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Abstract—A coflow is a collection of parallel flows belonging
to the same job. It has the all-or-nothing property: a coflow is
not complete until the completion of all its constituent flows.
In this paper, we focus on optimizing coflow-level delay, i.e.,
the time to complete all the flows in a coflow, in the context
of an N × N input-queued switch. In particular, we develop
a throughput-optimal scheduling policy that achieves the best
scaling of coflow-level delay as N → ∞. We first derive
lower bounds on the coflow-level delay that can be achieved
by any scheduling policy. It is observed that these lower bounds
critically depend on the variability of flow sizes. Then we analyze
the coflow-level performance of some existing coflow-agnostic
scheduling policies and show that none of them achieves provably
optimal performance with respect to coflow-level delay. Finally,
we propose the Coflow-Aware Batching (CAB) policy which
achieves the optimal scaling of coflow-level delay under some
mild assumptions.

I. INTRODUCTION

Modern cluster computing frameworks, such as MapReduce
[1] and Spark [2], have been widely used in large-scale data
processing and analytics. Despite the differences among these
frameworks, they share a common feature: the computation
is divided into multiple stages and a collection of parallel
data flows need to be transferred between groups of machines
in successive computation stages. Often the next computation
stage cannot start until the completion of all of these flow
transfers. For example, during the shuffle phase in MapReduce,
any reducer node cannot start the next reduce phase until it
receives intermediate results from all of the mapper nodes.
As a result, the response time of the entire computing job
critically depends on the completion time of these intermediate
flows. In some applications, these intermediate flow transfers
can account for more than 50% of job completion time [3].

The recently proposed coflow abstraction [4] represents such
a collection of parallel data flows between two successive
computation stages of a job, which exposes application-level
requirements to the network. It builds upon the all-or-nothing
property observed in many applications [6]: a coflow is not
complete until the completion of all its constituent flows. As
a result, one of the most important metrics in this context
is coflow-level delay (also referred to as coflow completion
time in some literature [5]–[7]), i.e., the time to complete all
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of the flows in a coflow. To improve the overall response
time of a job, it is crucial to schedule flow transfers in a
way that the coflow-level delay can be reduced. Unfortunately,
researchers have largely overlooked such application-level
requirements and there has been little work on coflow-level
delay optimization.

In this paper, we study coflow-level delay in the context of
an N×N input-queued switch with stochastic coflow arrivals.
In each slot, a random number of coflows, each of them
consisting of multiple parallel flows, arrive to the input-queued
switch where each input/output port can process at most one
packet per slot. Such an input-queued switch model is a simple
yet practical abstraction for data centers with full bisection
bandwidth, where N represents the number of servers. Due
to the large scale of modern data centers, we are motivated
to study the scaling of coflow-level delay as N → ∞. In
particular, we are interested in the optimal scaling of coflow-
level delay, i.e., the scaling under an “optimal” scheduling
policy1. As far as we know, this is the first paper to present
coflow-level delay analysis in a large-scale stochastic system.

The contributions of this paper are summarized as follows.
• We derive lower bounds on the expected coflow-level delay

that can be achieved by any scheduling policy in an N ×N
input-queued switch. These lower bounds critically depend
on the variability of flow sizes. In particular, it is shown
that if flow sizes are light-tailed, no scheduling policy can
achieve an average coflow-level delay better than O(logN).

• We analyze the coflow-level performance of several coflow-
agnostic scheduling policies, where coflow-level information
is not leveraged. It is shown that none of these scheduling
policies achieves a provably optimal scaling of coflow-level
delay. For example, the expected coflow-level delay achieved
by randomized scheduling is O(N logN) if coflow sizes are
light-tailed, far above the O(logN) lower bound.

