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Abstract

Constrained Markov Decision Process (CMDP) is a natural framework for rein-
forcement learning tasks with safety constraints, where agents learn a policy that
maximizes the long-term reward while satisfying the constraints on the long-term
cost. A canonical approach for solving CMDPs is the primal-dual method which
updates parameters in primal and dual spaces in turn. Existing methods for CMDPs
only use on-policy data for dual updates, which results in sample inefficiency and
slow convergence. In this paper, we propose a policy search method for CMDPs
called Accelerated Primal-Dual Optimization (APDO), which incorporates an off-
policy trained dual variable in the dual update procedure while updating the policy
in primal space with on-policy likelihood ratio gradient. Experimental results on a
simulated robot locomotion task show that APDO achieves better sample efficiency
and faster convergence than state-of-the-art approaches for CMDPs.

1 Introduction

In reinforcement learning (RL), agents learn to act by trial and error in an unknown environment.
The majority of RL algorithms allow agents to freely explore the environment and exploit any actions
that might improve the reward. However, actions that lead to high rewards usually come with high
risks. In a safety-critical environment, it is important to enforce safety in the RL algorithm, and
a natural way to enforce safety is to incorporate constraints. A standard formulation for RL with
safety constraints is the constrained Markov Decision Process (CMDP) framework [2], where the
agents need to maximize the long-term reward while satisfying the constraints on the long-term cost.
Applications of CMDPs include windmill control [3] where we need to maximize the average reward
(e.g., generated power) while bounding the long-term wear-and-tear cost on critical components (e.g.,
wind turbine). Another important example is communication network control where we need to
maximize network utility while bounding the long-term arrival rate below the long-term service rate
in order to maintain network stability (Chapter 1.1 in [2]).

While optimal policies for finite CMDPs with known models can be obtained by linear programming
[4], it cannot scale to high-dimensional continuous control tasks due to curse of dimensionality.
Recently, there have been RL algorithms that work for high-dimensional CMDPs based on advances
in policy search algorithms [5, 6]. In particular, two constrained policy search algorithms enjoy
state-of-the-art performance for CMDPs: Primal-Dual Optimization (PDO) [7] and Constrained
Policy Optimization (CPO) [8]. PDO is based on Lagrangian relaxation and updates parameters
in primal and dual spaces in turn. Specifically, the primal policy update uses the policy gradient
descent while the dual variable update uses the dual gradient ascent. By comparison, CPO differs
from PDO in the dual update procedure, where the dual variable is obtained from scratch by solving
a carefully-designed optimization problem in each iteration, in order to enforce safety constraints
throughout training. Besides PDO and CPO, there exist other methods for solving CMDPs [9, 10, 11],
but these approaches are usually computationally intensive or only apply to some specific CMDP
models and domains.
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A notable feature of existing constrained policy search approaches (e.g., PDO and CPO) is that they
only use on-policy samples1, which ensures that the information used for dual updates is unbiased
and leads to stable performance improvement. However, such an on-policy dual update is sample-
inefficient since historical samples are discarded. Moreover, due to the on-policy nature, dual updates
are incremental and suffer from slow convergence since a (potentially large) batch of on-policy
samples have to be obtained before a dual update can be made.

In this paper, we propose a policy search method for CMDPs called Accelerated Primal-Dual Opti-
mization (APDO), which incorporates an off-policy trained dual variable in the dual update procedure
while updating the policy in primal space with on-policy likelihood ratio gradient. Specifically,
APDO is similar to PDO except that we perform a one-time adjustment for the dual variable with a
nearly optimal dual variable trained with off-policy data after a certain number of iterations. Such
a one-time adjustment process incurs negligible amortized overhead in the long term but greatly
improves the sample efficiency and the convergence rate over exisiting methods. We demonstrate the
effectiveness of APDO on a simulated robot locomotion task where the agent must satisfy constraints
motivated by safety. The experimental results show that APDO achieves better sample efficiency and
faster convergence than state-of-the-art approaches for CMDPs (e.g., PDO and CPO).

