
Optimal Control of Distributed Computing
Networks with Mixed-Cast Traffic Flows

Jianan Zhang∗, Abhishek Sinha∗, Jaime Llorca†, Antonia Tulino‡†, Eytan Modiano∗

∗Massachusetts Institute of Technology, †Nokia Bell Labs, ‡DIETI, University of Naples Federico II, Italy

Abstract—Distributed computing networks, tasked with both
packet transmission and processing, require the joint optimiza-
tion of communication and computation resources. We develop
a dynamic control policy that determines both routes and
processing locations for packets upon their arrival at a distributed
computing network. The proposed policy, referred to as Universal
Computing Network Control (UCNC), guarantees that packets
i) are processed by a specified chain of service functions, ii)
follow cycle-free routes between consecutive functions, and iii)
are delivered to their corresponding set of destinations via proper
packet duplications. UCNC is shown to be throughput-optimal
for any mix of unicast and multicast traffic, and is the first
throughput-optimal policy for non-unicast traffic in distributed
computing networks with both communication and computation
constraints. Moreover, simulation results suggest that UCNC
yields substantially lower average packet delay compared with
existing control policies for unicast traffic.

I. INTRODUCTION

The recent convergence of IP networks and IT clouds is
fueling the emergence of large-scale distributed computing
networks that can host content and applications close to
information sources and end users, providing rapid response,
analysis, and delivery of augmented information in real time
[1], [2]. This, in turn, enables a new breed of services, often re-
ferred to as augmented information services. Unlike traditional
information services, in which users consume information that
is produced or stored at a given source and is delivered via
a communications network, augmented information services
provide end users with information that results from the real-
time processing of source data flows via possibly multiple
service functions that can be hosted at multiple locations in a
distributed computing network.

Particularly popular among these services is the class
of automation services, in which information sourced at
sensing devices in physical infrastructures such as homes,
offices, factories, and cities, is processed in real time in
order to deliver instructions that optimize and control the
automated operation of physical systems. Examples include
industrial internet services (e.g., smart factories), automated
transportation, smart buildings, smart homes, etc [3]. Also
gaining increasing attention is the class of augmented expe-
rience services, which allow users to consume multimedia
streams that result from the combination of multiple live

This work was supported by DTRA grants HDTRA1-13-1-0021 and
HDTRA1-14-1-0058, and by NSF grant number CNS-1617091.

sources and contextual information of real-time relevance.
Examples include telepresence, real-time computer vision,
virtual classrooms/labs/offices, and augmented/virtual reality
[4]. In addition to application-level services, with the advent of
network functions virtualization (NFV), network services that
typically run on dedicated hardware can also be implemented
in the form of software functions running on general purpose
servers distributed throughout a computing network. Software
defined networking (SDN) technologies can then be used to
steer network flows through the appropriate chain of network
functions [2].

While most of today’s computationally intensive services
are hosted at centralized cloud data centers, the increasingly
low latency requirements of next generation services are
driving cloud resources closer to the end users in the form of
small cloud nodes at the edge of the network, resulting in what
is referred to as a distributed cloud network or distributed com-
puting network [2]. Compared to traditional centralized clouds,
distributed computing networks provide increased flexibility
in the allocation of computation and network resources, and a
clear advantage in meeting stringent service latency, mobility,
and location-awareness constraints.

To maximize the benefits of this attractive scenario and
enable its sustainable growth, operators must be able to dy-
namically control the configuration of a diverse set of services
according to changing demands, while minimizing the use
of the shared physical infrastructure. A key aspect driving
both performance and efficiency is the actual placement of
the service functions, as well as the routing of network
flows through the appropriate function instances. Traditional
information services have addressed the efficient flow of
information from data sources to destinations, where sources
may include static processing elements, mostly based on rigid
hardware deployments. In contrast, the efficient delivery of
next generation services requires jointly optimizing where to
execute each service function and how to route network flows
in order to satisfy service demands that may be of unicast or
multicast nature.

The static service function placement and routing prob-
lems have been studied in previous literature. Given fixed
service rates, linear programming formulations for joint func-
tion placement and unicast routing under maximum flow or
minimum cost objectives were developed in [5], [6], [7].
Under fixed routing, algorithms for function placement with

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 1880

bi-criteria approximation guarantees were developed in [8].
Under fixed function placement, approximation algorithms
for unicast traffic steering were given in [9]. Approximation
algorithms for joint function placement and unicast routing
were developed for a single function per flow in [5] and for
service function chains in [10], [11].

The study of dynamic control policies for service function
chains was initiated in [12], [13]. The authors developed
throughput-optimal policies to jointly determine processing
locations and routes for unicast traffic flows in a distributed
computing network, based on the backpressure algorithm.
Another backpressure-based algorithm was developed in [14]
in order to maximize the rate of queries for a computation
operation on remote data from a particular destination.

However, no previous work has addressed the network
computation problem under non-unicast traffic. In fact, it was
only very recently that the first throughput-optimal algorithm
for generalized flow (any mix of unicast and multicast traffic)
problems in communication networks was developed [15].
Given that internet traffic is increasingly a diverse mix of
unicast and multicast flows, in this work, we address the design
of throughput-optimal dynamic packet processing and routing
policies for mixed-cast (unicast and multicast) service chains
in distributed computing networks. Our solution extends the
recently developed universal max-weight algorithm [15] to
handle both communication and computation constraints in
a distributed computing network. Our proposed control policy
also handles flow scaling, a prominent characteristic of traffic
flows in distributed computing networks, where a flow may
expand or shrink due to service function processing.

Our contributions can be summarized as follows:
• We characterize the capacity region of a distributed com-

puting network hosting an arbitrary set of service chains
that can process an arbitrary mix of unicast and multicast
traffic. Such first characterization involves the definition
of generalized flow conservation laws that capture flow
chaining and scaling, due to service function processing,
and packet duplication, due to multicasting.

