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Abstract—Identifying the location of a disturbance and its
magnitude is an important component for stable operation of
power systems. We study the problem of localizing and estimating
a disturbance in the interconnected power system. We take a
model-free approach to this problem by using frequency data
from generators. Specifically, we develop a logistic regression
based method for localization and a linear regression based
method for estimation of the magnitude of disturbance. Our
model-free approach does not require the knowledge of system
parameters such as inertia constants and topology, and is
shown to achieve highly accurate localization and estimation
performance even in the presence of measurement noise and
missing data.

I. INTRODUCTION

Frequency response is one of the key performance measures
that indicate the stability of a power system. The frequency of
a power system is a complex function of physics, generation
control actions and load behaviors over the system topology.
Although power systems are designed to operate at a nom-
inal frequency, which is typically 60Hz or 50Hz, they often
experience frequency excursion due to the imbalance between
generation and load. That is, the system frequency goes up
if generation exceeds load, and goes down otherwise. Most
of frequency excursions (due to the time-varying nature of
demands which generation can keep up with) are not consid-
ered harmful and thus do not call for any action to restore
the system frequency. Such a frequency range is referred to as
deadband [1].

On the other hand, when there is a major disturbance
such as generator tripping and load surge, the frequency can
go down to a critical point where generators are damaged
permanently or loads severely malfunction. Such a frequency
decline should be arrested through so-called primary control
that adjusts generation to match the current load, in which
case the system frequency reaches the steady state. However,
for most of energy sources, it is hard to ramp up generation
immediately, and as a consequence, the frequency can decline
below a critical point, e.g., 5% of nominal frequency [2].

In this case, some loads have to be disconnected from
the power grid, and this is referred to as load shedding.
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Obviously, the amount of load shedding should be neither
too small, which may fail to arrest frequency decline below a
critical point, nor too large, which may excessively deteriorate
the quality of service. It is therefore important to determine
the right amount of load to be shed in order to prevent
the system frequency from dropping to a critical point. This
clearly requires a quick and accurate estimation of the power
imbalance between load and generation. In this paper, we study
the problem of locating and estimating the disturbance leading
to underfrequency, i.e., the disturbance such as load surge and
generator tripping.

There are several works that present the method for esti-
mating the power imbalance in the context of load shedding.
The work in [2] estimates the power imbalance of an isolated
generator by measuring the initial slope of frequency decline,
i.e., the rate of change of frequency (ROCOF) right after
disturbance. The initial slope of an isolated generator is indeed
proportional to the power imbalance, which is thus easy to
estimate (if the inertia constant is known). This idea can be
extended to the case of multiple generators by adding indi-
vidual power imbalance, which gives the total load-generation
imbalance in the power system [3]. Furthermore, the accuracy
of estimation can be enhanced by using voltage measurements
in addition to ROCOF data [4], [5], and load characteristics
and system topology [6].

Most of the above works rely upon the physical model
of the power system. This approach, however, hinges on the
accurate knowledge of system parameters. For example, as
mentioned above, the disturbance estimation method following
the principle in [2] uses the inertia constant of a power
system which also needs to be estimated. Although there
are many known methods for estimating the inertia constant,
the estimation is subject to several sources of errors and
more importantly, the system-wide inertia constant can vary
depending on the system status such as load [7]. In this work,
we are interested in the model-free approach that does not
explicitly use the system model which involves the parameters
depending on the fundamental characteristics of the system.

In contrast to the estimation of power imbalance, the litera-
ture of localization of disturbance or fault has seen a number
of papers taking model-free approaches, i.e., machine learning
techniques for fault localization. In [8], neural networks are
used to locate the fault and estimate the fault resistance

2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

978-1-5386-7954-8/18/$31.00 ©2018 IEEE



based on current and voltage measurement data. In [9], neural
networks are developed separately for different components
such as transformers and buses. Only the status of circuit
breakers and relays is used as input, and hence, the localization
method is scalable and robust to topology changes. Other
techniques such as support vector machine [10], [11] and linear
discriminant analysis [12] have been used as well (see [13] for
more references in this context).