Another line of work considers merging the on-policy and off-policy policy gradient updates to
improve sample efficiency. Examples of these approaches include Q-Prop [12], IPG [13], etc. These
approaches are designed for unconstrained MDPs and can be applied to the primal policy update. In
contrast, APDO leverages off-policy samples for dual updates and is complementary to these efforts
on merging on-policy and off-policy policy gradients.

2 Constrained Markov Decision Process

A Markov Decision Process (MDP) is represented by a tuple, (S,A, R, P, p0), where S is the set of
states, A is the set of actions, R : S ×A× S 7→ R is the reward function, P : S ×A× S 7→ [0, 1]
is the transition probability function (where P (s′|s, a) is the transition probability from state s to
state s′ given action a), and p0 : S 7→ [0, 1] is the initial state distribution. A stationary policy
π : S 7→ P(A) corresponds to a mapping from states to a probability distribution over actions.
Specifically, π(a|s) is the probability of selecting action a in state s. The set of all stationary
policies is denoted by Π. In this paper, we search policy within a parametrized stationary policy
class Πθ ⊂ Π (e.g., a neural network policy class with weight θ). We may write a policy π as π(θ)
to emphasize its dependence on the parameter θ. The long-term discounted reward under policy
π is denoted as R(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at, st+1)], where γ ∈ [0, 1) is the discount factor,
τ = (s0, a0, s1, a1, · · · ) denotes a trajectory, and τ ∼ π means that the distribution over trajectories
is determined by policy π, i.e., s0 ∼ p0, at ∼ π(·|st), st+1∼P (·|st,at).

A constrained Markov Decision Process (CDMP) is an MDP augmented with constraints on long-term
discounted costs. Specifically, we augment the ordinary MDP with m cost functions C1, · · · , Cm,
where each cost function Ci : S ×A×S 7→ R is a mapping from transition tuples to costs. The long-
term discounted cost under policy π is similarly defined as Ci(π) = Eτ∼π[

∑∞
t=0 γ

tCi(st, at, st+1)],
and the corresponding limit is di. In CMDP, we aim to select a policy π that maximizes the long-term
reward R(π) while satisfying the constraints on the long-term costs Ci(π) ≤ di, ∀i ∈ [m], i.e.,

π∗ = arg max
π∈Πθ

R(π)

s.t. Ci(π) ≤ di, ∀i ∈ [m].
(1)

3 Algorithm

To solve CMDPs, we employ the Lagrangian relaxation procedure (Chapster 3 in [14]). Specifically,
the Lagrangian function for the CMDP problem (1) is

L(π, λ) = R(π)−
∑
i

λi

(
Ci(π)− di

)
, (2)

1On-policy samples refer to those generated by the currently-used policy while off-policy samples are
generated by other unknown policies.
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where λ = (λ1, · · · , λm) is the Lagrangian multiplier. Then the constrained problem (1) can be
converted to the following unconstrained problem:

(π∗, λ∗) = arg min
λ≥0

max
π∈Πθ

L(π, λ). (3)

To solve the unconstrained minimax problem (3), a canonical approach is to use the iterative primal-
dual method where in each iteration we update the primal policy π and the dual variable λ in turn.
The primal-dual update procedures at iteration k are as follows:

• Fix λ = λ(k) and perform policy gradient update: θk+1 = θk + αk∇θ(L(π(θ), λ(k)))|θ=θk ,
where αk is the step size. The policy gradient could be on-policy likelihood ratio policy gradient (e.g.,
REINFORCE [15] and TRPO [5]) or off-policy deterministic policy gradient (e.g., DDPG [16]).