• We show that O(logN) is the optimal scaling of average
coflow-level delay when flow sizes are light-tailed and
coflow arrivals are Poisson. This optimal scaling is achiev-
able with our Coflow-Aware Batching (CAB) policy.
The organization of this paper is as follows. We first review

related work in Section II. The system model is introduced in

1An “optimal” policy should be throughput-optimal, i.e., stabilize the
system whenever the load ρ < 1, and should achieve the minimum coflow-
level delay among all throughput-optimal policies.
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Section III. In Section IV, we demonstrate fundamental lower
bounds on the expected coflow-level delay that can be achieved
by any scheduling policy. In Section V, we analyze the coflow-
level performance of some coflow-agnostic scheduling poli-
cies. In Section VI, we propose the Coflow-Aware Batching
(CAB) policy and show that it achieves the optimal coflow-
level delay scaling under some conditions. Finally, simulation
results and conclusions are given in Sections VII and VIII,
respectively.

II. RELATED WORK

We start with a brief literature review on coflow-level
optimization and delay scaling in input-queued switches.
Coflow-level Optimization. The notion of coflows was first
proposed by Chowdhy and Stoica [4] to convey job-specific
requirements such as minimizing coflow-level delay or meet-
ing some job completion deadline. Unfortunately, coflow-level
optimization is often computationally intractable. For example,
it was shown in [5] that minimizing the average coflow-level
delay is NP-hard. As a result, many heuristic scheduling prin-
ciples were developed to improve coflow-level delay. In [8], a
decentralized coflow scheduling framework was proposed to
give priority to coflows according to a variation of the FIFO
principle, which performs well for light-tailed flow sizes. In
[5], the Varys scheme improves the performance of [8] by
leveraging more sophisticated heuristics such as “smallest-
bottleneck-first” and “smallest-total-size-first”, where global
information about coflows is required. The D-CAS scheme in
[10] exploits a similar “shortest-remaining-time-first” principle
for coflow scheduling. The Aalo framework [6] generalizes the
classic least-attained service (LAS) discipline [9] to coflow
scheduling; such a scheme does not require prior knowledge
about coflows. Zhong et al. [11] develop an approximation
algorithm to minimize the average coflow-level delay in data
centers. Additionally, Chen et al. [7] jointly consider coflow
routing and scheduling in data centers. Despite these efforts
towards coflow-level optimization, most prior works do not
provide any analytical performance guarantee, and there is a
lack of fundamental understanding of coflow-level scheduling,
especially in the context of large-scale stochastic systems.
Optimal Delay Scaling in Input-Queued Switches. The
optimal (packet-level) delay scaling in input-queued switches
(i.e., the delay scaling under an optimal scheduling policy) has
been an important area of research for more than a decade. The
randomized scheduling policy [19] (based on Birkhoff-Von
Neumann decomposition) achieves an average packet delay of
O(N). The well-known Max-Weight Matching (MWM) [20]
policy and various approximate MWM algorithms [13], [21]
are shown to have an average packet delay no greater than
O(N), although it is conjectured that this bound is not tight
for a wide range of traffic patterns [21]. Recently, Maguluri et
al. [14], [15] show that MWM can achieve the optimal O(1)
packet-level delay in the heavy-traffic regime. Neely et al. [18]
propose a batching scheme that achieves an average packet
delay of O(logN); this is the best known result for packet-
level delay scaling as N →∞ under general traffic conditions.
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Fig. 1. A 2× 2 input-queued switch with two coflow arrivals.

Zhong et al. [12] consider the joint scaling of queue length as
N →∞ and ρ→ 1. They propose a policy that gives an upper
bound of O(1/(1−ρ)+N2); this joint scaling is shown to be
“optimal” in the heavy-traffic regime where ρ = 1 − O( 1

N2 ).
However, to the best of our knowledge, the optimal scaling
of packet-level delay under a general traffic condition is still
an open problem in input-queued switches. By comparison,
the optimal scaling of coflow-level delay, which is an upper
bound for packet-level delay, has not been studied before. In
this paper, we make the first attempt in deriving the optimal
coflow-level delay scaling as N →∞.