• We develop a universal control policy for service func-
tion chains in distributed computing networks, referred
to as Universal Computing Network Control (UCNC).
UCNC determines both routes and processing locations
for packets upon their arrival at a distributed computing
network, and guarantees that packets i) are processed by
a specified chain of service functions, ii) follow cycle-
free routes between consecutive functions, and iii) are
delivered to their corresponding set of destinations via
proper packet duplications.

• UCNC is shown to be throughput-optimal for any mix of
unicast and multicast traffic, and is the first throughput-
optimal algorithm for non-unicast traffic in distributed
computing networks. For unicast traffic, compared with
the previous throughput-optimal algorithm [13], UCNC
yields much shorter average packet delay.

The rest of the paper is organized as follows. We introduce
the model in Section II, and characterize the capacity region

in Section III. In Section IV, we develop a routing policy to
stabilize a virtual queuing system. In Section V, we prove that
the same routing policy, along with a proper packet scheduling
policy, is throughput-optimal for the associated computing net-
work. Section VI presents numerical simulations, and Section
VII presents concluding remarks.

II. SYSTEM MODEL

In this section, we present models for distributed computing
networks, service function chains, and mixed-cast traffic.

A. Computing network model

We consider a distributed computing network modeled as a
directed graph G = (V, E) with n = |V| nodes and m = |E|
links. A node may represent a router, which can forward
packets to neighboring nodes, or a distributed computing
location, which, in addition, can host service functions for flow
processing. When network flows go through a service function
at a computation node, they consume computation resources
(e.g., CPUs). We denote by µu the processing capacity of node
u ∈ V . A link represents a network connection between two
nodes. When network flows go through a link, they consume
communication resources (e.g., bandwidth). We denote by µuv
the transmission capacity of link (u, v) ∈ E .

B. Service model

A service φ ∈ Φ is described by a chain of Mφ functions
(φ, i), i ∈ {1, . . . ,Mφ}. Each function (φ, i) is characterized
by its computation requirement r(φ,i), indicating that r(φ,i)

computation resource units are required to process a unit input
flow. Function (φ, i) is also characterized by a flow scaling
factor ξ(φ,i), indicating that the average flow rate at the output
of function (φ, i) is ξ(φ,i) times the average input flow rate.
The computation of function (φ, i) is available at a subset of
nodes N(φ,i) ⊆ V . A flow that requires service φ must be
processed by the functions (φ, i), i ∈ {1, . . . ,Mφ} in order.

Figure 1 illustrates an example of a service function chain
for video streaming. The first function in the chain is a firewall,
with computation requirement r(φ,1) = 0.1 and flow scaling
ξ(φ,1) = 1. The second function in the chain is a transcoding
function, with computation requirement r(φ,2) = 2 and flow
scaling ξ(φ,2) = 0.8. The numbers above the links indicate the
flow rates at each stage of the service chain, and the numbers
above the functions indicate the computation rates required to
process the incoming flow.

Firewall Transcoding

Fig. 1. An illustration of a service function chain with different function
computation requirements and flow scaling.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1881

C. Traffic model

A commodity-(c, φ) flow is specified by a source node sc,
a set of destination nodes Dc, and a service φ. Packets of
commodity-(c, φ) flow enter the network at sc and exit the
network for consumption at Dc after being processed by the
service functions in φ. A flow is unicast if Dc contains a single
node in V , denoted by dc, and is multicast if Dc contains
more than one node in V . We denote by (C,Φ) the set of all
commodities.

We consider a time slotted system with slots normalized to
integral units t ∈ {0, 1, 2, . . . }. We denote by A(c,φ)(t) the
number of exogenous arrivals of commodity-(c, φ) packets at
node sc during time slot t, and by λ(c,φ) its expected value,
referred to as the average arrival rate, where we assume that
A(c,φ)(t) is independently and identically distributed (i.i.d.)
across time slots. The vector λ = {λ(c,φ), (c, φ) ∈ (C,Φ)}
characterizes the arrival rates to the network.

III. POLICY SPACE AND CAPACITY REGION

We address the mixed-cast service chain control problem,
where both unicast and multicast packets must be processed by
a specified chain of service functions before being delivered
to their associated destinations. The goal is to develop a
control policy that maximizes network throughput under both
communication and computation constraints.

We first transform the original problem that has both com-
munication and computation constraints into a network flow
problem in a graph that only has link capacity constraints. The
transformation simplifies the representation of a flow. We then
limit the routing policy space without reducing the capacity
region. Finally, we characterize the network capacity region.

A. Transformation to a layered graph

Following the approach of [9], we model the flow of packets
through a service chain via a layered graph, with one layer per
stage of the service chain. Let G(φ) = (G(φ,0), . . . ,G(φ,Mφ)),
with edge set E(φ) and vertex set V(φ), denote the layered
graph associated with service chain φ. Each layer G(φ,i) is
an exact copy of the original graph G, used to represent the
routing of packets at stage i of service φ, i.e., the routing of
packets that have been processed by the first i functions of
service φ. Let u(φ,i) denote the copy of node u in G(φ,i), and
edge (u(φ,i), v(φ,i)) the copy of link (u, v) in G(φ,i). Across
adjacent layers, a directed edge from u(φ,i−1) to u(φ,i) for all
u ∈ N(φ,i) is used to represent the computation of function
(φ, i). See Fig. 2 for an example of the layered graph.

Proposition 1. There is a one-to-one mapping between a
flow from s(φ,0) to D(φ,Mφ) in G(φ) and a flow from s to
D processed by φ in G.

