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Abstract—Age of information (AoI), defined as the time elapsed
since the last received update was generated, is a newly proposed
metric to measure the timeliness of information updates in a
network. We consider AoI minimization problem for a network
with general interference constraints, and time varying channels.
We propose two policies, namely, virtual-queue based policy
and age-based policy when the channel state is available to the
network scheduler at each time step. We prove that the virtual-
queue based policy is nearly optimal, up to a constant additive
factor, and the age-based policy is at-most factor 4 away from
optimality. Comparison with previous work, which derived age
optimal policies when channel state information is not available
to the scheduler, demonstrates a 4 fold improvement in age due
to the availability of channel state information.

I. INTRODUCTION

Timely delivery of information updates is gaining increasing
relevance with the advent of technologies such as cyber-
physical systems, internet of things, and unmanned aerial
vehicular networks. In unmanned aerial vehicular networks,
timely delivery of status updates, such as vehicle position
and velocity, may be critical to network safety [1], [2]. In
internet of things or cyber-physical systems, timely delivery
of sensor information can significantly improve the overall
system performance [3].

Age of information (AoI) is a recently proposed metric
that measures the time that elapsed since the last received
update was generated by the source [4], [5]. Figure 1 shows
the typical evolution of AoI at a destination node, as a
function of time. Upon reception of a new update packet
AoI drops to the time elapsed since the generation of the
packet, and grows linearly otherwise. Therefore, AoI is a
destination node centric measure, unlike packet delay, and is
better suited for applications involving dissemination of time
sensitive information.

In [4], a simulation study considered AoI in a network of
vehicles exchanging status updates. Motivated by [4], AoI was
analyzed for several queueing models [5]–[11].

However, AoI minimization for a network under general
interference constraints and channel uncertainty has received
very little attention. A problem of scheduling finitely many
update packets under physical interference constraints was
shown to be an NP-hard problem in [12]. Age for a broadcast
network, where only a single link can be activated at any
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Fig. 1. Time evolution of age, Ae(t), of a link e. Times ti and t
′
i are instances

of ith packet generation and reception, respectively. Given the definition
Ge(t

′
i) , ti, the age is reset to t

′
i − Ge(t

′
i) + 1 when the ith packet is

received.

time, was studied in [13], [14]. Preliminary analysis of age
for a slotted ALOHA like random access was done in [15],
and a distributed algorithm for age optimal ALOHA was
only recently proposed in [16]. Age in multi-hope interference
networks has been studied in [17].

We considered the problem of age minimization for a
wireless network under general interference constraints, and
time varying channel, in [18]. We considered two types of
sources: active sources, which generate fresh information in
every slot, and buffered sources, which cannot generate fresh
information in every slot. We showed that for a network with
active sources, a stationary scheduling policy, which schedules
links according to a stationary probability distribution, is
peak age optimal and factor-2 average age optimal. We also
showed that the same scheduling policy, with a certain packet
generation rate control, is nearly optimal in the buffered case.

In [18], however, the space of policies was limited to
not using the channel state information. In this paper, we
relax this assumption and consider scheduling policies which
have perfect channel state information S(t) at every time
slot t. We consider the active sources case, and propose two
policies: a virtual-queue based policy and an age-based policy,
which uses the current channel state information to make
scheduling decisions. We show, via numerical simulations, that
the availability of channel state information can significantly
improve the AoI performance of the network.

We prove that the virtual-queue based policy is nearly peak
age optimal, up to an additive factor, while the age-based
policy is at most a factor 4 away from the optimal peak
and average age. Similar result has been recently derived for
another age-based policy proposed for a broadcast network,
in which only a single link can be activated [19]. Numerical
simulations suggest that this bound is pessimistic, and that the



proposed scheme performs much better.
In numerical simulations, we observe the benefit/utility of

using channel state information in scheduling to minimize age,
especially when the network has ‘high’ level of interference
or ‘bad’ channel quality. We demonstrate, by considering a
specific network example, that the gap in age performance
between the known channel case and the unknown channel
case can be as large as 4 fold. Even though channel state
information may not be perfectly available in certain network
settings, this work establishes the utility of acquiring such
channel state information for scheduling to minimize age.