III. SYSTEM MODEL

A. Network Model

We consider an N ×N input-queued switch with N input
ports and N output ports. The system operates in slotted time,
and the slot length is normalized to one unit of time. In each
slot, each input can transfer at most one packet and each output
can receive at most one packet (this is referred to as “crossbar
constraints”). Such an input-queued switch model is simple
yet very useful in modeling many practical networked systems.
For example, data centers with full bisection bandwidth can be
abstracted out as a giant input-queued switch interconnecting
different machines. Note that each input port may have packets
destined for different output ports, which can be represented
as Virtual Output Queues (VOQ). There are a total of N2

virtual output queues, indexed by (i, j) for i, j ∈ [N ], where
[N ] , {1, · · · , N} and queue (i, j) holds packets from input
i to output j. Figure 1 shows a 2×2 input-queued switch with
four virtual output queues.

The schedule of packet transmissions in slot t can be
represented by an N × N matrix S(t) = (Sij(t)) where
Sij(t) = 1 if the connection between input i and output j
is activated. A feasible schedule S(t) is one that satisfies the
crossbar constraints, i.e., S(t) must be a binary matrix where
there is at most one “1” in each row and each column.

B. Coflow Abstraction

A coflow is a collection of parallel data flows belonging
to the same job. It has the all-or-nothing property: a coflow
is not complete until the completion of all its constituent
flows. Coflows are a useful abstraction for many communi-
cation patterns in data-intensive computing applications such
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as MapReduce (see [4] for applications of coflows). Note that
the traditional point-to-point communication is a special case
of coflows (i.e., a coflow with a single flow).

Formally, we represent each coflow by a random traffic
matrix X = (Xij) where Xij is the number of packets in
this coflow that need to be transmitted from input i to output
j. Note that each coflow may contain many small flows from
input i to output j, that are aggregated into a single batch
Xij for ease of exposition. In the following, Xij will be
referred to as the “batch size” or “flow size” from input
i to output j. We assume that all the packets in a coflow
are released simultaneously upon the arrival of this coflow.
Figure 1 illustrates two coflow arrivals whose traffic matrices

are X1 =

[
1 2
0 1

]
and X2 =

[
2 1
1 2

]
. Let E[Xij ] = βij

and assume that coflows arrive to the system with rate λ.
Then the arrivals of packets to queue (i, j) is a batch arrival
process with rate λ and mean batch size βij . Also define
β , max

(
maxi

∑
j βij ,maxj

∑
i βij

)
. In our analysis, we

also make the following assumptions:
(1) The arrival times and the batch sizes of different coflows

are independent.
(2) Xij’s are independent random variables.
(3) If the n-th moment of Xij is finite, we assume

E[(
∑
j Xij)

n] = O(1) for all i ∈ [N ] and
E[(
∑
iXij)

n] = O(1) for all j ∈ [N ] as N →∞.
(4) The sub-critical condition holds: ρ = λβ < 1.

In this paper, we focus on optimizing coflow-level delay, i.e.,
the time between the arrival of a coflow until all the packets
associated with this coflow are transmitted. In particular, we
are interested in the scaling of coflow-level delay in a large-
scale system, as N →∞. Our objective is to find a scheduling
policy that achieves the best dependence of coflow-level delay
on N while stabilizing the system whenever ρ < 1.

IV. LOWER BOUNDS ON COFLOW-LEVEL DELAY

Before we investigate any specific scheduling policy, it is
useful to study the fundamental scaling properties of coflow-
level delay as N → ∞. In this section, we develop lower
bounds on coflow-level delay in input-queued switches. These
lower bounds serve as the baselines when we evaluate the
coflow-level performance of a scheduling policy. We first
introduce the notion of clearance time.