Proof. Let a flow be processed by function (φ, i) at node
u ∈ N(φ,i) ⊆ V . Then, by construction of the layered graph,
an equivalent flow must traverse link (u(φ,i−1), u(φ,i)) ∈ E(φ).
Similarly, let a flow that has been processed by the first i
functions of service φ traverse link (u, v) ∈ E . Then, an equiv-
alent flow must traverse link (u(φ,i), v(φ,i)) ∈ E(φ). Under this

Fig. 2. The left figure is the original graph G, where u is the only computation
node for the single function in φ. A dummy node up and connections to u
are added to illustrate the availability of service function processing at node
u. The right figure is the layered graph G(φ).

mapping, every flow processed by φ in G corresponds to a flow
in G(φ), and vice versa.

We now state generalized flow conservations laws in the
layered graph that readily apply to the original graph by
Proposition 1.

Let fu(φ,i)v(φ,i) denote the flow rate on link (u(φ,i), v(φ,i)),
i.e., the rate of stage-i packets on link (u, v), where a
stage-i packet is a packet that has been processed by
the first i functions in φ, and not by functions (φ, i +
1), . . . , (φ,Mφ). Similarly, fu(φ,i−1)u(φ,i) denotes the flow rate
on link (u(φ,i−1), u(φ,i)), i.e., the computation rate at node u
for processing stage-(i − 1) packets into stage-i packets via
function (φ, i).

We first focus on unicast traffic, where no packet duplication
is required.1 Note that due to non-unit computation require-
ments and flow scalings, traditional flow conservation does not
hold even for unicast traffic. For a given node u(φ,i) ∈ G(φ,i),
the following generalized flow conservation law holds:∑

v(φ,i)∈V(φ)

fv(φ,i)u(φ,i) +
ξ(φ,i)

r(φ,i)
fu(φ,i−1)u(φ,i)

=
∑

v(φ,i)∈V(φ)

fu(φ,i)v(φ,i) +
1

r(φ,i+1)
fu(φ,i)u(φ,i+1) . (1)

In the case of multicast traffic, packet duplication is nec-
essary for a packet to reach multiple destinations. Packet
duplications can happen at any stage of a service chain.
Suppose that a stage-i packet is duplicated. Then, all the
copies must be processed by functions (φ, i+ 1), . . . , (φ,Mφ)
before reaching destinations in D. Equivalently, in the layered
graph G(φ), if a packet is duplicated at a node in G(φ,i), then
all the copies need to travel through the links that cross the

1Packet duplication is different from flow scaling. Flow scaling is a result
of service function processing. An expanded flow, which is a function output,
contains different packets. Packet duplication makes identical copies of a
packet, which may be forwarded along different routes to reach different
destinations.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1882

remaining Mφ − i layers before reaching a node in D(φ,Mφ).
The generalized flow conservation and packet duplication law
states that generalized flow conservation (1) holds at the nodes
where there is no packet duplication.

Given the flow rates in the layered graph and the mapping of
Proposition 1, the flow rates in the original graph can be easily
derived. The communication rate on link (u, v) ∈ G, com-
puted as the sum over the flow rates on links (u(φ,i), v(φ,i)),
∀φ ∈ Φ, i ∈ {0, . . . ,Mφ}, and the computation rate at node
u ∈ G, computed as the sum over the flow rates on links
(u(φ,i−1), u(φ,i)), ∀φ ∈ Φ, i ∈ {1, . . . ,Mφ} are subject to
communication and computation capacity constraints:∑

φ∈Φ,i∈{0,...,Mφ}

fu(φ,i)v(φ,i) ≤ µuv,∑
φ∈Φ,i∈{1,...,Mφ}

fu(φ,i−1)u(φ,i) ≤ µu.

B. Policy space

An admissible policy π for the mixed-cast service chain
control problem consists of two actions at every time slot t.

1) Route selection: For a commodity-(c, φ) packet that
originates at sc and is destined for Dc, choose a set
of links E(c,φ) ⊆ E(φ), and assign a number of packets2

on each link that satisfies the generalized conservation
law for unicast traffic and the generalized conservation
and duplication law for multicast traffic.

2) Packet scheduling: Transmit packets through every link
in E according to a schedule that respects capacity
constraints.

The set of all admissible policies is denoted by Π. The set
Π includes policies that may use past and future arrival and
control information.

Let P(c,φ),π(t) denote the packets that are originated at sc,
processed by φ, and delivered to every node in Dc under policy
π up to time t. Let R(c,φ),π(t) = |P(c,φ),π(t)| denote the
number of such packets. The number of packets received by
a node in Dc is at least

∏Mφ

i=1 ξ
(φ,i)R(c,φ),π(t) due to flow

scaling. We characterize the network throughput using arrival
rates. A policy π supports an arrival rate vector λ if

lim inf
t→∞

R(c,φ),π(t)

t
= λ(c,φ), ∀(c, φ) ∈ (C,Φ), w.p. 1. (2)

The network layer capacity region is the set of all support-
able arrival rates.

Λ(G, C,Φ) = {λ ∈ R|C||Φ|+ : ∃π ∈ Π supporting λ} (3)

We next restrict the set of admissible routes without reduc-
ing the capacity region. A route is efficient if every packet
never visits the same node in G(φ) more than once. For
example, if there is no flow scaling, a unicast packet is
transmitted through a path from the source to the destination,
without cycles, and a multicast packet is transmitted and

2Recall that a commodity-(c, φ) input packet can be expanded to multiple
packets due to flow scaling and packet duplication.

1

3

2

2

1

3

1

1

1

Fig. 3. The left figure illustrates a service chain path, and the right figure
illustrates an alternative efficient route that is not a service chain path. The
number adjacent to a link indicates the number of packets on the link. Scaling
factors: x(φ,1) = 3; w(φ,1) = 2.

duplicated through a tree that connects the source and the
set of destinations. It suffices to consider efficient routes, by
Lemma 1, whose proof is in Appendix VIII-A.