II. SYSTEM MODEL

Consider a wireless network G = (V,E), where V denotes
the set of nodes and E the set of directed links. Not all links
can be activated simultaneously. Thus, we call a set m ⊂ E
that can be activated simultaneously without interference a
feasible activation set. We use A to denote the collection of
all feasible activation sets. We consider a slotted time system,
where the slot duration is normalized to unity.

We use Se(t) to denote the channel process, where Se(t) =
1 if the channel is in the ON state at time t and Se(t) = 0 if the
channel is in the OFF state at time t. The space of all channel
states is given by S = {0, 1}|E|. We consider {Se(t)}t≥0 to
be independent and identically distributed (i.i.d.) across time
t, with γe = P [Se(t) = 1] > 0, for all e ∈ E. We call this
the i.i.d. channel process. Note that the channel process is not
identically distributed across links, and that γe can be different
for different links e ∈ E.

We use Ue(t) to denote transmission decision on link e at
time t. Ue(t) = 1 if link e is scheduled to transmit at time
t. Not all transmissions succeed even if the set of activated
links is a feasible activation set due to channel uncertainties.
A successful transmission occurs over link e, at time t, if and
only if Ue(t)Se(t) = 1.

We consider active nodes, which transmit fresh information
at every transmission opportunity. We define age Ae(t), of
a link e at time t, to be the time that elapsed since the last
successful activation of link e. Figure 2 shows the evolution of
age Ae(t) for a link e. Age Ae(t) drops to 1 upon a successful
activation of link e, and increases by 1 in every slot in which
there is no successful activation of link e, i.e.,

Ae(t+ 1) =

{
Ae(t) + 1 if Ue(t)Se(t) = 0
1 if Ue(t)Se(t) = 1

. (1)

This age evolution equation can be written compactly as

Ae(t+ 1) = 1 +Ae(t)− Ue(t)Se(t)Ae(t), (2)

for all t ≥ 0, and e ∈ E.
We consider two popular age measures, namely, average age

and peak age. Average age is the area under the age curve in
Figure 2, while peak age is the average of all the peaks of the
age curve. More precisely, we define average age of a link e
as

A
ave
e = lim sup

t→∞
E

[
1

t

t−1∑
τ=0

Ae(τ)

]
, (3)

Fig. 2. Evolution of age of link e, namely Ae(t), as a function of time t.

and the average age of the network to be the weighted sum

A
ave

=
∑
e∈E

weA
ave
e . (4)

Note that the sum of all the peaks, until time t, in the age
curve can be expressed as

∑t
τ=0 Ue(τ)Se(τ)Ae(τ). This is

because Ue(τ)Se(τ) = 1 only at times when age peaks. We,
therefore, define the peak age to be

A
p
e = lim sup

t→∞

E
[∑t−1

τ=0 Ue(τ)Se(τ)Ae(τ)
]

E
[∑t−1

τ=0 Ue(τ)Se(τ)
] , (5)

for every link e ∈ E, and the peak age of the network to be
the weighted sum

A
p

=
∑
e∈E

weA
p
e. (6)

We are interested in designing policies that minimize peak and
average age.

Since both peak and average age are time average measures,
the performance of a policy π does not depend on the initial
age at time 0. We, therefore, assume that the system starts
with Ae(0) = 0 for all e ∈ E.

A. Unknown Channel Case

In [18], we considered age minimization under the unknown
channel case. Specifically, we considered all policies which
scheduled feasible activation set mt ∈ A at time t as a function
of the history

Ĥ(t) = {U(τ),A(τ ′)
∣∣0 ≤ τ < t and 0 ≤ τ ′ ≤ t}. (7)

We showed in [18] that stationary policies, which schedule
links according to a probability distribution that is independent
of Ĥ(t), is in fact peak age optimal and factor-2 average age
optimal.