Definition 1 (Clearance Time). The clearance time of a coflow
X = (Xij) is

τ(X) = max
(

max
i

∑
j

Xij ,max
j

∑
i

Xij

)
. (1)

Clearly, τ(X) is the maximum number of packets in a row or
a column of X. Since each input/output port can process at
most one packet per slot, the minimum time to clear all the
packets in X must be no smaller than τ(X). In fact, X can be
cleared in exactly τ(X) slots by using the optimal clearance
algorithm described in [16]. As a result, τ(X) is the minimum
time needed to transmit all the packets in a coflow X. In the

rest of this section, we investigate the scaling of clearance time
as N →∞ and its relationship to coflow-level delay.

Depending on the distributions of Xij’s (the flow sizes), the
scaling of clearance time exhibits different behaviors. First, we
consider the general case where the flow size distribution is
arbitrary (as long as E[Xij ] <∞ for all i, j ∈ [N ]).

Lemma 1. For a coflow X = (Xij) with E[Xij ] < ∞, the
expected clearance time is E[τ(X)] = O(N). Moreover, there
exist distributions of Xij’s such that E[τ(X)] = Ω(N

1
1+ε ) for

any ε > 0.

Proof. The O(N) upper bound is nearly trivial. It is clear
that E[τ(X)] ≤ E[

∑
i,j Xij ] ≤ Nβ = O(N). To prove the

lower bound, we find some distributions of Xij’s such that
E[τ(X)] = Ω(N

1
1+ε ) for any ε > 0. Consider the scenario

where X is a diagonal matrix: Xij = 0 with probability 1
for i 6= j and Xii has the power law for all i ∈ [N ], i.e.,
P[Xii ≥ k] = 1/k1+ε, k = 1, 2, · · · , where ε > 0. Note that
E[Xii] = 1+ε

ε but it can be easily scaled or shifted to have
an arbitrary expectation. Under such flow size distributions,
it can be proved that E[τ(X)] = Ω(N

1
1+ε ) as N → ∞. The

detailed proof can be found in the technical report [27].

If Xij also has a finite variance, we can obtain a better
scaling behavior of clearance time as N →∞. In this case, we
assume Var(

∑
j Xij) ≤ σ2 for all i ∈ [N ] and Var(

∑
iXij) ≤

σ2 for all j ∈ [N ], where σ2 is a constant independent of N .

Lemma 2. For a coflow X = (Xij) with Var(Xij) < ∞
for all i, j ∈ [N ], the expected clearance time is E[τ(X)] =
O(
√
N). Moreover, there exist distributions of Xij’s such that

E[τ(X)] = Ω(N
1

2+ε ) for any ε > 0.

Proof. Devroye [22] shows that if Y1, · · · , Yn are (possibly
dependent) random variables with finite means and finite vari-
ances, then E[maxi Yi] ≤ maxi E[Yi] +

√
nmaxi

√
Var(Yi).

If Var(Xij) <∞ for all i, j ∈ [N ], it follows that

E[max
i

∑
j

Xij ] ≤ max
i

E[
∑
j

Xij ] +
√
N max

i

√
Var(

∑
j

Xij)

≤ β +
√
Nσ.

Similarly, it can be shown that E[maxj
∑
iXij ] ≤ β +√

Nσ. As a result, we have E[τ(X)] ≤ E[maxi
∑
j Xij ] +

E[maxj
∑
iXij ] ≤ 2β + 2

√
Nσ. Consequently, E[τ(X)] =

O(
√
N). The Ω(N

1
2+ε ) lower bound can be proved in a similar

way to Lemma 1 with the power being 2 + ε instead of 1 + ε
such that the variance is finite.

Furthermore, if Xij’s have light-tailed2 distributions, the
scaling of clearance time is logarithmic.

Lemma 3. For a coflow X = (Xij) with light-tailed Xij’s, the
expected clearance time is E[τ(X)] = O(logN). Moreover,
there exist distributions of Xij’s such that this bound is tight.