Lemma 1. Any arrival rate λ in the capacity region can be
supported by a policy that only uses efficient routes.

Moreover, we further restrict the route of a unicast packet to
be a service chain path, and the route of a multicast packet to
be a service chain Steiner tree, without reducing the capacity
region. Note that under flow scaling, one commodity-(c, φ)
packet that originates at sc is scaled to

∏i−1
j=1 ξ

(φ,j) packets
at stage-(i − 1). To process them, function (φ, i) requires
x(φ,i) = r(φ,i)

∏i−1
j=1 ξ

(φ,j) computation resource units, and
outputs w(φ,i) =

∏i
j=1 ξ

(φ,j) packets. Let w(φ,0) = ξ(φ,0) =
1.

Definition 1. A commodity-(c, φ) unicast packet is routed over
a service chain path T (c,φ), if

1) T (c,φ) is a path from s
(φ,0)
c to d(φ,Mφ)

c in G(φ);
2) w(φ,i) packets are routed over a link in T (c,φ) that

belongs to G(φ,i);
3) x(φ,i) packets are routed over a link in T (c,φ) that

connects G(φ,i−1) and G(φ,i).

It is easy to verify that the generalized flow conservation law
holds in a service chain path. Clearly, a service chain path is
an efficient route, since every node in G(φ) is visited only once
by the same packet. However, an efficient route does not have
to be a service chain path. If a packet is expanded into two
packets via intermediate service processing, the two packets
can take different paths without violating route efficiency. For
example, in Fig. 3, the left figure illustrates a service chain
path, while the right figure illustrates an efficient route that is
not a service chain path.

Definition 2. A commodity-(c, φ) multicast packet is routed
over a service chain Steiner tree T (c,φ), if

1) T (c,φ) is a Steiner tree (arborescence) that is rooted at
s

(φ,0)
c and connected to D(φ,Mφ)

c in G(φ);

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1883

2) w(φ,i) packets are routed over a link in T (c,φ) that
belongs to G(φ,i);

3) x(φ,i) packets are routed over a link in T (c,φ) that
connects G(φ,i−1) and G(φ,i).

If a packet is routed over a service chain Steiner tree T (c,φ),
then packet duplications occur at every node that has more
than one outgoing edge in T (c,φ). The number of duplications
for each packet at a node equals the number of outgoing
edges from the node in T (c,φ) minus one. The generalized
flow conservation holds at all other nodes.

We conclude this section with Theorem 1, whose proof is
in Appendix VIII-A.

Theorem 1. There exists a policy that chooses a convex
combination of service chain paths for each incoming unicast
packet, and a convex combination of service chain Steiner trees
for each incoming multicast packet, to support any arrival rate
λ in the capacity region.

Due to Theorem 1, in the following, we restrict our attention
to routing policies that use service chain paths or service
chain Steiner trees to route incoming packets, without reducing
network throughput.

C. Capacity region

For any arrival rate λ ∈ Λ(G, C, φ), there exists an ad-
missible policy π that takes restricted routes and supports
λ. Let T (c,φ) denote the set of all service chain paths (or
Steiner trees) for commodity-(c, φ) packets. By taking the time
average over the actions of π, for each commodity (c, φ), there
exists a randomized flow decomposition and routing on T (c,φ).
Let λ(c,φ)

k be the average (arrival) flow rate of commodity-
(c, φ) packets over T (c,φ)

k ∈ T (c,φ).

λ(c,φ) =
∑

T
(c,φ)
k ∈T (c,φ)

λ
(c,φ)
k , ∀(c, φ) ∈ (C,Φ). (4)

Moreover, flows should satisfy communication and com-
putation capacity constraints. Commodity-(c, φ) flow con-
tributes a rate w(φ,i)λ

(c,φ)
k on communication link (u, v) if

(u(φ,i), v(φ,i)) ∈ T
(c,φ)
k , and a rate of x(φ,i)λ

(c,φ)
k on com-

putation node u if (u(φ,i−1), u(φ,i)) ∈ T
(c,φ)
k . Let Suv =

{(k, i, c, φ) : (u(φ,i), v(φ,i)) ∈ T
(c,φ)
k , T

(c,φ)
k ∈ T (c,φ), i ∈

{0, . . . ,Mφ}, (c, φ) ∈ (C,Φ)} denote the set of commodities
that use link (u, v). Let Su = {(k, i, c, φ) : (u(φ,i−1), u(φ,i)) ∈
T

(c,φ)
k , T

(c,φ)
k ∈ T (c,φ), i ∈ {1, . . . ,Mφ}, (c, φ) ∈ (C,Φ)}

denote the set of commodities that use node u. The commu-
nication and computation capacity constraints are represented
by (5) and (6), respectively.

∑
(k,i,c,φ)∈Suv

w(φ,i)λ
(c,φ)
k ≤ µuv, ∀(u, v) ∈ E , (5)

∑
(k,i,c,φ)∈Su

x(φ,i)λ
(c,φ)
k ≤ µu, ∀u ∈ V. (6)

To conclude, the capacity region is characterized by the
arrival rates λ = {λ(c,φ) : (c, φ) ∈ (C,Φ)} that satisfy
constraints (4), (5), and (6).

IV. DYNAMIC ROUTING IN A VIRTUAL SYSTEM

In this section, we study a virtual queueing system for a dis-
tributed computing network, whose simplified dynamics allow
us to develop a dynamic routing algorithm that guarantees that
the average arrival rate at a link is no more than its service
rate. We then formalize the connection between the virtual and
physical systems in Section V.