There are also several works that take a model-based
approach for the localization of a disturbance [14]. Typically,
in this approach, phasor measurement units (PMUs) detect
the disturbance possibly at different times because PMUs
are geographically distributed and the disturbance propagates
much slower than the electromagnetic wave. The key idea is
to use the disturbance propagation speed in order to compute
the distance from the disturbance location to each PMU, and
apply triangulation method to locate the disturbance. However,
the disturbance propagation speed can vary from 100 to 1000
miles/s depending on the system condition [15].

Our goal in this paper is to develop a disturbance local-
ization and (magnitude) estimation method in the presence of
measurement noise and even missing data. Our method uses
frequency data from interconnected generators. The intercon-
nected generators are synchronized so that they operate at
the same frequency. However, when there is a disturbance,
its impact is perceived by generators at different times. For
example, a generator close to the disturbance may experience
frequency drop earlier than the one far from the distur-
bance. Consequently, generators may exhibit different fre-
quency dynamics before they are synchronized eventually. As
mentioned above, the disturbance propagation speed is slow,
and hence, the frequency changes of generators might show
distinguishably different patterns depending on the location
of disturbance. Based on this observation, we apply a simple
logistic regression to frequency change data and demonstrates
that the location of a disturbance can be identified with high
accuracy. In addition, the rate of frequency change also reflects
the magnitude of disturbance, and thus, using the same data
as in the localization, we propose a simple linear regression
based method for estimating the magnitude of disturbance.

The rest of the paper is organized as follows. In Section
II, we present the model and the problem of our interest.
In Section III, we discuss the methods for localization and
estimation. In Section IV, we demonstrate the performance of
our methods under various environments, and in Section V,
we conclude the paper.

II. MODEL AND PROBLEM DESCRIPTION

We consider a power system where there is a control center
that collects the frequency data from generators. Note that
such a frequency monitoring network (FNET) already exists,
and there is even a low cost 120V-outlet measurement based
FNET [16], [17]. Assume that there are N generators and B
buses. Let fi(t) be the frequency of generator i at time t.
Suppose that there is a sudden increase of load at a bus. Let

∆Pi denote the power imbalance, i.e., load minus generation,
at generator i. This value can be expressed as

∆Pi = −2HiSi
fn

dfi(t)

dt
, (1)

where Hi[s], Si[MVA] and fi[Hz] are the inertia constant,
rated apparent power and frequency of generator i, respec-
tively, and fn[Hz] is the nominal frequency [2]. To be more
precise, ∆Pi is given by ∆Pi = Pei−Pmi where Pmi and Pei
are mechanical input power to generator and electric output
power from generator, respectively. Hence, (1) represents
the fact that when the system load suddenly increases, the
rotational energy in the mass of generator unit is released
to initially supply the load, thereby decreasing the frequency.
It is important to note that this relationship between power
imbalance and rate of frequency change is valid only right
after the disturbance has occurred. This is because once the
control action (specifically, primary control that immediately
responds to frequency change) of generator takes effect, the
effect of disturbance decays and the system reaches the steady
state where dfi(t)

dt ≈ 0.
In the interconnected power system, a load change is shared

by generators. This is typically expressed by summing the
individual power imbalances as

∆P =
∑
i

∆Pi = −
∑
i

2HiSi
fn

dfi(t)

dt
, (2)

where ∆P is the total power imbalance in the system [5].
Using this model, the total power imbalance in the system can
be estimated using the rate of frequency change from each
generator. This estimation, however, can suffer from several
errors. First, as mentioned in the introduction, the inertia
constant Hi can change depending on the system status such
as load. Second, if there is a disturbance at a certain bus,
the disturbance starts to take effect at a generator nearest to
the bus. The electric output power at the nearest generator
will then suddenly increase, leading to frequency decline,
while other generators may not have received the impact
yet. This makes it unclear when the model in (2) should be
used to estimate the disturbance. This subtlety of model-based
approach has led us to consider a model-free approach that
does not rely on a specific system model.

Our approach uses the rate of change of frequency (ROCOF)
as well because it reflects the magnitude of disturbance in
that the frequency change is larger in the event of larger
disturbance. In this paper, we assume that the disturbance
occurs at a single bus (our method can be readily extended
to the case of multiple disturbances), and that the disturbance
start time is known (there are existing methods for detecting
start time such as the one in [18]). We first develop a
localization method by applying logistic regression to ROCOF
data. The location information together with ROCOF data are
used to estimate the magnitude of disturbance based on linear
regression.
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III. PERTURBATION LOCALIZATION AND MAGNITUDE
ESTIMATION

In this section, we present the method of disturbance local-
ization based on logistic regression, and disturbance magnitude
estimation based on linear regression. We first discuss the
selection of features for the learning algorithms, using the
frequency measurement at all the generators. Furthermore, we
discuss how training and prediction are performed when some
measurements are missing, e.g., due to communication delays
or failures.