In stationary scheduling policies, every feasible activation
set m ∈ A is assigned a fixed probability xm with which it
is activated in slot t, independent across slots. The probability
that a link e ∈ E is activated in a slot is given by

fe =
∑

m:e∈m
xm, (8)

for all e ∈ E. This set of equations can be compactly written
as f = Mx, for a 0-1 matrix M . Note that an activated link
may fail in successfully transmitting the packet due to channel
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Fig. 3. Plot of achievable successful link activation frequency regions for the
two link network, in which only one link can be activated at a time. Shown
are regions when channel state is observed (grey) and unobserved (black).

errors. The probability of successful activation of a link e
in any slot is αe = γefe, since the scheduling decision is
independent of the current channel state.

Further, notice that, if a link e is successfully activated
with probability αe = γefe in each slot, independent across
slots, then the time since last transmission, i.e. age Ae(t), is
geometrically distributed with rate 1

γefe
. In [18], we showed

that this is indeed equal to the peak age of link e, under
any stationary policy. As a result, the peak age for the
stationary policy, determined by distribution x, is given by
A

p
=
∑
e∈E

we

γefe
, and thus, the optimal peak age is given by

A
p∗

= Minimize
x,f

∑
e∈E

we
γefe

,

subject to f = Mx,

1Tx ≤ 1 and x ≥ 0.

(9)

The peak age optimal stationary policy is obtained by solv-
ing (9).

In the next sub-section, we discuss the space of policies
considered in this paper, and show how knowing the channel
state affects age minimization. We argue that in the case when
channel state information is available for scheduling, smaller
age than what is given by (9) can be achieved.

B. Scheduling Policies

A scheduling policy determines the set of links mt ⊂ E that
will be activated at each time t, i.e., mt = {e ∈ E|Ue(t) = 1}.
The policy can make use of the past history of link activations
and observed channel states to make this decision, i.e., at each
time t, the policy π will determine mt as a function of the set

H(t) = {U(τ),S(τ ′),A(τ ′) | 0 ≤ τ < t, 0 ≤ τ ′ ≤ t}. (10)

We consider centralized scheduling policies, in which this
information is available to a scheduler, which is also able to
implement its scheduling decision.

To see the difference between age minimization under
known and unknown channel process consider the two link
example shown in Figure 3. In this example, only one link
can be activated at a time. Let the weights w1 = w2 = 1

for the two links, and the channel success probabilities be
γ1 = γ2 = 0.5. When the channel state S(t) = (S1(t), S2(t))
is unavailable the peak age minimization problem is given by
(from (9)):

A
p∗

= Minimize
f1,f2

1

γ1f1
+

1

γ2f2
,

subject to f1 + f2 ≤ 1,

f1 ≥ 0 and f2 ≥ 0.

(11)

Here, f1 and f2 denote the fraction of times link 1 and link
2 are scheduled, respectively. Since γ1 = γ2 = 0.5, the
optimal solution to (11) is given by f∗1 = f∗2 = 0.5, i.e. with
probability 0.5 each link gets scheduled in each slot, and as a
result, the optimal peak age is A

p∗
= 8.

However, if we can observe the channel state S(t) in every
slot before making scheduling decision, we can achieve even
smaller age than A

p∗
= 8. Consider the following policy:

schedule link 1 whenever S1(t) = 1, and otherwise schedule
link 2. The successful link activation frequency on link 1 is
then α1 = γ1 = 0.5, while on link 2 it is α2 = γ2(1 −
γ1) = 0.25. The peak age is given by A

p
= 1

α1
+ 1

α2
= 6 <

A
p∗

= 8. This happens primarily because the set of achievable
successful link activation frequencies, namely αe, is larger in
the case when the channel can be observed before deciding on
the schedule in each slot. In Figure 3, we show these regions
in the observed and unobserved channel state case for the two
link example.

This shows that when the channel state is available for
making scheduling decisions, the network age performance
can be improved upon. In the next sub-section we define a
sub-class of policies that make scheduling decision based only
on the current channel state S(t), and not the entire history
H(t). We will see later that these policies can be peak age
optimal.

C. S-only policies

Just as the stationary policies turn out to be peak age optimal
in the unknown channel case, we define a sub-class of policies
that are peak age optimal in the known channel case. These
policies do not use any past history, but only the current
channel state S(t), defined as follows [20]:

S-only policy: For each observed channel state S ∈ S
we assign a probability distribution p(S,m) over the set
of feasible activation sets m ∈ A. If channel state S(t)
is observed then the activation set m ∈ A is activated for
slot t with probability p (S(t),m).