We consider a virtual queueing system {Q̃uv(t),∀(u, v) ∈
E} and {Q̃u(t),∀u ∈ V} for network G. We then define
virtual queues for the links in the layered graphs G(φ),∀φ ∈ Φ
such that the queue lengths of the communication links
(u(φ,i), v(φ,i)), ∀φ ∈ Φ, i ∈ {0, . . . ,Mφ} are identical and
equal to Q̃uv(t) for all t, and the queue lengths of the
computation links (u(φ,i−1), u(φ,i)), ∀φ ∈ Φ, i ∈ {1, . . . ,Mφ}
are identical and equal to Q̃u(t) for all t.

In contrast to the physical system, in which packets travel
through the links in its route sequentially, in the virtual system,
a packet immediately enters the virtual queues of all the links
in its route, upon arrival at the network. The number of packets
that arrive at the communication queue Q̃uv at time t, denoted
by Auv(t), is the sum of the number of packets routed on
(u(φ,i), v(φ,i)), ∀φ ∈ Φ, i ∈ {0, . . . ,Mφ} at time t. Similarly,
the number of packets Au(t) that arrive at the computation
queue Q̃u at time t is the sum of the number of packets
routed on (u(φ,i−1), u(φ,i)), ∀φ ∈ Φ, i ∈ {1, . . . ,Mφ} at time
t. The value Auv(t) indicates the total number of packets that
will be transmitted through link (u, v), in order to serve the
packets (and their associated packets after processing) that
arrive at time t, based on the routing decision. The value Au(t)
indicates the total amount of computation that node u will use
to process these packets. The departure rate of the packets in
Q̃uv is equal to the transmission capacity of link (u, v), µuv ,
and the departure rate of the packets in Q̃u is equal to the
processing capacity of node u, µu.

We study the queueing dynamics under a policy that routes
all the packets that belong to the same commodity and arrive
at the same time, through a service chain path or service
chain Steiner tree. Let A(c,φ)(t) be the number of commodity-
(c, φ) packets that arrive at the network at time t. Let T (c,φ),π

denote the path or tree chosen under policy π at time t. Let
A

(c,φ),π
uv (t) denote the number of packets that arrive at the

virtual communication queue (u, v) at time t. Recall that w(φ,i)

and x(φ,i) were defined before Definition 1 in Section III.

A(c,φ),π
uv (t) =

∑
(u(φ,i),v(φ,i))∈T (c,φ),π

w(φ,i)A(c,φ)(t). (7)

Let A(c,φ),π
u (t) denote the number of packets that arrive at the

virtual computation queue at u at time t.

A(c,φ),π
u (t) =

∑
(u(φ,i−1),u(φ,i))∈T (c,φ),π

x(φ,i)A(c,φ)(t). (8)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1884

The virtual queue lengths Q̃uv(t) and Q̃u(t) evolve accord-
ing to the following recursion, where (a)+ = max(a, 0).

Q̃uv(t+ 1) =
(
Q̃uv(t) +

∑
(c,φ)∈(C,Φ)

A(c,φ),π
uv (t)− µuv

)+

,

Q̃u(t+ 1) =
(
Q̃u(t) +

∑
(c,φ)∈(C,Φ)

A(c,φ),π
u (t)− µu

)+

.

Dynamic routing policy π∗: When A(c,φ)(t) packets arrive
at time t, policy π∗ chooses a route T (c,φ),π∗

by minimizing∑
(u,v)∈E

Q̃uv(t)A
(c,φ),π
uv (t) +

∑
u∈V

Q̃u(t)A(c,φ),π
u (t)

=A(c,φ)(t)
(∑

(u(φ,i),v(φ,i))∈E(φ)
w(φ,i)Q̃uv(t)1{(u(φ,i), v(φ,i)) ∈ T (c,φ),π}

+
∑

(u(φ,i−1),u(φ,i))∈E(φ)
x(φ,i)Q̃u(t)1{(u(φ,i−1), u(φ,i)) ∈ T (c,φ),π}

)
.(9)

Let the length of link (u(φ,i), v(φ,i)) be w(φ,i)Q̃uv(t), and
the length of link (u(φ,i−1), u(φ,i)) be x(φ,i)Q̃u(t). For unicast
traffic, the optimal path is the shortest path from s(φ,0) to
d(φ,Mφ). For multicast traffic, the optimal tree is the minimum
Steiner tree from s(φ,0) to D(φ,Mφ).

Policy π∗ stabilizes the virtual system for any arrival rate
in the interior of the capacity region.

Theorem 2. Under routing policy π∗, the virtual queue
process {Q̃(t)}t≥0 is strongly stable for any arrival rate that
is in the interior of the capacity region. I.e.,

lim sup
T→∞

1

T

T−1∑
t=0

(∑
(u,v)∈E

EQ̃uv(t) +
∑
u∈V

EQ̃u(t)
)
<∞.

The proof of Theorem 2 is based on Lyapunov drift analysis
and can be found in Appendix VIII-B. The queue stability
implies that the arrival rate at each virtual queue is no more
than its service rate.

V. CONTROL OF THE PHYSICAL NETWORK

In this section, we formalize the connection between the vir-
tual system and the physical system, and develop a throughput-
optimal control policy for a distributed computing network.
Recall that an admissible policy consists of two actions at
every time slot: 1) route selection, 2) packet scheduling.

The route selection for an incoming packet to the network
is identical to the route selection π∗ in the virtual system.
Suppose that a packet is served (i.e., both processed by all
the service functions and delivered to the destination) by the
network. The amount of traffic that the packet contributes to
a physical queue Quv (or Qu) is the same as the amount of
traffic that it contributes to the virtual queue Q̃uv (or Q̃u).
Strong stability of virtual queues implies that the average
arrival rate is at most the service rate of each virtual queue
under π∗. Therefore, by applying the same routing policy to
the physical system, the average arrival rate (or offered load) is
at most the service rate for each physical queue. The statement
is made precise in the proof of Theorem 3.