A. Extracting Features from Frequency Data

Assume that the frequency at each generator is measured
with a PMU. Typically, PMUs are equipped with GPS for
clock synchronization, and hence, measurement data can
be assumed synchronized. Let tk be the k-th sample time
at every generator. The control center receives from each
generator i the noisy frequency measurement expressed as
f̃i(tk) = fi(tk) + εi where εi is the measurement noise
normally distributed with mean zero and variance σ2, i.e.,
εi ∼ N (0, σ2). Real frequency measurement data show that
measurement noise is common and non-negligible [18].

Recall that the time at which the disturbance occurred is
assumed to be known. Without loss of generality, let t0 be
the time at which the disturbance occurred. As discussed
in Section II, the initial slope f ′i(t0) , fi(t1)−fi(t0)

t1−t0 is
proportional to the magnitude of the disturbance. Depending
on the distance from the epicenter, the initial slopes at a
generator may exhibit different patterns for different locations
of disturbance, as a result of power flow dynamics. One
could use more samples afterwards, f ′i(t1), f ′i(t2), ..., so as
to construct a more distinguishable footprint of disturbance.

Note that when there is a disturbance, the frequency declines
and thus the slope is negative. However, with actual noisy
frequency data, the sign of slope f̃ ′i(tk) , f̃i(tk+1)−f̃i(tk)

tk+1−tk , k =
0, 1, 2, ... can fluctuate, even if the frequency data are
smoothed, whereas the original signs are steadily negative.
This is detrimental to training, as the sign (and magnitude) of
the slope captures the critical information of disturbance.

To address this issue, we use the following form of fre-
quency change. Let ∆f̃i(tk) = f̃i(tk) − f̃i(t0), k = 1, 2, ...
for each generator i. Assuming equally spaced sample times,
the values represent the slopes with respect to the disturbance
moment t0. Clearly, compared to the values f̃ ′i(tk) defined
above, the signs of ∆f̃i(tk) are more likely to be the same
as the original signs of ∆fi(tk) with noiseless data because it
considers difference between (originally declining) frequency
values farther separated in time. Hence, this gives a more
robust measure of frequency change. We apply a simple mean
filter to these values as

xi =

[
1
Wa

j+Wa−1∑
k=j

∆f̃i(tk), j = 1, ...,Ws −Wa + 1

]
, (3)

and we use the following vector x as a feature vector:

x =
[
x1 x2 · · · xN 1

]
. (4)

The kth coordinate of xi will be denoted as xik. Here, the
value Wa is the averaging window size that determines the
smoothness of the filtered data in xi, i.e., large values of
Wa lead to smoother data. The value Ws is the sampling
window size that determines how many samples will be
used to form a feature vector. The last scaler value 1 is
used to fit the intercept. The length of the feature vector is
L = (Ws−Wa + 1)N + 1, where N is the number of PMUs.
In Section IV, we examine the impact of these values on the
accuracy of prediction.

B. Logistic Regression for Localization

Let y = [y0 y1 ... yB ] be a binary vector such that yi = 1
if there is a disturbance at bus i, and yi = 0 otherwise, where
B is the total number of buses. The value y0 = 1 indicates
that there is no disturbance. Since we assume that there is
at most one disturbance, we have

∑B
i=0 yi = 1. One sample

of the training data for localization is given by (y, x), i.e.,
x is the frequency change information in (4) and y is the
true disturbance location. Denote by X the random variable
representing the feature vector x, and Y the indicator vector
y. The randomness comes from the measurement noise. The
logistic regression problem is formulated as

max
β=[β0 β1 ··· βB ]

P(Y |X) =
B∏
b=0

pb(X;β)Yb , (5)

where pb(X) represents the probability that the disturbance
occurs at bus b. Typically, this probability is expressed as

pb(X;β) =
eβ

b·X∑B
a=0 e

βa·X
, (6)

where βb ∈ RL is the coefficient vector corresponding to the
disturbance at bus b, and