2In this paper, a light-tailed distribution is the one with a finite Moment
Generating Function in the neighborhood of 0. In other words, it has an
exponentially decreasing tail.
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TABLE I
LOWER BOUNDS ON COFLOW-LEVEL DELAY

Condition Coflow-level Delay
E[Xij ] <∞ Ω(N

1
1+ε ) for any ε > 0

Var(Xij) <∞ Ω(N
1

2+ε ) for any ε > 0
Xij’s are light-tailed Ω(logN)
Xij’s are deterministic Ω(1)

Proof. (Sketch) Since Xij’s are light-tailed, we can use Cher-
noff bound to prove that

∑N
i=1Xij or

∑N
j=1Xij is stochas-

tically dominated by some (shifted) exponential random vari-
ables. It is well-known that the expectation of the maximum of
N independent exponential random variables is O(logN) as
N →∞. Thus, the expected clearance time, as defined in (1),
is also O(logN). The tightness of this bound can be proved
by finding a distribution of Xij that has an exact exponential
decaying tail, such as the geometric distribution. The detailed
proof can be found in the technical report [27].

Finally, if Xij’s are deterministic, it is clear that E[τ(X)] ≤
β = Θ(1). Since clearance time is the minimum time to
transmit all the packets in a coflow, it is a natural lower bound
on coflow-level delay (which is the time between the arrival
of a coflow until all the packets associated with this coflow
are transmitted). Consequently, the above results essentially
impose fundamental limits on the coflow-level delay that can
be achieved by any scheduling policy.

Theorem 1. The expected coflow-level delay achieved by any
scheduling policy cannot be better than O(g(N)), where
(1) g(N) = N

1
1+ε for any ε > 0 if E[Xij ] <∞;

(2) g(N) = N
1

2+ε for any ε > 0 if Var(Xij) <∞;
(3) g(N) = logN if Xij’s have light-tailed distributions;
(4) g(N) = 1 if Xij’s are deterministic.

The scaling properties of expected coflow-level delay are
summarized in Table I. It can be observed that the lower bound
on coflow-level delay critically depends on the variability of
Xij’s: the less Xij’s vary, the smaller lower bound on coflow-
level delay we can obtain.

In the rest of this paper, we mainly focus on the case where
Xij’s have light-tailed distributions unless otherwise stated.
The heavy-tailed case is left for future work.

V. COFLOW-AGNOSTIC SCHEDULING

To gain further insights into the design of coflow-level
scheduling policies, we study the performance of some coflow-
agnostic scheduling policies where coflow-level information
(e.g., which packets/flows belong to the same coflow) is not
leveraged. In particular, we study the coflow-level performance
of two simple scheduling policies: randomized scheduling and
periodic scheduling.
Randomized Scheduling. Let M1, · · · ,MN ! be the N ! perfect
matchings (permutation matrices) associated with the N ×N
switch. With the Birkhoff-Von Neumann decomposition, we
can find probabilities {p1, p2, · · · , pN !} such that the matrix

(λβij) ≤
∑N !
k=1 pkMk (where βij = E[Xij ]). Such a decom-

position is always feasible since (λβij) is sub-stochastic by
Assumption (4) in Section III-B. In each slot, the randomized
policy uses matching Mk as the schedule, with probability
pk. Under uniform traffic, a simple way to implement the
randomized policy is to connect the N input ports with a
random permutation of the N output ports. Such a policy
is guaranteed to stabilize the network as long as ρ < 1
although λ and (βij) need to be known in advance. The
detailed description of this policy can be found in [19] and
it can be easily shown that the randomized policy achieves
O(N) average packet-level delay [18].
Periodic Scheduling. This policy is similar to randomized
scheduling except that the scheduling decisions are determin-
istic. Specifically, for some (sufficiently long) period T , we
use matching Mk for exactly pkT times every T slots. Under
uniform traffic, a simple way to implement periodic scheduling
is to connect each input port i to output port [(i+t) mod N ]+1
in slot t. This policy also achieves O(N) average packet-level
delay whenever ρ < 1 [18].