A packet scheduling policy chooses a packet to transmit
over a link or to process at a node, when there are more than
one packet awaiting service. It was proved in [15], [16] that
an extended nearest-to-origin (ENTO) policy guarantees queue
stability, as long as the average arrival rate is no more than
the service rate at each queue. The ENTO policy gives higher
priority to packets that have traveled a smaller number of hops
(i.e., closer to their origins). A duplicated packet (in multicast)
inherits the hop count of the original packet. In the proof of
Theorem 3, we show that this policy guarantees the stability
of physical queues even with flow scaling (i.e., one packet
processed by a first queue may enter a second queue in the
form of multiple packets).

The resulting routing and scheduling policy, referred to as
Universal Computing Network Control (UCNC), is summa-
rized in Algorithm 1.

Algorithm 1 Universal Computing Network Control (UCNC).

Initialization: Q̃uv(0) = Q̃u(0) = 0, ∀(u, v) ∈ E , u ∈ V .

At each time slot t:
1) Preprocessing. For an incoming commodity-(c, φ)

packet, construct a layered graph G(φ). Let the cost of
link (u(φ,i), v(φ,i)) be w(φ,i)Q̃uv(t), and the cost of link
(u(φ,i−1), u(φ,i)) be x(φ,i)Q̃u(t).

2) Route Selection (π∗). Compute a minimum-cost route
T (c,φ),π∗

for a commodity-(c, φ) incoming packet. The
packet will follow T (c,φ),π∗

for transmission and pro-
cessing.

3) Packet Scheduling (ENTO). Each physical link trans-
mits packets and each computation node processes pack-
ets according to the ENTO policy.

4) Virtual Queues Update.

Q̃uv(t+ 1) =
(
Q̃uv(t) +

∑
(c,φ)∈(C,Φ)

A(c,φ),π∗

uv (t)− µuv
)+

;

Q̃u(t+ 1) =
(
Q̃u(t) +

∑
(c,φ)∈(C,Φ)

A(c,φ),π∗

u (t)− µu
)+

.

In Step 2, a commodity-(c, φ) packet enters the physical
network and will be transmitted and processed in G according
to T (c,φ),π∗ ⊆ G(φ) by the mapping in Proposition 1. To
implement the algorithm, the packet stores T (c,φ),π∗

. At time
slot t′ ≥ t, if it has been processed by the first i functions
and is at node u, then it enters the physical queue for link
(u, v) if (u(φ,i), v(φ,i)) ∈ T (c,φ),π∗

. It enters the computation
queue at node u if (u(φ,i), u(φ,i+1)) ∈ T (c,φ),π∗

. The packet is
duplicated (for multicast) if u(φ,i) has more than one outgoing
edge in T (c,φ),π∗

.

Theorem 3. Under UCNC, all physical queues are rate stable

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1885

for any arrival rate in the interior of the capacity region. I.e.,

lim
t→∞

Quv(t)

t
= 0, w.p. 1, ∀(u, v) ∈ E ;

lim
t→∞

Qu(t)

t
= 0, w.p. 1, ∀u ∈ V.

The proof can be found in the technical report [17] and
consists of two parts. The first part is to prove that the average
arrival rate is no more than the service rate of every link and
every computation node. The second part is to prove that under
this condition, the physical queues are stable under the ENTO
policy. Using standard queue stability analysis (e.g., [15]), we
conclude that the policy is throughput-optimal.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of UCNC in a
distributed computing network based on the Abilene network
topology in Fig. 4. For simplicity, we assume that each link
is bidirectional and has unit transmission capacity in each
direction. We evaluate the performance of UCNC for unicast
traffic in Section VI-A, and for multicast traffic in Section
VI-B. In Sections VI-A and VI-B, we consider a small number
of commodities, and assume that nodes 3 and 8 each have unit
computation capacity and that all the other nodes have zero
computation capacity. In Section VI-C, we consider a larger
number of commodities with a mix of unicast and multicast.

For unicast traffic, we compare UCNC with the
backpressure-based algorithm in [13]. While both algorithms
are throughput-optimal, UCNC yields much shorter packet
delay. We also compare UCNC with heuristic policies such
as choosing the closest server to process the service func-
tions, and observe that the heuristic policies are not always
throughput-optimal. This demonstrates the importance of joint
optimization of communication and computation resources.

For multicast traffic, we illustrate the performance of
UCNC, and compare the capacity region under multicast traffic
with the capacity region when multicast flows are treated as
multiple unicast flows. Numerical results indicate the ability
to deliver higher rates when multicast traffic can be served via
proper packet duplications, as opposed to creating independent
copies for each destination. This confirms the importance of
the first throughput-optimal algorithm for multicast traffic in
distributed computing networks.

We compare different policies using the average delay
metric. Note that we did not claim any theoretical delay
guarantee of UCNC (other than o(t) delay with probability
1 due to Little’s law and Theorem 3). Nevertheless, the delay
metric is important for quality of service. Moreover, queue
lengths can be inferred from delay information. Small delays
indicate short queue lengths and therefore stable queues. Thus,
we can infer the capacity region under different policies using
delay information.

A. Unicast traffic

1) Comparison with backpressure-based algorithm: We
consider two commodities of unicast traffic. The first com-
modity originates at node 1 and is destined for node 11. The

second commodity originates at node 4 and is destined for
node 7. Packets in both commodities are processed by two
functions in a service chain. Let λ1 and λ2 denote the expected
arrival rates of the two commodities, respectively. Ignoring all
the scalings (ξ = r = 1), the computation resource constraints
are tight to support λ1 + λ2 = 1. Thus, the capacity region
is λ1 + λ2 ≤ 1. Figure 5(a) compares the average packet
delays under UCNC and the backpressure-based algorithm,
for different arrival rates that satisfy λ1 = λ2. We observe
that the average packet delays under UCNC are significantly
lower than the delays under the backpressure-based algorithm.