βb ·X = βb0 +
N∑
i=1

Ws−Wa+1∑
k=1

βbikXik. (7)

Suppose that there are M samples of training data,
(y1, x1), ..., (yM , xM ). Taking the logarithmic function on the
objective function in (5) and adding a regularization term, the
logistic regression problem computes β that minimizes the
objective function

min
β

λ

2
||β||22 −

M∑
j=1

{
B∑
b=0

yjb(β
b · xj)− log

(
B∑
b=0

eβ
b·xj

)}
,

(8)

where λ is a parameter that controls the strength of regular-
ization. For large values of λ, regularization is emphasized so
as to avoid over-fitting and enhance robustness to noise.

Denote by β̂ the solution of (8). Given a new measurement
data xnew, the location of a disturbance is estimated as the
bus b with the largest pb(xnew; β̂). The advantage of logistic
regression is that the value pb(xnew; β̂) gives the probability
that b is the location of disturbance, and hence, these values
can be used to pick, say k, most probable locations of
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disturbance. These candidates can be further examined by
other methods or even human experts in order to narrow down
to the actual location. In Section IV, we show that this method
can significantly reduce the classification error.

C. Estimation of Magnitude of Disturbance

Given the location of a disturbance, we now discuss how
the magnitude of the disturbance is estimated. As discussed
with respect to the relationship (1), the magnitude of initial
frequency change increases as the magnitude of disturbance
increases. We thus use the same feature x as in the localization
above, which gives a robust measure of frequency change
after a disturbance. Furthermore, as the model (2) suggests,
one can expect a linear relationship between rate of frequency
change and magnitude of disturbance. This led us to apply
linear regression as it seeks to find an affine function that best
fits the input (x in our case) and output (∆P in our case) data.

Unlike in the localization, we train the linear regression
separately for each disturbance location, i.e., separate linear
regression for each bus. Consider an arbitrary bus b. Let z ∈
R+ be the magnitude of a disturbance that has occurred at
bus b. One sample of training data is then given as (z, x).
Assuming that there are M samples (z1, x1), ..., (zM , xM ),
the linear regression problem is formulated as

min
αb

1

2

M∑
j=1

(
zj − αb · xj

)2
. (9)

Let A = [x1; · · · ; xM ] ∈ RM×L and q = [z1; · · · ; zM ] ∈
RM . As long as A has full column rank, the solution to the
above minimization problem is given as α̂b = (ATA)−1AT q.
Otherwise, if the inverse is computationally expensive or does
not exist, the solution can be found using gradient descent
methods. Given the new measurement data xnew and location
b (either from the localization above or known a priori), the
magnitude is estimated as α̂b · xnew.

D. Dealing with Missing Data

So far, we have assumed that the communication between
control center and PMUs is always reliable. However, as
PMUs are increasingly deployed over power grid, the commu-
nication channel can possibly turn unreliable due to excessive
amount of data or even link failures. It is therefore important
to ensure the above regression schemes work as designed even
when some data from generators are missing.

Assume for simplicity that measurement data are missing
from at most one generator. To address the scenario of missing
data, for each missing scenario, we train logistic and linear
regression coefficients in advance. This requires N+1 separate
trainings for both localization and estimation since we assume
missing data from at most one generator. Note that everything
in the training process is identical to the case of no missing
data except that the feature vector x in (4) does not include
the measurement at the generator where the data are missing.

To address the general case where data can be missing from
at most k generators, one can separately train for

∑k
j=0

(
N
k

)

missing scenarios. Similarly, as soon as the control center
finds that measurement data are missing from j generators
{Gi1 , ..., Gij}, the regression coefficients corresponding to
missing generators {Gi1 , ..., Gij} are retrieved and used for
localization and estimation. We believe that this method is a
practical solution because the event that a large number of
generators fail to deliver their data at the same time may
be unlikely. In the next section, we show that even with
missing data, our schemes yield fairly accurate localization
and estimation performance.

