
Learning Algorithms for

Minimizing Queue Length Regret

Thomas Stahlbuhk

Massachusetts Institute of Technology

Cambridge, MA

Brooke Shrader

MIT Lincoln Laboratory

Lexington, MA

Eytan Modiano

Massachusetts Institute of Technology

Cambridge, MA

Abstract—We consider a system consisting of a single transmit-
ter and N channels. Packets randomly arrive to the transmitter’s
queue, and at each time slot a controller can schedule one of

the N channels for transmission. The channel’s rates are time-
varying with unknown statistics and must be learned through
observation. Our objective is to minimize the number of packets
in the system’s queue over T time slots. We define the regret of
the system to be the expected difference between the total queue
length of a controller that must learn the channels’ average rates
and a controller that knows the rates, a priori. One approach
to solving this problem would be to apply algorithms from
the literature that were developed to solve the closely-related
stochastic multi-armed bandit problem. However, we show that
these methods have Ω(log (T)) queue length regret. On the other
hand, we show that there exists a set of queue-length based
policies that are able to obtain order optimal, O(1), regret.

I. INTRODUCTION

In this work, we consider a statistical learning problem that

is motivated by the following application. Consider a wireless

communication system consisting of a single transmitter and

N channels over which the system can communicate. Packets

randomly arrive to the transmitter’s queue, and at each time

step a controller can select one of the N channels to transmit

on. The channels’ rates vary according to i.i.d. processes with

initially unknown statistics. When a channel is selected by the

controller, the system can attempt a packet transmission on

the channel and use receiver feedback to determine whether

the transmission was successful. (If the queue is empty, a

dummy/probe packet can be sent to observe a channel.) The

objective of the controller is to minimize the packets’ delays

by quickly identifying the best channel to transmit on.

The channels in the above application behave like servers

in a queueing system that, when selected, offer a random

amount of service to the queue. Given the above motivation,

we consider the problem of identifying the best of N available

servers to minimize a queue’s backlog. To this end, we

associate a unit cost to each time slot that each packet has to

wait in the queue. To obtain good performance, the controller

must simultaneously schedule the servers (channels) to explore

their service rates and also exploit previous observations to

This work was sponsored by NSF Grants AST-1547331 and CNS-1701964,
and by Army Research Office (ARO) grant number W911NF-17-1-0508.
This material is based upon work supported by the United States Air Force
under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the United States Air Force.

minimize the queue backlog. We define the queue length regret

as Rπ(T) , E
[∑T−1

t=0 Qπ(t)−
∑T−1

t=0 Q∗(t)
]
, where Qπ(t)

is the backlog under a learning policy and Q∗(t) is the backlog

under a controller that knows the best server. Our objective is

to find a policy that minimizes this regret.

Our problem is closely related to the stochastic multi-armed

bandit problem. In this problem, a player is confronted by a

set of N possible actions of which it may select only one at a

given time. Each action provides an i.i.d. stochastic reward, but

the statistics of the rewards are initially unknown. Over a set of

T successive rounds, the player must select from the actions to

both explore how much reward each gives as well as exploit its

knowledge to focus on the action that appears to give the most

reward. Learning policies for solving the multi-armed bandit

have long been considered [1]. Historically, the performance of

a policy is evaluated using regret, which is defined to be the

expected difference between the reward accumulated by the

learning policy and a player that knows, a priori, the action

with highest mean reward. This quantifies the cost of having to

learn the best action. It is well known that there exist policies

such that the regret scales on the order of log (T) and that the

order of this bound is tight [2]. In the seminal work of [3],

policies for achieving an asymptotically efficient regret rate

were derived and subsequent work in [4], [5] have provided

simplified policies that are often used in practice.