2) Comparison with nearest-to-destination service function
placement: We compare the performance of UCNC with the
heuristic of placing the service functions in the computation
node that is nearest to the destination. For a fair comparison,
the processing capacity of a single node should be sufficient.
We consider a single unicast commodity from node 2 to node
7. The service chain φ has a single function (φ, 1) with flow
scaling factor ξ(φ,1) = 1/3 and computation requirement
r(φ,1) = 1/3. The heuristic policy routes the packets from
node 2 to node 8, which is the closest computation node
to node 7, processes the packets at node 8, and routes the
processed packets from node 8 to node 7. The average packet
delays under both algorithms are compared in Fig. 5(b). Due to
communication constraints, the maximum rate that UCNC can
support is λ = 3, while the maximum rate that the heuristic
policy can support is λ = 2. The heuristic policy fails to
be throughput-optimal when there is flow scaling (shrinkage)
due to processing. This demonstrates the importance of jointly
optimizing communication and computation resources.

3) Comparison with nearest-to-source service function
placement: Placing a service function at the nearest-to-source
computation node may decrease the supportable service rate,
when there is flow expansion. We consider a single commodity
from node 2 to node 7. The service chain φ has a single
function (φ, 1) with flow scaling factor ξ(φ,1) = 3 and
computation requirement r(φ,1) = 1. The heuristic policy
routes the packets from node 2 to node 3, which is the closest
computation node to the source, processes the packets at node
3, and then routes the processed packets from node 3 to node
7. The maximum flow rate from node 3 to node 7 is two. Thus,
the maximum supportable service rate is λ = 2/3, which
expands to a flow of rate two after processing. In contrast,
illustrated in Fig. 5(c), UCNC is able to support a service rate
λ = 1. This, again, demonstrates the need to jointly optimize
communication and computation resources.

B. Multicast traffic

We next study a multicast flow from node 1 to nodes 7
and 11. Suppose that the service chain has two functions and
that all the scaling factors ξ, r are one. The optimal policy
is to process the packets at both nodes 3 and 8, and then
duplicate the processed packets and route them to the two
destinations. The maximum supportable service rate is λ =
1 for both destinations. In contrast, if the multicast flow is
treated as two unicast flows, then the sum of the service rates

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1886

Fig. 4. Abilene network topology.

to both destinations is one. Thus, multicasting improves the
performance of the distributed computing network. As shown
in Fig. 6, UCNC is throughput-optimal for multicast traffic,
and the average packet delays are small.

C. Large scale simulation

We evaluate the performance of UCNC under a large
number of commodities. We consider three service chains
Φ = {φ1, φ2, φ3}. Services φ1, φ2 have two functions each,
and φ3 has three functions. The scaling factors ξ, r are chosen
independently from a uniform distribution in [0.5, 2]. Each
service chain processes four unicast flows and two multicast
flows, where the source and the destination(s) of each flow are
randomly chosen among all nodes that are at least two hops
away. Thus, there are a total of 18 commodities. Each function
can be computed at four randomly chosen computation nodes,
each of which has unit capacity.

The average packet delays under the 18 mixed-cast com-
modities are shown in Fig. 7, where all commodities have
identical arrival rate λ. We observe that UCNC is able to
support rate λ = 0.12. In contrast, when each multicast flow is
treated as multiple unicast flows, for a total of 24 commodities,
the maximum supportable rate is around λ = 0.09. This
demonstrates the importance of optimal control for multicast
traffic. The average packet delays under the backpressure-
based algorithm, with multicast flows treated as multiple
unicast flows, are over 1000 for λ ∈ [0.01, 0.09], substantially
higher than under UCNC, and hence ommitted in the figure.

Finally, we also evaluated the performance of an algorithm
that uses the routing policy π∗ and the First-In-First-Out
(FIFO) scheduling policy for the physical queues. Numerical
results suggest that the average packet delays are close to the
delays under the ENTO scheduling policy, and are omitted
for brevity. Thus, for practical purpose of dynamic control in
distributed computing networks, FIFO scheduling policy could
also be used.

VII. CONCLUSION

We characterized the capacity region and developed the
first throughput-optimal control policy (UCNC) for unicast
and multicast traffic in a distributed computing network.
UCNC handles both communication and computation con-
straints, flow scaling through service function chains, and
packet duplications. Simulation results suggest that UCNC has

superior performance compared with existing algorithms. In
the extended technical report [17], we provide complete proofs
and discuss extensions of UCNC that include applications to
undirected networks and performance analysis under approx-
imate minimum-cost routing.

REFERENCES

[1] Marcus Weldon, “The future X network,” CRC Press, October 2015.
[2] Bell Labs Strategic White Paper, “The programmable cloud network - a

primer on SDN and NFV,” June 2013.
[3] Industrial Internet Consortium, https://www.iiconsortium.org/
[4] A. B. Craig, “Understanding augmented reality: concepts and applica-

tions,” Newnes, 2013.
[5] M. Charikar, Y. Naamad, J. Rexford, and K. Zou, “Multi-

commodity flow with in-network processing,” Tech. Rep. [Online]
www.cs.princeton.edu/research/techreps/TR-995-15, 2015.

[6] M. Barcelo, J. Llorca, A. M. Tulino, N. Raman, “The cloud servide
distribution problem in distributed cloud networks,” Proc. IEEE ICC,
2015.

[7] M. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, “On orchestrating
virtual network functions in NFV,” Proc. 11th International Conference
on Network and Service Management (CNSM), 2015.

[8] R. Cohen, L. Lewin-Eytan, J.S. Naor, D. Raz, “Near optimal placement
of virtual network functions,” Proc. IEEE INFOCOM, 2015.