IV. SIMULATION

We generate the data using MATLAB power system toolbox
(Simscape Power Systems), based on the New England Power
System IEEE benchmark topology [19]. Each disturbance
scenario is a load increase at one of 21 bus locations. For
the training data, the load increases range from 100 MW to
1000 MW, with 10 MW interval. For the test and validation
data, the load increases are chosen uniformly at random within
the range from 100 MW to 1000 MW. The frequencies are
sampled at all generators once every 5 millisecond.

In the rest of this section, we study the performance
of the learning algorithms on disturbance localization and
magnitude predictions, using scikit-learn package [20]. The
hyper-parameters of the learning algorithms, such as the
regularization coefficient, are tuned to minimize the prediction
error in the test data. We then evaluate the performance of the
algorithms using validation data, which avoids over-fitting of
the algorithms on test data.

A. Disturbance localization

We evaluate the performance of logistic regression in distur-
bance localization. We first explain the tuning of regularization
coefficient under noisy measurement, and then evaluate the
prediction accuracy by tuning the sampling window size Ws

and averaging window size Wa. We report the optimal Ws

and Wa that minimize the error rates, and provide intuitions
on the selections of Ws and Wa.

1) Regularization coefficient λ: Recall that λ is tuned to
minimize the test error. Table I shows the error rates (defined
as the fraction of misclassified scenarios) on test and validation
data under Ws = 200,Wa = 1, and optimal λ. We observe
that, as noise magnitude increases, a larger regularization
strength is required, and the estimation error increases. Since
the error rates on test data and validation data are close, in
the remainder of the section, we only report the error rates on
validation data to study the impact of Ws and Wa under the
optimally tuned regularization coefficient.

TABLE I: Classification errors under different noise levels

σ (mHz) 0 0.5 1 5 10
λ 1 100 2× 103 104 105

test error 0.006 0.015 0.033 0.103 0.149
validation error 0.009 0.012 0.030 0.118 0.155
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2) Sampling window size Ws: First, we study the prediction
accuracy using noiseless frequency measurement data. For
sampling window size Ws = 1, the error rate on validation
data is around 0.9%. For Ws = 2, the error rate is zero for the
validation data. A small number of frequency samples after the
disturbance are sufficient to achieve high prediction accuracy.
This demonstrates the effectiveness of logistic regression in
locating the disturbance location.

Then, we study the predictions under noisy measurement.
We assume that frequency measurement errors follow a Gaus-
sian distribution with standard deviation σ = 5mHz [18], and
that the measurement errors are independent. From Table II,
we observe that the classification errors are very high for small
Ws. A larger Ws is required to achieve higher accuracy, and
Ws = 200 achieves the highest accuracy among our tests.

TABLE II: Classification errors under different sampling win-
dow sizes

Ws 5 50 100 200 500
validation error 0.709 0.185 0.140 0.118 0.145

Figure 1 illustrates the frequency deviations within 2500ms
(Ws = 500) at generators 1 and 10, after 200MW load
increase at bus 4. Since the frequency changes are non-
linear and the generators respond quickly to power imbalance,
the rate of change within a small time interval after the
disturbance provides accurate estimation on the disturbance
location. Therefore, Ws = 2 gives zero error when there is
no measurement noise. However, with measurement noise, the
rate of change cannot be recovered from a small Ws. Instead,
the rate can only be estimated when Ws is sufficiently large,
so that the frequency deviation becomes large relative to the
noise. On the other hand, a larger Ws increases both the
computation cost and the difficulty to regularize the learning
algorithm to avoid over-fitting. Therefore, a moderate value of
Ws is required to minimize the estimation error.

3) Averaging window size Wa: We study the effects of
smoothing on reducing the estimation error. Table III shows
the error rates for different averaging window sizes, when
σ = 5mHz and Ws = 200. We observe that smoothing
reduces the classification errors. As Wa increases, the number
of features (Ws − Wa + 1) associated with each generator
decreases, and the training algorithm runs faster. We observe
that the error rates are low for Wa = [50, 100].

TABLE III: Classification errors under different averaging
window sizes

Wa 1 10 50 100 150
validation error 0.118 0.100 0.060 0.057 0.072

4) Top k most likely disturbance locations: For the mis-
classified scenarios, logistic regression still provides useful
information for disturbance location. In addition to the pre-
dicted disturbance location, logistic regression outputs the
probabilities of each disturbance location. The top k locations
that have higher probabilities form a set of locations that
require further inspection. Table IV shows the fraction of val-
idation data where the top k scenarios fail to include the true

(a) Generator 1, without noise. (b) Generator 10, without noise.