For an S-only policy, the rate at which a successful trans-
mission occurs over link e is given by

αe = E [Ue(t)Se(t)] = P [Ue(t)Se(t) = 1] ,

= γeP [Ue(t) = 1|Se(t) = 1] , (12)



for all e ∈ E. The space of all such rates α will depend on
channel success probabilities γe, and thus, we use ΛS(γ) to
denote this space of all feasible α using S-only policies. For
the two link example in Figure 3, ΛS(γ) is exactly the grey
region of successful link activation frequencies (α1, α2). It is
known that if Λ(γ) is the space of rates α achievable under
all policies then Λ(γ) = ΛS(γ) [20]. This will help us show
that an S-only policy is peak age optimal.

III. PROBLEM FORMULATION

In this section, we formulate the peak and average age
minimization problems under a general channel process. To
do so in a meaningful way, we restrict our search to a certain
reasonable policy space. We consider the following policy
spaces:

Π1 =
{
π
∣∣∣ ∃B s.t. E [Aπe (t)] ≤ B ∀ t ≥ 0 and e ∈ E

}
,

and

Π2 =
{
π
∣∣∣ ∃B s.t. E

[
(Aπe (t))

2
]
≤ B ∀ t ≥ 0 and e ∈ E

}
,

i.e., the space of all policies that have bounded first and second
moments of age. Firstly, note that the constraints that the
first and second moment of age Ae(t) should not grow in
t is natural, because Ae(t) is the time since last successful
transmission on link e. It growing in time would necessarily
mean that the transmissions are becoming less frequent as time
goes by.

We consider the policy space Π1 for peak age minimization,
while space Π2 for average age minimization. For a ‘good’
policy, we anticipate the process {A(t)}t to be stable (or
ergodic), in which case the policy is in Π1. For ‘good’ average
age policy, it stands to reason that stability (or ergodicity) of
{A2(t)}t would be required. This is because the average age,
being the area under the age curve, depends on A2(t).

We define optimal peak and average age to be

A
p∗

= min
π∈Π1

A
p
(π) and A

ave∗
= min
π∈Π2

A
ave

(π), (13)

where the minimization is over the space Π1 for peak age and
over Π2 for average age. Note that Π2 ⊂ Π1 since E [Ae(t)] ≤√
E [A2

e(t)] by Jensen’s inequality.

A. Peak Age Minimization

We first present a lemma that states a conservation law for
age. Intuitively, it states that for any policy π ∈ Π1, the sum
of all age peaks is equal to the total time elapsed plus a small
insignificant term that goes to 0 as t→∞.

Lemma 1: For any policy π ∈ Π1 we have

lim
t→∞

E

[
1

t

t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ)

]
= 1, (14)

for all e ∈ E.

Proof: See Appendix A.
A direct consequence of Lemma 1 is that the peak age

minimization problem minπ∈Π1
A

p
(π) reduces to

Minimize
α≥0,π∈Π1

∑
e∈E

we
αe
,

subject to lim inf
t→∞

E

[
1

t

t−1∑
τ=0

Ue(τ)Se(τ)

]
≥ αe ∀ e.

(15)

We prove this equivalence in Appendix B. This result is
significant because it shows that the peak age minimization
problem is independent of the age evolution equation (2).
For this reason peak age minimization is much simpler than
average age minimization. We propose a virtual-queue based
algorithm in Section IV to solve this problem.

B. Average Age Minimization
In this section, we provide an equivalent formulation

for average age minimization. By definition, we know
that the average age for a link e is given by A

ave
e =

lim supt→∞ E
[

1
t

∑t−1
t=0 Ae(τ)

]
. The following result pro-

vides a different characterization of the average age in terms
of A2

e(t), for all π ∈ Π2. This result will be useful to get an
intuitive grasp over the class of policies proposed in Section V.

Lemma 2: Define Be(t) = A2
e(t) + βAe(t) for all t,

e ∈ E, and a given β ∈ R. Then, for π ∈ Π2, we have

A
ave
e =

1

2
lim sup
t→∞

E

[
1

t

t−1∑
τ=0

Ue(τ)Se(τ)Be(τ)

]
+

1− β
2

,

for all e ∈ E.