[9] Z. Cao, S. S. Panwar, M. Kodialam, and T. V. Lakshman, “Enhancing
mobile networks with software defined networking and cloud computing,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1431-1444,
June 2017.

[10] H. Feng, J. Llorca, A. M. Tulino, D. Raz, A. F. Molisch, “Approxima-
tion algorithms for the NFV service distribution problem,” Proc. IEEE
INFOCOM, 2017.

[11] J. Kuo, S. Shen, H. Kang, D. Yang, M. Tsai, and W. Chen, “Service
chain embedding with maximum flow in software defined network and
application to the next-generation cellular network architecture”, Proc.
IEEE INFOCOM, 2017.

[12] H. Feng, J. Llorca, A. M. Tulino, A. F. Molisch, “Dynamic network ser-
vice optimization in distributed cloud networks,” Proc. IEEE INFOCOM
SWFAN Workshop, April 2016.

[13] H. Feng, J. Llorca, A. M. Tulino, A. F. Molisch, “Optimal dynamic
cloud network control,” Proc. IEEE ICC, 2016.

[14] A. Destounis, G. Paschos, I. Koutsopoulos, “Streaming big data meets
backpressure in distributed network computation,” Proc. IEEE INFO-
COM, April 2016.

[15] A. Sinha, E. Modiano, “Optimal control for generalized network-flow
problems,” Proc. IEEE INFOCOM, 2017.

[16] D. Gamarnik, “Stability of adaptive and non-adaptive packet routing
policies in adversarial queueing networks,” SIAM J. Comput., Vol. 32,
No. 2, pp. 371–385, 2003.

[17] J. Zhang, A. Sinha, J. Llorca, A. Tulino, E. Modiano, “Optimal control of
distributed computing networks with mixed-cast traffic flows,” Tech. Rep.
[Online] https://www.dropbox.com/s/2ox2d7t4tcdo4l0/dcnflow.pdf?dl=0

VIII. APPENDIX

A. Restricted routes do not reduce the capacity region

Proof of Lemma 1: We prove that, any packet that can
be transmitted from the source to the destination(s) by time
t under a policy π that uses arbitrary routes, can also be
transmitted from the source to the destination(s) by time t
under a policy π′ that only uses efficient routes. Then, by
Eq. (2), any rate λ that is supported by π can also be supported
by π′. By Eq. (3), any rate in the capacity region can be
supported by a policy that only uses efficient routes.

Consider a policy π that transmits the same packet to a node
in G(φ) more than once. For unicast traffic, where there is no
packet duplication, the packet travels through one or more
cycles. Moreover, each cycle must be in one layer of G(φ)

and the packet can not be processed while traveling through

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1887

0.8 0.85 0.9 0.95 1

λ
1
 + λ

2

0

100

200

300

400

500
d
el

ay

backpressure

UCNC

(a)

1 1.5 2 2.5 3

λ

5

10

15

20

25

d
el

ay

heuristic

UCNC

(b)

0 0.2 0.4 0.6 0.8 1

λ

10

20

30

40

50

d
el

ay

heuristic

UCNC

(c)

Fig. 5. Average packet delay performance: (a) UCNC v.s. backpressure-based algorithm; (b) UCNC v.s. nearest-to-destination function placement heuristic;
(c) UCNC v.s. nearest-to-source function placement heuristic.

0 0.2 0.4 0.6 0.8 1

λ

10

20

30

40

50

60

d
el
ay

unicast

multicast

Fig. 6. Average packet delay of multicast traffic and when multicast is treated
as multiple unicast traffic.

0 0.02 0.04 0.06 0.08 0.1

λ

0

100

200

300

400

d
el
ay

unicast

mixed-cast

Fig. 7. Average packet delay of mixed-cast traffic and when multicast is
treated as multiple unicast traffic.

the cycle, since there is no edge from G(φ,j) to G(φ,i) for
i < j. Construct a policy π′ that removes all the cycles and
transmission schedules on the cycle links. Any packet that
arrives at a node (e.g., the destination) by time t under π can
also arrive at the same node by time t under π′. The analysis
for multicast traffic is in [17].

Remark: If all scaling factors w, x are one, then an efficient
route for a unicast packet is a path from the source to the
destination. An efficient route for a multicast packet is a
Steiner tree from the source to the destinations.

1

3

1

1

1

Fig. 8. Micro packets in an efficient route. The sizes of a micro packet on a
link in G(φ,0), link (u(φ,0), u(φ,1)), and a link in G(φ,1) are 1/6, 1/2, and
1/3, respectively. Scaling factors: x(φ,1) = 3; w(φ,1) = 2.

Proof of Theorem 1: If w(φ,i) = x(φ,i) = 1, ∀φ ∈ Φ, i ∈
{1, . . . ,Mφ}, the theorem follows immediately from Lemma
1. For arbitrary (rational) scaling factors, we divide a packet
into micro packets, and represent the routes of a packet by
the composition of paths (or Steiner trees) of micro packets.
The intuition follows from Fig. 8, and the proof can be found
in [17].

B. Stability of the virtual queues

Proof of Theorem 2: We consider a quadratic Lyapunov
function L(Q̃(t)) =

∑
(u,v)∈E Q̃

2
uv(t) +

∑
u∈V Q̃

2
u(t). The

Lyapupov drift ∆π(t) under policy π is upper bounded by

∆π(t)
def
= E(L(Q̃(t+ 1))− L(Q̃(t))|Q̃(t))

≤ B + 2
∑

(u,v)∈E

Q̃uv(t)
(
E(Aπuv(t)|Q̃(t))− µuv

)
+2
∑
u∈V

Q̃u(t)
(
E(Aπu(t)|Q̃(t))− µu

)
,

where B is a finite value. We compare the drift under policy
π∗ and the drift under a randomized policy, to prove the
negative drift and queue stability under π∗. Details can be
found in [17].

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1888