• Fix π = πk and perform dual update λ(k+1) = fk(λ(k), πk). Existing methods for CMDPs,
such as PDO and CPO, differ in the choice of the dual update procedure fk(·). For example, PDO
uses the simple dual gradient ascent λ(k+1)

i = [λ
(k)
i + βk(Ci(πk)− di)]+, where βk is the step size

and [x]+ = max{0, x} is the projection onto the dual space λ ≥ 0. By comparison, CPO derives
the dual variable λ(k+1) by solving an optimization problem from scratch in order to enforce the
constraints in every iteration.

However, the dual update procedures used in existing methods (e.g., PDO and CPO) are incremental
and only use on-policy samples, resulting sample inefficiency and slow convergence to the optimal
primal-dual solution (λ∗, π∗). In this paper, we propose to incorporate an off-policy trained dual
variable in the dual update procedure in order to improve sample efficiency and speed up the search for
the optimal dual variable λ∗. The algorithm is called Accelerated Primal-Dual Optimization (APDO)
and is described in Algorithm 3. APDO is similar to PDO where in most iterations the dual variable
is updated according to the simple dual gradient ascent (step 6), but the key innovation of APDO
is that there is a one-time dual adjustment with an off-policy trained dual variable λOFF after Kadj

iterations (steps 7-10). The off-policy trained λOFF is obtained by running an off-policy algorithm for
CMDPs with the historical data stored in the replay buffer. We provide a primal-dual version of the
DDPG algorithm in the supplementary material for training λOFF. Although the off-policy trained
dual variable λOFF could be biased, it provides a nearly optimal point for further fine tuning of the
dual variable using new on-policy data.

The improvement of sample efficiency in APDO is due to the fact that off-policy training can
repeatedly exploit historical data while on-policy update only uses each sample once; the acceleration
effect of APDO is due to the fact that off-policy training directly solves for the optimal dual variable
offline, thus avoiding the slow on-policy dual update as in the existing approaches where only one
dual update can be taken after a large batch of samples are obtained.

Note that the adjustment epoch Kadj is an important parameter in APDO. Using a small Kadj avoids
slow incremental dual update early, but the dual estimate λOFF could be highly biased and inaccurate
due to insufficient amount of data. On the other hand, using a larger Kadj provides a more accurate
dual estimate at the expense of delayed adjustment.

4 Experiments

We evaluate APDO against two state-of-the-art algorithms for solving CMDPs (i.e., CPO and PDO)
on a simple point-gather control task in MuJoCo [17] with an additional safety constraint as used
in [8]. All experiments are implemented in rllab [18]. The detailed task description and experiment
parameters are provided in the supplementary material. In particular, for APDO we set the adjustment
epoch Kadj = 5, and additional experimental results regarding the effect of Kadj are also given in the
supplementary material.

Figure 1 shows the learning curves for APDO, CPO and PDO under cost constraints. It can be
observed from Fugure 1(b) that APDO enforced constraints successfully to the limit value as approxi-
mately same speed as CPO did. More importantly, APDO generally outperforms CPO on reward
performance without compromising constraint stabilization, thus achieving better sample efficiency.
For example, CPO takes 90 epochs to achieve an average reward of 11 while satisfying the safety
constraint. By comparison, APDO only takes 45 epochs to achieve the same point, which corresponds
to 2x improvement in sample efficiency over CPO in this task. In addition, PDO fails to enforce the

3



Algorithm 1 Accelerated Primal-Dual Policy Optimization (APDO)
1: Initialize policy π0 ∈ Πθ, replay bufferR = ∅
2: for k = 0, 1, 2 · · · , do
3: Sample a set of trajectories Dk under the current policy πk = π(θk) (containing T samples)
4: Add the sampled data {(st, at, rt, ct, st+1)}Tt=0 to the replay bufferR
5: Update the primal policy with any on-policy likelihood ratio gradient method (e.g., TRPO)

using the sampled on-policy trajectories Dk and the current dual variable λ(k)