One approach to solving our problem would be to simply

use traditional bandit algorithms.1 This would maximize the

rate of offered service to the queue and, in an infinitely

backlogged system, would maximize throughput. The problem

with this approach is that it does not exploit the fundamental

queueing dynamics of the system. During time periods when

the queue is empty, the offered service is unused, and the

controller can, therefore, freely poll the servers without hurting

its objective. This contrasts with non-empty periods, when

exploring can be costly since it potentially uses a suboptimal

server. However, a controller cannot restrict its explorations

only to time slots when the queue is empty. This is because

some servers may have a service rate that is below the packet

arrival rate, and if the controller refuses to explore during non-

empty periods, it may settle on destabilizing actions that cause

the backlog to grow to infinity. What is needed are policies

that favor exploration during periods when the queue is empty

1One can view the bandit’s rewards as offered service in our problem.

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1001

but perform enough exploration during non-empty periods to

maintain stability. In this work, we show that for systems that

have at least one server whose service rate is greater than

the arrival rate there exist queue-length based policies such

that Rπ(T) = O(1). Likewise, we show that any traditional

bandit learning algorithm, when applied to our setting, may

have queue length regret Rπ(T) = Ω(log (T)).2

The problem considered herein is related to the recent work

of [6]. The main difference is that in [6], the controller could

only obtain observations of the servers during times when the

queue was backlogged. As a result, the policies considered

in that work were closely related to those in the bandit

literature and focused on maximizing offered service. Under

these policies, [6] showed that the tail of E [Qπ(t)−Q∗(t)]
diminishes as 1

t
, implying that Rπ(T) is logarithmic. In this

work, we show that by exploiting empty periods, the queue

length regret is bounded.

II. PROBLEM SETUP

We consider a system consisting of a single queue and N

servers operating over discrete time slots t = 0, 1, 2,3

Packets arrive to the queue as a Bernoulli process, A(t), with

rate λ ∈ (0, 1] and can be serviced in the next time slot

after their arrival. The amount of service that server i ∈ [N]
can provide follows a Bernoulli process Di(t) with rate µi.

The arrival process and server processes are assumed to be

independent. We refer to server i as stabilizing if µi > λ;

otherwise, we refer to it as non-stabilizing.

At each time slot, a controller can select one of the

N servers to provide service to the queue. We denote the

controller’s choice at time t as u(t) ∈ [N] and the service

offered to the queue as D(t) which is equal to Du(t)(t). Given

the above, the queue backlog, Q(t), evolves as

Q(t+ 1) = (Q(t)−D(t))
+
+A(t), for t = 0, 1, 2, . . .

where (x)+ is used to denote the maximum of x and 0. We

assume Q(0) = 0. An instantiation of the above problem is

characterized by the tuple (λ, ~µ) where ~µ is the vector of

service rates. Let P be the set of all problems (i.e., tuples).

The controller cannot observe the values of Di(t) prior to

making its decision u(t). It is then clear that the optimal action,

that maximizes expected service, is to select the server

i∗ , arg max
i∈[N]

µi

to provide service. For simplicity, we assume i∗ is always

unique.4 In this work, the controller does not a priori know

the values of µi and must therefore use observations of D(t) to

identify i∗. This implies that the service available from server

u(t) is revealed to the controller after time t, but the service

that would have been available from all other servers remains

2Recall, for functions f and g, f(x) = O(g(x)) iff ∃M > 0 and ∃x0 such
that ∀x > x0, |f(x)| ≤ Mg(x). Likewise, f(x) = Ω(g(x)) iff ∃M > 0
such that ∀x0, ∃x > x0 with |f(x)| ≥ Mg(x).

3We assume N ≥ 2. Otherwise, the problem is trivial.
4Then, we let P be the set of all tuples such that i∗ is unique.

hidden. Note that the controller can observe D(t) at all times

t, even when Q(t) = 0.

Our objective is to design a controller that makes decisions

as to which server to schedule at each time slot. Denoting

the history of all previous arrivals, service opportunities, and

decisions as

H(t)=(A(0), D(0), u(0), . . . , A(t− 1), D(t− 1), u(t− 1)),

our objective is to find a controller policy π , f0, f1, . . .

where ft is a (possibly random) mapping from history H(t)
to decision u(t). We denote the set of all policies as Π.