Proof: See Appendix C.
For an intuitive understanding of Lemma 2, note that aver-

age age is essentially the average area of the triangles formed
by the age curve in Figure 2. Note that Se(t)Ue(t)A2

e(t) are
square of age peaks in Figure 2, because Se(t)Ue(t) = 1 only
at the instances when there is a successful transmission on
link e. The additional term of βAe(t) is due to Lemma 1.

Lemma 2 also implies that average age minimization prob-
lem over π ∈ Π2 can be equivalently posed as minimizing

lim sup
t→∞

E

[
1

t

t−1∑
τ=0

∑
e∈E

weUe(τ)Se(τ)Be(τ)

]
, (16)

where Be(τ) = A2
e(τ)+βAe(τ), for all τ ≥ 0, e ∈ E, and any

chosen β ∈ R. Since, age reduces to 1 after a link activation
it makes intuitive sense to choose U(t) such that as

U(t) = arg max
U′ (t)

∑
e∈E

weU
′

e(t)Se(t)
[
A2
e(t) + βAe(t)

]
, (17)

in time slot t. This, in the least, should minimize age in the
next slot. We analyze such policies in Section V, and show that
these policies are within a factor of 4 away from the optimal
average age A

ave∗
. However, in simulations we observe that

these policies are very close to optimal.



C. Bounds on Peak and Average Age

In this sub-section, we provide a characterization of optimal
peak age A

p∗
and a lower-bound on average age. We first

characterize the optimal peak age by showing that a S-only
policy is peak age optimal.

Theorem 1: The optimal peak age A
p∗

is given by

A
p∗

= Minimize
α

∑
e∈E

we
αe
,

subject to α ∈ ΛS (γ) ,

(18)

and as a consequence, there exists a S-only policy that
minimizes peak age, and it can be obtain by solving (18).

Proof: The optimality of S-only policies in solving the
problem (15) follows from Theorem 4.5 in [20]. We show that
the peak age minimization problem over the space of S-only
policies can be written as (18) in [21].

Theorem 1 can be used to obtain a peak age optimal S-only
policy. However, the search space ΛS (γ) is usually difficult to
characterize for general interference constraints. Another issue
is that, to solve (18), requires exact knowledge of the channel
statistics γe. Our proposed policies, in the next two sections,
do not require apriori knowledge of the channel statistics.

We now proceed to derive a lower-bound on average age.

Lemma 3: For any policy π ∈ Π2, we have

A
p

(π) ≤ 2A
ave

(π)−
∑
e∈E

we. (19)

And as a consequence the same relation also holds at
optimality, namely, A

p∗ ≤ 2A
ave∗ −

∑
e∈E we.

Proof: See Appendix D.
Lemma 3 provides us with a natural lower-bound on the

optimal average age A
ave∗

in terms of the optimal peak age.
Since, the optimal peak age can be obtained from Theorem 1
we get

1

2

∑
e∈E

we
α∗e

+
1

2

∑
e∈E

we ≤ A
ave∗

, (20)

where α∗ is a solution to the optimization problem (18).

IV. VIRTUAL-QUEUE BASED POLICY

We now propose a policy that solves the peak age mini-
mization problem (15). Note that a policy π can decide on the
activation set mt, at time t, based on the entire history H(t).
However, we do not need the entire history to make a choice
at time t but only a representation of it.

To do so, we construct virtual queue Qe(t), which decreases
by (at most) 1 upon a successful transmission over link e,
and increases otherwise. These queue lengths determine the
‘value’ of scheduling link e in time slot t. Therefore, a set
mt ∈ A that maximizes

∑
e∈m weQe(t)Se(t) is activated in

slot t. This virtual-queue based policy, πQ, is described below.
Here, V > 0 is any chosen constant.

Virtual queue based policy πQ Start with Qe(0) = 1
for all e ∈ E. At time t,

1) Schedule activation set mt given by

mt = arg max
m∈A

∑
e∈m

weQe(t)Se(t), (21)

2) Update Qe(t) as

Qe(t+ 1) =

[
Qe(t) +

√
V

Qe(t)
− Ue(t)Se(t)

]
+1

,

for all e ∈ E, where [x]+1 = max{x, 1}.