6: Update the dual variable with dual gradient ascent: λ(k+1)
i =

[
λ

(k)
i +βk

(
Ci(πk)− di

)]+
,∀i

7: if k = Kadj then
8: Compute the off-policy trained λOFF with the replay bufferR (e.g., using the primal-dual

DDPG in the supplementary material)
9: Set λ(k+1) = λOFF

10: end if
11: end for
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Figure 1: Performance comparison among APDO, PDO and CPO.

safety constraint during the first 150 epochs due to its slow convergence. Using a larger step size
may help speed up the convergence but in this case PDO will over-correct in response to constraint
violations and behave too conservatively. We provide additional discussions on the choice of stepsize
for PDO and APDO in the supplementary material.

Figure 1(c) illustrates the learning trajectory of the dual variable under PDO and APDO (note that the
dual variable for CPO is not illustrated since CPO has a sophisticated recovery scheme to enforce
constraints, where the dual variable may not be easily obtained). We find that APDO converges to the
optimal dual variable λ∗ significantly faster than PDO. In particular, there is a “jump" of the dual
variable after several epochs in APDO, due to the dual adjustment with the off-policy trained λOFF.
By comparison, PDO has to adjust its dual variable incrementally with on-policy data.

5 Future Work

Since the adjustment epoch is an important parameter in APDO, one important future work is to
provide theoretical guidance on the setting of Kadj. It is also very interesting (yet challenging) to
provide theoretical justifications about the acceleration effects of APDO. Moreover, as we observed
in the experiments, the training trajectory generated by APDO strives for the best tradeoff between
improving rewards and enforcing cost constraints. One future work is to incorporate a safety parameter
that controls the degree of safety awareness. By tuning the parameter, the RL algorithm should be
able to make both risk-averse actions (which enforce safety constraints as soon as possible) and
risk-neutral actions (which gives priority to improving rewards).
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Supplementary Materials

A Primal-Dual DDPG for CMDPs

In this appendix, we provide a primal-dual version of the DDPG algorithm for solving CMDPs. The
primal policy update and the dual variable update in this algorithm only use the off-policy data stored
in the replay buffer, which can be used to fit λOFF for our APDO algorithm. For simplicity, we only
present the algorithm for CMDPs with a single constraint, and the multiple-constraint case can be
easily obtained. In the primal-dual DDPG algorithm, we have the following neural networks.

• Reward critic Q-network QR(s, a|θQR) and reward target Q-network Q′R(s, a|θQ
′

R )

• Cost critic Q-network QC(s, a|θQC ) and cost target Q-network Q′C(s, a|θQ
′

C )

• Actor policy network µ(s|θµ) and actor target Q-network µ′(s|θµ′
)

The target networks are used to slowly track the learned networks.

Algorithm 2 Primal-Dual DDPG

1: Randomly initialize reward critic Q-network QR(s, a|θQR), cost critic Q-network QC(s, a|θQC )
and actor network µ(s|θµ)

2: Initialize target networks: θQ
′

R ← θQR , θQ
′

C ← θQC , θµ
′ ← θµ

3: Initialize replay bufferR and dual variable λ
4: for episode k = 0, 1, · · · , do
5: Initialize a random process N for action exploration
6: Receive initial state s0 ∼ p0

7: for t = 1, · · · , T do
8: Select action at = µ(st|θµ) +Nt
9: Execute action at and observe rt, ct, st+1

10: Store transition (st, at, rt, ct, st+1) in the replay bufferR
11: Sample a random batch of N transitions {(si, ai, ri, ci, si+1)}Ni=1 from the replay bufferR
12: Set yi = ri + γQ′R(si+1, µ

′(si+1|θµ
′
)|θQ

′

R )), zi = ci + γQ′C(si+1, µ
′(si+1|θµ

′
)|θQ

′

C ))