Define Q∗(t) to be the queue backlog under the controller

that always schedules i∗ and Qπ(t) the backlog under a

policy that must learn the service rates. We will analyze the

performance of π using the following definition of queue

length regret,

Rπ(T) , E

[
T−1∑

t=0

Qπ(t)−
T−1∑

t=0

Q∗(t)

]
. (1)

We will often simply refer to this metric as regret in the rest

of the paper. Note that E [Qπ(t)] ≥ E [Q∗(t)] and a policy

that minimizes (1) must also minimize E[
∑T−1

t=0 Qπ(t)]. This

implies that Rπ(T) is monotonically increasing for all π ∈ Π.

The focus in this work will be on characterizing how regret

may scale with time horizon T . To this end, we will consider

policies that are independent of T (i.e., do not optimize for a

specific time horizon).

III. REGRET OF TRADITIONAL BANDIT ALGORITHMS

We establish that the regret of any π ∈ Π that is independent

of the arrival process A(t) (i.e., ft is only a function of the

previous decisions and observed offered service) must have

a regret that grows logarithmically for some ~µ. Note that this

result applies to any policy borrowed from the stochastic multi-

armed bandit literature that maximizes offered service to the

queue without regard to queue state. Without loss of generality,

the theorem is established for a system with two servers. The

complete proof of the theorem can be found in [7]. Let µ(j)

be the jth server when the servers are sorted by rate.

Theorem 1: For any π ∈ Π that is independent of A(t) and

Q(t), ∃~µ with server rates µ(1) and µ(2) (µ(2) > µ(1)) such

that for any λ ∈
(
0, µ(2)

)
, Rπ(T) = Ω(log (T)).

IV. REGRET OF QUEUE-LENGTH BASED POLICIES

In this section, we examine the asymptotic scaling of

regret Rπ(T) for policies that make decisions using Q(t) (or

equivalently, A(t)). We do so by considering the problem for

different subsets of P . This section will build to the main

result of this work, Theorem 4, which states that there exists

a π ∈ Π such that for any problem (λ, ~µ) with µi∗ > λ,

Rπ(T) = O(1).
We begin our analysis in Subsection IV-A under the assump-

tion that every server is stabilizing (i.e., µi > λ, ∀i ∈ [N]).
Under this assumption, the controller does not need to account

for the possibility of system instability. As a result, the

controller can limit itself to performing exploration only on

2018 IEEE International Symposium on Information Theory (ISIT)

1002

time slots in which the queue is empty. During time slots

in which the queue is backlogged, the controller will exploit

its previously obtained knowledge to schedule the server it

believes to be best.

In Subsection IV-B, we allow for both stabilizing and non-

stabilizing servers in the system (i.e., we allow µi ≤ λ for

a subset of the servers). However, we will assume that the

controller is given a randomized policy that achieves an offered

service rate that is greater than the arrival rate to the queue.

Note that the controller does not need to learn this policy and

can use it to return the queue to the empty state. The given

randomized policy is not required to have any relationship to

i∗ and will not, in general, minimize queue length regret. As

a result, to minimize queue length regret, the controller will

not want to excessively rely upon it.

In Subsection IV-C, we further relax our assumptions on the

problem and require that the controller learn which servers are

and are not stabilizing while simultaneously trying to minimize

Rπ(T). This will require a policy that does not destabilize

the system. To this end, the controller will have to explore

the servers’ offered service rates during both time slots when

the queue is empty and backlogged. Explorations during time

slots when the queue is backlogged, in general, waste work

and should therefore be performed sparingly. Intuitively, as the

controller identifies which subset of servers have service rates

µi > λ, it can focus its explorations on time slots when the

queue is empty.