The policy πQ is nearly peak age optimal up to an additive
factor.

Theorem 2: The peak age for policy πQ is bounded
by

A
p
(πQ) ≤ Ap∗

+
1

2

∑
e∈E

we +
1

2V

∑
e∈E

we, (22)

where A
p∗

is the optimal value of (18).

Proof: Let αe(t) =
√

V
Qe(t) and αe(t) = 1

t

∑t−1
τ=0 αe(τ)

for all t ≥ 0 and e ∈ E. Also, let g(α) =
∑
e∈E

we

αe
be the

objective function in our optimization problem (15). The proof
is divided into three parts:

Part A: For all time t, we have

lim sup
t→∞

E [g (α(t))] ≤ Ap∗
+

1

2

∑
e∈E

we +
1

2V

∑
e∈E

we. (23)

Part B: The virtual queue Q(t) is mean rate stable, i.e., for
all e ∈ E we have lim supt→∞

1
tE [Qe(t)] = 0.

Part C: If Q(t) is mean rate stable then

αVe , lim inf
t→∞

E [αe(t)] ≤ lim inf
t→∞

1

t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)

]
,

and
A

p
(πQ) ≤ lim sup

t→∞
E [g (α(t))] . (24)

From (23) and (24) we get the result in (22). Further, it can
be shown that αV =

(
αVe
)
e∈E , with policy πQ, solves (15),

up to an additive factor given in (22). Due to space constraints,
the proofs are given in [21].

Theorem 2 shows that even when the channel statistics are
not known the optimal peak age Ap∗ can be achieved, up to
an additive factor of 1

2

∑
e∈E we, with arbitrary precision. The

precision can be set by choosing a large enough V . For exam-
ple, we may obtain peak age of at most A

p∗
+ 1

2

∑
e∈E we+ ε

by setting V = 1
2ε

∑
e∈E we.



V. AGE-BASED POLICY

We now consider an age based policy, which schedule links
as a function of links’ age Ae(t). Lemma 2 provided an
alternate characterization of average age Aave, which motivated
the age-based policy that schedules set mt ∈ A with maximum
weight

∑
e∈m weSe(t)

[
A2
e(t) + βAe(t)

]
:

Age-based Policy πA The policy activates links

mt = arg max
m∈A

∑
e∈m

weSe(t)
[
A2
e(t) + βAe(t)

]
, (25)

in each slot t ≥ 1.

The following theorem states that the average and peak age
of policy πA is within a factor of 4 from the respective optimal
values. Due to space constraints, a detailed proof is given
in [21].

Theorem 3: The age-based policy policy πA is at most
factor-4 peak and average age optimal, i.e.,

A
ave

(πA) ≤ 4A
ave∗ − c1(β)

∑
e∈E

we, (26)

and
A

p
(πA) ≤ 4A

p∗ − c2(β)
∑
e∈E

we, (27)

where c1(β) = 10+2β−β2

4 and c2(β) = 4+2β−β2

2 .

We note that β ∈ R can be chosen to improve the additive
factor of optimality. The best bounds, for both peak and
average age, occur when β = 1, for which both c1(β) and
c2(β) are maximized. In the next section, we evaluate the
age-based policy for different choices of β. We also compare
it with the virtual-queue based policy πQ from Section IV.

VI. NUMERICAL RESULTS

Consider a network of N = 20 links, in which at most K
links can be activated at any given time. We numerically study
the performance of our proposed scheduling policies for this
network. We set we = 1 for all links e. We assume links to
be either ‘good’, in which case γe = γgood = 0.9, or ‘bad’
in which case γe = γbad = 0.1. We use nbad to denote the
number of bad links in the network. We simulate the policies
πQ, πA, and the optimal policy for the unknown channel case,
proposed in [18], over 105 time slots.

In Figure 4 and 5, we plot per-link peak and average age,
namely Ap/N and Aave/N , as a function of K. Here, we have
chosen the parameters V = 1 for the virtual-queue policy πQ,
and β = 1 for the age-based policy πA. We observe that the
peak and average age of the virtual-queue based policy πQ
and the age-based policy πA nearly coincide.