13: Update reward critic by minimizing LR = 1
N

∑
i(yi − QR(si, ai|θQR))2 and update cost

critic by minimizing LC = 1
N

∑
i(zi −QC(si, ai|θQC ))2

14: Update the actor policy using the sampled policy gradient

∇θµL(θµ, λ) =
1

N

∑
i

∇θµ
(
QR(s, µ(s|θµ)|θQR)− λQC(s, µ(s|θµ)|θQC )

)∣∣∣
s=si

15: Update dual variable using the sampled dual gradient

∇λL(θµ, λ) =
1

N

∑
i

[
QC(si, µ(si|θµ))− d

]
16: Update target networks:

θQ
′

R ← τθQR + (1− τ)θQ
′

R

θQ
′

C ← τθQC + (1− τ)θQ
′

C

θµ
′
← τθµ + (1− τ)θµ

′

17: end for
18: end for
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B Experiment Details

Task description. Specifically, a point mass receives a reward of 10 for collecting an apple, and a
cost of 1 for collecting a bomb. The agent is constrained to incur no more than 0.2 cost in the long
term. Two apples and eight bombs spawn on the map at the start of each episode.

Parameters for primal policy update. For all experiments, we use neural network policies with two
hidden layers of sizes (64, 32) with tanh non-linearity, and all of the schemes (PDO, CPO, APDO)
use TRPO to update the primal policy, with a batch size 50000 and a KL-divergence step size of
0.01. The discount factor is 0.995 and the rollout length is 15. We use GAE-λ [19] for estimating the
regular advantages with λGAE = 0.95.

Parameters for dual variable update. As for dual updates, PDO and APDO both use dual gradient
ascent. Note that the step size for dual gradient ascent is important in PDO: if it is set to be too small,
the dual variable won’t update quickly enough to meaningfully enforce the constraint; if it is too high,
the algorithm will over-correct in response to constraint violations and behave too conservatively [8]
As a result, picking a proper step size is critical and difficult in PDO. We experiment with different
step sizes {0.01, 0.05, 0.1, 0.5} and find that 0.1 works best for PDO, and the reported results of PDO
are also under the step size 0.1. By comparison, selecting step size in APDO is much easier since the
one-time off-policy dual adjustment directly boosts the dual variable to a "nearly optimal" point and
we only need to choose a relatively small step size in order to do fine-tuning after the adjustment.
For the reported experimental results, we also set the step size to be 0.1 for APDO for the fairness of
comparison. As for CPO, we adopt the same set of parameters as in original CPO paper [8] (specially,
the parameters used in the point-gather task).

Parameters for training λOFF. We use primal-dual DDPG to train λOFF. The reward critic network
QR(s, a|θQR) and cost critic network QC(s, a|θQC ) ) is parametrized by a neural network with two
hidden layers of sizes (100, 100) with tanh nonlinearity, respectively. The actor policy network
µ(s|θµ) is represented by a neural network with two hidden layers of sizes (64, 32) with tanh
nonlinearity. The learning rates for the reward/cost critic Q-network and the actor policy network
are all 10−3 and these networks are updated with Adam [20]. The update for the dual variable in
primal-dual DDPG employs simple dual gradient ascent and the step size for updating the dual
variable in the primal-dual DDPG is set to be 10−2. The mini-batch size is N = 64. We also use
a soft target networks with τ = 0.001. The off-policy training is executed for 5× 105 primal-dual
iterations. Since off-policy algorithms like DDPG are usually unstable, we set λOFF to be the average
of all historical dual variables throughout the off-policy training trajectory. The max replay buffer
size is 106.

Effect of Kadj. Figure 2 shows the effect of adjustment epoch Kadj on the performance of APDO,
where we experiment with Kadj ∈ {1, 5, 10}. It is observed that using a smaller Kadj avoids slow
incremental dual update earlier, but due to limited amount of available samples in the replay buffer
the off-policy dual estimate λOFF could be highly biased and inaccurate. On the other hand, using a
larger Kadj provides a more accurate dual estimate at the expense of delayed adjustment.
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Figure 2: Effect of adjustment epoch Kadj.
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