The above three cases build upon one another. The insight

from one will point to a policy for the next, and we will

therefore analyze the above cases in sequence. Under each

of the above assumptions, we will find that there exists a

policy such that the regret converges for all (λ, ~µ) meeting

the assumption. In contrast, in Section V, we show that there

does not exist a policy that can achieve convergent regret over

the class of all problems for which µi ≤ λ, ∀i ∈ [N]. The

complete proof of all lemmas and Theorem 5 can be found in

[7].

A. All Servers Are Stabilizing

In this subsection, we assume all servers are stabilizing.

Assumption 1: (λ, ~µ) ∈ P1 , {P : µi > λ, ∀i ∈ [N]}.

Under this assumption we will prove the following theorem,

which states that there exists a policy such that, for any

problem from the set P1, the regret converges.

Theorem 2: Under Assumption 1, ∃π ∈ Π such that, for

each (λ, ~µ) ∈ P1, Rπ(T) = O(1).
To prove Theorem 2, we analyze the policy shown in Fig. 1

on an arbitrary (λ, ~µ) ∈ P1. This policy maintains a sample

mean µ̂i that estimates µi using observations of server i’s

offered service. Note that under this policy π1, the queue back-

log will transition through alternating time intervals, wherein

the queue is empty (Q(t) = 0) and busy (Q(t) > 0). We

enumerate these periods using positive integers p = 1, 2,
Under the policy, the first time slot of each empty period

is used to update an estimate of one of the servers chosen

uniformly at random, and during each busy period the queue

for Empty period p do

At the first time slot of the period, set u(t) = i

uniformly at random over [N] and update µ̂i with

the observed state of D(t)
end for

for Busy period p do

Schedule argmaxi∈[N] µ̂i until the queue empties

end for

Fig. 1. Policy π1 for achieving Theorem 2. We assume µ̂i is set to zero, if
server i has not yet been observed.

is serviced by only one server (namely, the one with highest

sample mean). Therefore, the policy performs no exploration

during busy periods and instead focuses on exploiting the

observations it has already made.

Given that the policy schedules server i during busy period

p, the duration of the busy period is given by random variable

Xi with mean Xi. By Assumption 1, for all i, Xi is finite.

Furthermore, the integral of the queue backlog over the busy

period scheduled to server i is given by random variable Zi

with mean Zi. Thus, for a busy period starting at time τ under

service from i, Zi ,
∑τ+Xi−1

t=τ Q(t). Finally, we use Sπ1

i (P)
to denote the number of busy periods in which i has been

selected during the first P busy periods.

The proof of Theorem 2 now proceeds through four lemmas.

We begin with Lemma 1, which shows that the busy periods

over which we schedule i∗ do not contribute to the regret. The

proof follows from a sample path argument that shows, that

for any outcome ω, over any busy period that π1 schedules

i∗, Qπ1(t, ω) ≤ Q∗(t, ω). This gives the following bound on

regret. We let 1{·} be the indicator random variable.

Lemma 1:

Rπ1(T) ≤ E



T−1∑

t=0

∑

i∈[N]−i∗

Qπ1(t)1 {u(t) = i}


 .

Next, in Lemma 2, the expected value of Zi is shown to be

finite. This is because Zi may be bounded by X2
i which has

a finite expectation.

Lemma 2: Zi < ∞.

Now, no more than T busy periods can occur in T time slots.

Therefore, we can bound the total queue backlog summed over

times when we were scheduling server i up until T with the

following.

Lemma 3:

E

[
T−1∑

t=0

Qπ1(t)1 {u(t) = i}

]
≤ ZiE [Sπ1

i (T)] .