Also plotted in Figures 4 and 5, is the case when the channel
state is not observed, i.e., scheduling decisions are made only
using history Ĥ(t). We plot the peak age optimal policy πC
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Fig. 4. Per-link peak age, Ap/N , for various policies as a function of K.
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Fig. 5. Per-link average age, Aave/N , for various policies as a function of
K.

of [18], while in Figure 5, we also plot a lower-bound on
average age that can be achieved by any such policy [18],
since πC is not average age optimal. We observe that the
gap between the optimal policy πC in the unknown channel
case and policies πQ, πA of the known channel case is large
when K is small, and diminishes as K increases. Smaller
K implies more network interference, as fewer links can be
activated simultaneously. This shows that there is a significant
utility, in terms of age reduction, in knowing the channel state,
especially when the network suffers from large interference.

In Figure 6 and 7 we plot per-link peak and average age as
a function of the fraction of nodes with bad channel, namely
θ = nbad

N . We observe that the gap between the optimal policy
πC in the unknown channel state case, and our policies πQ
and πA of the known channel case, increases as the fraction
θ increases. This indicates that if the channel statistics of the
network are poor then there is a significant utility, in terms of
age reduction, in knowing the channel state information. For
example, when all channels are ‘bad’, i.e. θ = 1, the gap is
as large as 4 fold.

We now analyze performance of our proposed policies πQ
and πA over the choice of parameters V and β, respectively.
Here, we set K = 5 and the number of ‘bad’ channels
also to be nbad = 5. For the virtual-queue based policy
πQ, we observe that the parameter V has nearly no effect
on convergence time of the algorithm. To illustrate this, in
Figure 8, we plot per-link peak age Ap(πQ)/N computed over



0 0.2 0.4 0.6 0.8 1

Fraction of bad links θ

0

10

20

30

40

50

P
e

a
k
 A

g
e

 p
e

r 
lin

k
, 

A
p
/N

Virtual Queue Policy π
Q

 (V=1)

Age-based Policy π
A
 (β = 1)

Stationary Policy [17]: Unknown Channel

Fig. 6. Per-link peak age, Ap/N , for various policies as a function of θ.

0 0.2 0.4 0.6 0.8 1

Fraction of bad links θ

0

10

20

30

40

50

A
v
e
ra

g
e
 a

g
e
 p

e
r 

lin
k
, 
A

a
v
e
/N Virtual Queue Policy π

Q
 (V=1)

Age-based Policy π
A
 (β = 1)

Lower Bound: Unknown Channel

Stationary Policy [17]: Unknown Channel

Fig. 7. Per-link average age, Aave/N , for various policies as a function of θ.

the first t time slots, for two different values of V = 0.1 and
V = 100. We observe that the peak age measured over the
first t slots converged to the peak age Ap(πQ) at nearly the
same time.

For the age-based policy πA, we again observe no difference
in convergence time with respect to β. Theorem 3 guarantees
bounds for any β ∈ R. However, in Figure 9, we observe
that the peak and average age achieved by πA gets worse
as β becomes negative. This is because c1(β) and c2(β) in
Theorem 3 are large and negative when β < 0.
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Fig. 8. Per-link peak age, Ap(πQ)/N , computed till time t for the virtual-
queue policy πQ for V = 0.1 and V = 100. Also plotted is the per-link
peak age Ap(πQ)/N achieved over a much larger time horizon.
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VII. CONCLUSION

We considered the problem of age minimization for a
wireless network under general interference constraints and
time varying channels, when the channel state information
is perfectly available to the scheduler to make scheduling
decisions. We proposed a virtual-queue based policy and an
age-based policy to minimize age. We proved that the virtual-
queue based policy is nearly peak age optimal, up to a constant
additive factor, and that the age-based policy is at most a factor
4 away from age optimality.