(c) Generator 1, with noise. (d) Generator 10, with noise.

Fig. 1: Frequency deviation measurements with and without
noise (σ = 5mHz).

disturbance location, for Ws = 200,Wa = 100, σ = 5mHz.
We observe that, among 2/3 of the mis-classified scenarios,
the top two most likely locations estimated by the logistic
regression include the true disturbance location.

TABLE IV: Fraction of data where the top k estimated
locations fail to contain the true location

k 1 2 3 4 5
validation error 0.057 0.021 0.015 0.012 0.009

5) Missing measurement: Finally, we evaluate the predic-
tion accuracy when there are missing measurements from one
or more generators. Table V shows the average classification
errors when the frequency measurement from i generators are
missing, i ∈ {1, 2, 3, 4, 5}, for Ws = 200,Wa = 100, σ =
5mHz. We observe that the predictions are robust under single
generator measurement failure, and that the error rate increases
as there are more number of missing measurements.

TABLE V: Classification errors under missing measurement
i 1 2 3 4 5
validation error 0.066 0.082 0.090 0.116 0.137

TABLE VI: Classification errors under limited training data

number of training samples 1000 500 400 200 100
validation error 0.067 0.085 0.103 0.121 0.182

These results show that by tuning the window size parame-
ters, our localization method can provide a robust classification
in the face noise and unreliable communications.

6) Limited training data: We evaluate the performance
of the classification algorithm using a smaller number of
training data. Table VI demonstrates that the error rate slightly
increases as the number of training data decreases. The error
rate remains low even when there are only 200 training
samples (no more than 10 samples for each failure scenario).
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7) Sampling frequency: A larger PMU sampling frequency
allows the averaging of more adjacent measurements, and thus
reduces the measurement noise and improves the estimation
accuracy, shown by Table VII.

TABLE VII: Classification errors under different sampling
frequencies

sampling frequency (Hz) 200 100 50 20 10
validation error 0.057 0.076 0.109 0.179 0.218

B. Disturbance magnitude estimation

We apply linear regression to estimate the disturbance
magnitude, given disturbance location. We observe that both l1
and l2 regularizations do not improve the prediction accuracy.
Therefore, we apply ordinary least square estimation (9), and
report the average relative errors |(∆P̂ − ∆P )/∆P | on the
validation data.

Table VIII shows the relative errors under different noise
levels, for Ws = 200,Wa = 1. We observe that the errors are
negligible for moderate measurement noise. Table IX shows
that the error decreases as the sampling window size Ws

increases. The averaging window size does not have noticeable
impact on the errors, and the numerical results are omitted.

TABLE VIII: Regression errors under different noise levels
σ (mHz) 0 1 5 10
relative error 8.4× 10−5 8× 10−4 3× 10−3 7× 10−3

TABLE IX: Regression errors under different sampling win-
dow sizes (σ = 5mHz)

Ws 5 50 100 200 500
relative error 0.411 0.028 0.016 0.007 0.003

The disturbance magnitude estimations are robust under
missing measurement. Remarkably, when there is only mea-
surement available at a single generator, the relative error
merely increases to 0.020, for any given disturbance location.
This can be explained by the observation that the amount of
frequency deviation is a monotone function in the amount of
disturbance, for a fixed disturbance location.

We remark that the model-based estimation using Eq. (2)
has very high error (over 60% relative error), even without
measurement noise. This further demonstrates the superior
performance of our estimation algorithms.

V. CONCLUDING REMARKS

We developed logistic regression and linear regression based
methods for localizing and estimating a disturbance by using
frequency data from generators. Our model-free approach
does not require the knowledge of system parameters such as
inertia constants and topology. We showed through simulations
that our approach achieves highly accurate localization and
estimation of a disturbance even in the presence of measure-
ment noise and missing data. The power system increasingly
integrates distributed generation and renewable resources that

bring about more uncertainty compared to the typical large-
scale power plant. The traditional model-based approach to the
localization and estimation problem hinges on the accuracy of
a model, which may be highly challenging with increasing
uncertainty. Our results in this paper show the effectiveness of
model-free approaches applying machine learning techniques
in the face of increasingly complex power system.
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