Finally, in Lemma 4, we show that the expected number of

busy periods in which a sub-optimal server is chosen over the

first T busy periods is bounded by a finite constant which is

independent of T . Since we obtain a new observation during

each empty period p, using Hoeffding’s inequality we can

show that the probability that a sample mean µ̂i ≥ µ̂i∗ , for

2018 IEEE International Symposium on Information Theory (ISIT)

1003

for Empty period p do

At the first time slot of the period, set u(t) = i

uniformly at random over [N] and update µ̂i with

the observed state of D(t)
end for

for Busy period p do

Schedule argmaxi∈[N] µ̂i for first p time slots or

until the queue empties

if The queue does not empty during the first p time

slots then

At each time slot, schedule server i with proba-

bility αi until the queue empties

end if

end for

Fig. 2. The policy π2 for achieving Theorem 3. We assume µ̂i is set to zero,
if server i has not yet been observed.

i 6= i∗, decays exponentially in p. The result then follows from

the convergence of geometric series.

Lemma 4: E [Sπ1

i (T)] = O(1), ∀i ∈ [N]− i∗.

Given the above four lemmas, we are now ready to establish

the theorem.

Proof of Theorem 2: Combining Lemmas 1 and 3,

Rπ1(T) ≤
∑

i∈[N]−i∗ ZiE [Sπ1

i (T)]. Then by Lem-

mas 2 and 4, Rπ1(T) = O(1) giving the result.

B. Non-Stabilizing Servers

In this subsection, we relax Assumption 1 to allow for

non-stabilizing servers; i.e., we will now allow for µi ≤ λ

for some strict subset of the servers. Importantly, we will

assume that the controller is given a known convex summation

over the servers’ rates that strictly dominates the arrival rate

to the queue. Then, by randomizing over the servers using

this convex summation, the controller can always stabilize the

system. Concretely, we make the following assumption.

Assumption 2: For given αi ≥ 0 and
∑

i∈[N] αi = 1,

(λ, ~µ) ∈ P2 ,

{
P :

∑

i∈[N]

αiµi > λ
}
.

Note that this assumption implies that the controller knows

one stationary, randomized policy that has an offered service

rate that is greater than the arrival rate, and that this random-

ized policy does not need to be learned. Further note that αi

is not required to have any special relationship to i∗ and that

αi∗ can be zero. Therefore, the randomized policy will not

generally minimize regret and its use should not be overly

relied upon. We then have the following theorem.

Theorem 3: Under Assumption 2, ∃π ∈ Π such that, for

each (λ, ~µ) ∈ P2, Rπ(T) = O(1).
A policy that achieves Theorem 3 is given in Fig. 2 and

is referred to as π2 throughout this subsection. The policy is

similar to the policy π1 of Subsection IV-A in that it iterates

over empty and busy periods. The main difference however

is that each busy period has a time-out threshold. If by the

time-out threshold, the queue has not emptied, the policy uses

the randomized policy defined by Assumption 2 to bring the

queue backlog back to the empty state. The time-out threshold

grows linearly in p, and therefore with each busy period, the

controller becomes more reluctant to call upon the randomized

policy.

Theorem 3 is established by analyzing π2 on an arbitrary

(λ, ~µ) ∈ P2. The proof is derived through three lemmas. We

introduce some additional notation to facilitate understanding.

For each time t, define p(t) to be the period number for the

empty or busy period in which t resides. Furthermore, let

C(p) ∈ {0, 1} be an indicator that takes the value 1 if either:

a server not equal to i∗ is first scheduled at the start of the

busy period p or if the time-out threshold is hit in busy period

p. Otherwise, C(p) = 0. Note that by the definition of π2,

if any server i 6= i∗ is scheduled during busy period p, then

C(p) must equal 1. Then, we have the following lemma, which

states that the regret is upper bounded by the sum of queue

backlogs over those busy periods in which indicator C(p) = 1.

The proof is similar to that of Lemma 1.

Lemma 5: Rπ2(T) ≤ E
[∑T−1

t=0 Qπ2(t)C (p(t))
]
.

Now, to upper bound the right-hand side of Lemma 5, we

will want to bound the probability that indicator C(p) = 1.

Note, C(p) may equal 1 if at the start of the busy period, there

exists an i 6= i∗ such that µ̂i ≥ µ̂i∗ or if we schedule i∗ for the

start of the busy period but still cross the time-out threshold.