Now we analyze the coflow-level delay achieved by the
above two policies. In contrast to the simple analysis of packet-
level delay, it is non-trivial to analyze the coflow-level delay
achieved by these policies, due to the correlation between
packets (e.g., packets belonging to the same coflow arrive
simultaneously). For ease of exposition, we assume that traffic
is uniform such that E[Xij ] = β

N and Var(Xij) = σ2

N for all
i, j ∈ [N ]. We also assume that coflow arrivals are Poisson.
The analysis can be easily extended to the general case.

Theorem 2. Suppose Xij’s have light-tailed distributions. The
expected coflow-level delay achieved by the randomized or
periodic scheduling policy is O(N logN) whenever ρ < 1.

Proof. (Sketch) For a certain coflow X, denote by Wi the
time to transfer all its packets arriving to input i. Under this
notion, the expected coflow-level delay is E[maxiWi]. First,
it can be shown that E[Wi] = O(N) and that Wi has a
light-tailed distribution by classical queuing theory. Ideally, if
we can further prove that Wi’s are also independent random
variables, then the expected coflow-level delay E[maxiWi]
is O(N logN) as N → ∞ by following a similar line of
argument in Lemma 3. Unfortunately, due to the simultaneous
arrival of all the packets/flows in the same coflow and the
potential interleaving introduced by the scheduling policy,
Wi’s are correlated. To remedy this situation, we instead
prove that Wi’s are associated random variables [25]. An
important property of associated random variables is that
E[maxiWi] ≤ E[maxiW

′
i ] where W ′i ’s are independent

random variables identically distributed as Wi’s. As a re-
sult, we can conclude that the expected coflow-level delay
E[maxiWi] ≤ E[maxiW

′
i ] = O(N logN). The detailed

proof is presented in the technical report [27].

Remark. Comparing with the O(N) packet-level delay, we
can observe a coflow-level delay “dilation” factor of O(logN).
Intuitively, the delay dilation is due to the additional “assembly
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delay”: packets processed earlier must wait for packets (in the
same coflow) that are processed later.

Finally, it is worth mentioning that the randomized or
periodic scheduling policy is the simplest throughput-optimal
policy in input-queued switches, but it sheds light on the non-
triviality of coflow-level analysis (e.g., the correlation between
packets) and the potential weakness of coflow-agnostic algo-
rithms (as can be seen from the coflow-level delay dilation).
The coflow-level analysis of more sophisticated policies, such
as MaxWeight Matching (MWM) scheduling, are very chal-
lenging and left for future work. In fact, even the packet-level
delay of MWM is still an open problem [14], [15].

In conclusion, there has been no throughput-optimal
scheduling policy that achieves the provably optimal scaling
with respect to coflow-level delay. In the next section, we
propose a new coflow-aware scheduling policy that achieves
the optimal scaling of coflow-level delay while maintaining
throughput optimality and requiring no traffic statistics.

VI. COFLOW-AWARE SCHEDULING

In this section, we develop a coflow-aware scheduling policy
that achieves O(logN) expected coflow-level delay whenever
ρ < 1 under the assumption that arrivals of coflows are Poisson
and flow sizes Xij’s are light-tailed. The policy is called the
Coflow-Aware Batching (CAB) scheme. Note that in Section
IV, we showed that if Xij’s are light-tailed, no scheduling
policy can achieve an expected coflow-level delay better than
O(logN). As a result, the CAB policy attains the lower bound,
which implies that O(logN) is optimal scaling of coflow-level
delay (under Poisson arrivals and light-tailed flow sizes).