In comparison with our previous work, which derived age
optimal policies when the channel state information is not
available to the scheduler, we demonstrate a 4 fold improve-
ment in age when the channel state information is available
to the schedule in a particular network setting. This work,
therefore, establishes the utility in obtaining or using the
channel state information in scheduling to minimize age.
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APPENDIX

A. Proof of Lemma 1
Using the age evolution equation (2), we obtain

1

t
E [Ae(t)] =

1

t
E

[
t−1∑
τ=0

(Ae(τ + 1)−Ae(τ))

]
,

= 1− 1

t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ)

]
, (28)

where the first equality follows because Ae(0) = 0. Note
that for π ∈ Π1, we have lim supt→∞

1
tE [Ae(t)] = 0, since

E [Ae(t)] is bounded. Taking t→∞ in (28) yields the result.

B. Derivation of the Peak Age Minimization Problem
Using Lemma 1 and the definition of peak age (5), we get

A
p
e(π) =

1

lim inft→∞ E
[

1
t

∑t
τ=0

∑
e∈E Ue(τ)Se(τ)

] , (29)

for all e ∈ E, and any policy π ∈ Π1. For a detailed
argument see [21]. Since A

p
(π) =

∑
e∈E weA

p
e(π), the peak

age minimization problem minπ∈Π1
A

p
(π) can now be written

as

Minimize
π∈Π1

∑
e∈E

we

lim inft→∞
1
t

∑t−1
τ=0 Ue(τ)Se(τ)

. (30)

Using auxiliary variables αe, this can be written as (15).

C. Proof of Lemma 2
Squaring the age evolution equation (2) on both sides, and

using the fact that U2
e (t)S2

e (t) = Ue(t)Se(t) as Ue(t)Se(t) ∈
{0, 1} we obtain

A2
e(t+ 1)−A2

e(t) = 1 + 2Ae(t)− Ue(t)Se(t)A2
e(t)

− 2Ue(t)Se(t)Ae(t), (31)

for all t and e. Since Ae(0) = 0, telescoping this over t time
slots we get

1

t
E
[
A2
e(t)

]
=

1

t
E

[
t−1∑
τ=0

(
A2
e(τ + 1)−A2

e(τ)
)]
,

= 1− 1

t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)

]

+
2

t
E

[
t−1∑
τ=0

Ae(τ)

]
− 2

t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ)

]
. (32)

For a policy π ∈ Π2 we must have lim supt→∞
1
tE
[
A2
e(t)

]
=

0, as E
[
A2
e(t)

]
is uniformly bounded. Taking the limit t→∞

in (32), we get

2A
ave
e = 1 + lim sup

t→∞

1

t
E

[
t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)

]
, (33)

where we have used Lemma 1, as π ∈ Π2 ⊂ Π1. This proves
the Lemma for β = 0. Adding β times (14) from Lemma 1
to (33) we obtain the result.

D. Proof of Lemma 3

Consider a policy π ∈ Π2, and a link e. From Cauchy-
Schwartz inequality we have(

E

[
t−1∑
τ=0

Ue(τ)Se(τ)Ae(τ)

])2

≤ E

[
t−1∑
τ=0

Ue(τ)Se(τ)

]

× E

[
t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)

]
,

since U2
e (τ)S2

e (τ) = Ue(τ)Se(τ), as Ue(τ)Se(τ) ∈ {0, 1}.
Dividing both sides by t2 we get

E
[(

1
t

∑t−1
τ=0Ue(τ)Se(τ)Ae(τ)

)]2
E
[

1
t

∑t−1
τ=0 Ue(τ)Se(τ)

] ≤E

[
1

t

t−1∑
τ=0

Ue(τ)Se(τ)A2
e(τ)

]
.

Taking limsup on both sides and using Lemma 1 and Lemma 2,
along with the definitions of A

p
e(π) and A

ave
e (π), we get

Ap
e(π) ≤ 2Aave

e (π)− 1. (34)

Summing over e with weights we we obtain the result in (19).
In order to see that the inequality also holds at optimality,

note that

A
p∗

= inf
π∈Π1

A
p
(π) ≤ inf

π∈Π2

A
p
(π),

≤ Ap
(π) ≤ 2A

ave
(π)−

∑
e∈E

we, (35)

for any π ∈ Π2, where the first inequality follows because
Π2 ⊂ Π1. Taking infimum over π ∈ Π2 in (35) yields the
result.