As with the policy of the previous subsection, the probability

of the former case diminishes exponentially in p. Likewise,

for the latter case, since Assumption 2 implies µi∗ > λ, the

probability of i∗ not emptying the queue in p time slots also

diminishes exponentially in p. This gives the following lemma.

Lemma 6: There exist positive constants M0, χ, and p0 such

that for all p ≥ p0, P (C(p) = 1) ≤ M0e
−χp.

Now, let variable Zπ2(p) ∈ {1, 2, . . . } denote the integral

of the queue backlog over busy period p. In Lemma 7, we

show E [Zπ2(p)|C(p) = 1] grows at most quadratically with

p. This is because the queue backlog can grow at most linearly

over the first p time slots, and given that the time-out threshold

is hit, the required amount of time that the randomized policy

will need to empty the queue will also grow in expectation at

most linearly with p. Thus, the integral will be at most on the

order of p2.

Lemma 7: There exist positive constants M1 and β1 such

that for all p, E [Zπ2(p)|C(p) = 1] ≤ M1p
2 + β1.

We are now ready to establish the theorem.

Proof of Theorem 3: Using Lemma 5 and the fact that

no more than T busy periods can occur in T time slots,

Rπ2(T) ≤ E

[
T−1∑

t=0

Qπ2(t)C (p(t))

]
≤ E

[
T∑

p=1

Zπ2(p)C(p)

]

(2)

Recall that C(p) is an indicator. When C(p) = 0,

Zπ2(p)C(p) = 0. Thus,

(2) =

T∑

p=1

P (C(p) = 1)E [Zπ2(p)|C(p) = 1]

2018 IEEE International Symposium on Information Theory (ISIT)

1004

for Time slot n = 0, 1, . . . until queue empties do

if n is a dedicated exploration time slot then

Choose u(n) = i uniformly at random over [N]
Update µ̂

p
i with the observed state of D(n)

else

Schedule u(n) = argmaxi∈[N] µ̂
p
i

end if

end for

Fig. 3. Learning algorithm for bringing the queue back to the empty state.
Time n is normalized to when the algorithm is called. We assume µ̂

p

i
is set to

zero, if server i has not yet been observed during this algorithm’s call. Note
that µ̂

p

i
is a separate variable from µ̂i and is only used during busy period p.

≤

p0−1∑

p=1

(
M1p

2 + β1

)
+

T∑

p=p0

(
M1p

2 + β1

)
M0e

−χp

where we have applied Lemmas 6 and 7 to obtain the last

inequality. Since
∑

∞

p=0

(
M1p

2 + β1

)
M0e

−χp < ∞ we see

that Rπ2(T) = O(1) which gives the result.

C. Learning Stabilizing Policies

We now relax Assumption 2 and no longer assume that a

randomized policy is given to the controller, a priori. Instead,

we will only assume that there exists at least one stabilizing

server.

Assumption 3: (λ, ~µ) ∈ P3 , {P : µi∗ > λ} .
We then have the following theorem, which is analogous to

the previous subsections.

Theorem 4: Under Assumption 3, ∃π ∈ Π such that, for

each (λ, ~µ) ∈ P3, Rπ(T) = O(1).
To prove the theorem, we will analyze the following policy

π3 on an arbitrary (λ, ~µ) ∈ P3. Under π3 we follow the

policy described in Fig. 2 with the following minor change.

When the time-out threshold of a busy period is reached,

rather than relying on the known randomized policy given by

Assumption 2, π3 uses the method of Fig. 3 to bring the queue

back to the empty state. The method in Fig. 3 has dedicated

exploration time slots. During these time slots, the policy

chooses from the servers uniformly at random and updates

new variables µ̂
p
i based off of its observations of the resulting

offered service. The location of the dedicated exploration time

slots are predetermined by the controller. Let V (n) be the

number of dedicated explorations made by time slot n. Then

for our proof of Theorem 4, we require that the dedicated

exploration times are chosen such that

rnǫ − b1 ≤ V (n) ≤ rnǫ + b2, for n = 0, 1, 2, . . . (3)

for positive constants b1, b2, r, and ǫ ∈ (0, 1). For example,

one choice could be to have dedicated explorations occur at

time slots n = k2 for k = 0, 1, 2, Note that (3) requires

that the frequency of explorations diminishes with n and

eventually falls below 1− λ
µi∗

. Subject to (3), the exact choice

of the dedicated exploration times is left to the designer.

