Furthermore,
we can prove by an approximation-preserving reduction from
the Longest Path problem in directed graphs [24] that there is
no polynomial time algorithm with an approximation ratio of
O(n1−δ) for any δ > 0 unless P = NP . This implies that
the two flow interdiction problems on general directed graph
are extremely hard to approximate within a non-trivial factor
in polynomial or even quasi-polynomial time. The proof is
omitted due to space constraints.

VII. CONCLUSION

In this paper, we proposed a new paradigm for network
interdiction that models the interdictor’s action as injecting
bounded-value flows to maximally reduce the throughput of
the residual network. We studied two problems under the
paradigm: deterministic flow interdiction and robust flow inter-
diction, where the interdictor has certain or uncertain knowl-
edge of the operation of network users, respectively. Having
proved the computation complexity of the two problems,
we proposed an algorithm with logarithmic approximation
ratio and quasi-polynomial running time was proposed for
the deterministic flow interdiction. We further developed an
approximation framework that integrates the algorithm and
forms a quasi-polynomial time procedure that approximates
the robust flow interdiction within a poly-logarithmic factor.
Finally, we evaluated the performance of the proposed algo-
rithms through simulations.
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[8] J. Zheng and D. A. Castañón, “Dynamic network interdiction games
with imperfect information and deception”, in IEEE ICC, pp. 7758-
7763, 2012.

[9] Neumayer, Sebastian, Alon Efrat, and Eytan Modiano. ”Geographic
max-flow and min-cut under a circular disk failure model.” Computer
Networks 77 (2015): 117-127.

[10] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters”, in IEEE/ACM Trans.
on Networking, Vol. 19, No. 6, pp. 1610-1623, 2011.
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