In contrast to policy π1 of Subsection IV-A, π3 performs

some exploration when the queue is backlogged. This allows

the controller to continuously empty the queue even if it

has not had enough empty periods, so far, to learn the best

server. However, similar to policy π2, the controller becomes

increasingly reluctant to explore during busy periods as time

progresses.

As policy π3 is similar to π2, the proof of Theorem 4 closely

follows the proof of Theorem 3 with Lemma 8 below replacing

Lemma 7. For policy π3, let Zπ3(p) ∈ {1, 2, . . .} denote the

integrated queue backlog of busy period p. Note that Zπ3(p)
is analogous to Zπ2(p) of the previous subsection. Then, we

have the following.

Lemma 8: There exist positive constants M2 and β2 such

that for all p, E [Zπ3(p)|C(p) = 1] ≤ M2p
2 + β2.

The proof of Theorem 4 then follows the proof of Theo-

rem 3 with Zπ3(p) replacing Zπ2(p).

V. SYSTEMS WITHOUT STABILIZING SERVERS

In the previous section, we saw that the existence of a

stabilizing server (i.e., µi∗ > λ) allowed for policies that had

Rπ(T) = O(1). A natural question is whether we can obtain

similar results for the subset of problems (λ, ~µ) that do not

have stabilizing servers. We proceed to show that there cannot

exist a policy that can achieve O(1) regret over this entire

subset. The proof can be found in [7].

Assumption 4: (λ, ~µ) ∈ P4 , {P : µi ≤ λ, ∀i ∈ [N]}.

Given this, we have the following theorem.

Theorem 5: For any policy π ∈ Π there exists a (λ, ~µ) ∈ P4

such that Rπ(T) = Ω(T).

VI. CONCLUSION

This work considered the problem of learning service rates

to minimize queue length regret. We showed that queue-length

based policies can have a queue length regret that is order

optimal, O(1), for all systems such that µi∗ > λ, while

traditional bandit algorithms may have a queue length regret

that is Ω(log (T)). This shows that to optimize queue length

regret, learning algorithms must take into account the sys-

tem’s queueing dynamics and cannot simply maximize offered

service to the queue. The policies considered herein were

chosen for their analytical tractability, and we believe there

are opportunities to improve upon their rates of convergence.

REFERENCES

[1] W. Thompson, “On the Likelihood that One Unknown Probability Ex-
ceeds Another in View of the Evidence of Two Samples,” Bulletin of the

American Mathematics Society, vol. 25, no. 3/4, pp. 285–294, 1933.
[2] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic and

Nonstochastic Multi-armed Bandit Problems,” Foundations and Trends

in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.
[3] T. L. Lai and H. Robbins, “Asymptotically Efficient Adaptive Allocation

Rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.
[4] R. Agrawal, “Sample Mean Based Index Policies with O(logn) Regret

for the Multi-Armed Bandit Problem,” Advances in Applied Probability,
vol. 27, no. 4, pp. 1054–1078, 1995.

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2–3, pp.
235–256, 2002.

[6] S. Krishnasamy et al., “Regret of Queueing Bandits,” in Proc. Neural

Information Processing Systems, 2016, pp. 1669–1677.
[7] T. Stahlbuhk, Control of Wireless Networks Under Uncertain State Infor-

mation, Doctoral Thesis, Massachusetts Institute of Technology, 2018.

2018 IEEE International Symposium on Information Theory (ISIT)

1005

		2018-08-07T11:41:31-0400
	Certified PDF 2 Signature