A. Coflow-Aware Batching (CAB) Policy

The basic idea of the CAB policy is to group timeslots into
frames of size T slots and clear coflows in batches, where
one batch of coflows correspond to the collection of coflows
arriving in the same frame. Coflows that are not cleared
during a frame are handled separately in future frames. By
properly setting the frame size T , the CAB policy can achieve
the desirable O(logN) average coflow-level delay. Note that
Neely et al. [18] proposed a similar batching scheme to reduce
packet-level delay. By comparison, our CAB policy explicitly
leverages coflow-level information (e.g., which packets be-
long to the same coflow) to reduce coflow-level delay. More
importantly, as mentioned in Section V, coflow-level delay
analysis is fundamentally different from packet-level analysis.
The detailed description of the CAB policy is as follows.

Coflow-Aware Batching (CAB) Scheduling Policy

Setup.
• Timeslots are grouped into frames of size T slots.
Notations.
• Denote by L(k) =

(
Lij(k)

)
the aggregate traffic matrix

of all the coflows arriving in the k-th frame, where Lij(k)
is the total number of packets from input i to output j
that arrive during the k-th frame.

Procedures.
(1) In the (k + 1)-th frame, we try to clear the coflows that

arrived in the k-th frame, i.e., L(k). Let B(k + 1) be
the traffic matrix we choose to clear in the (k + 1)-th
frame (which may be less than L(k)), and denote by τ
the clearance time of L(k). If τ ≤ T − 1, then L(k) can
be cleared within the first T − 1 slots in the (k + 1)-th
frame. In this case, we just set B(k + 1) = L(k). Note
that we only use the first T − 1 slots in a frame while the
remaining slot is reserved for clearing “overflow” coflows
as discussed below. If τ > T − 1, then overflow occurs
and only a subset of L(k) can be cleared in the (k+ 1)-th
frame. In this case, we sequentially add coflows to B(k+1)
in order of their arrival in the k-th frame until B(k + 1)
becomes maximal, i.e., adding any other coflow will make
the clearance time of B(k + 1) exceed T − 1. If a coflow
is selected to B(k + 1), it is referred to as a conforming
coflow otherwise it is called a non-conforming coflow.

(2) All the conforming coflows that arrive in the k-th frame are
scheduled during the (k+1)-th frame by clearing B(k+1)
in minimum time using an optimal clearance algorithm
(e.g., see [16]).

(3) All the non-conforming coflows are put into a separate
FIFO queue. In the last slot of each frame, this FIFO
queue gets served by the switch. Note that non-conforming
coflows are served one at a time, and the service time (mea-
sured in the number of frames) of each non-conforming
coflow is its clearance time.

In words, the first T − 1 slots in a frame are used to serve
conforming coflows arriving in the previous frame and the
remaining slot is reserved to serve non-conforming coflows in
a FIFO manner. Note that conforming coflows (that arrive in
the same frame) are cleared together in a batch while non-
conforming coflows are served one at a time in the separate
FIFO queue. Under the CAB policy, either all the packets in
a coflow are conforming or none of them are conforming.

B. Performance of the CAB policy

The following theorem shows that the CAB policy achieves
O(logN) expected coflow-level delay whenever ρ < 1 (under
Poisson coflow arrivals and light-tailed flow sizes).

Theorem 3 (Average Coflow-level Delay). Suppose coflows
arrive according to a Poisson process and flow sizes are light-
tailed. By selecting a proper frame size T = O(logN), the
CAB policy achieves O(logN) expected coflow-level delay if
ρ < 1.

The choice of T will be specified later in Section VI-C. In
fact, the CAB policy not only guarantees that the average
coflow-level delay is O(logN) but also ensures that the
O(logN) delay is achievable for an arbitrary coflow with high
probability.

Corollary 1 (Tail Coflow-level Delay). By selecting a proper
frame size T = O(logN), the CAB policy achieves O(logN)
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delay for an arbitrary coflow with probability 1 − O( 1
N2 )

whenever ρ < 1.

In the following, we present a proof sketch for the above
results while the detailed proof is given in the technical report
[27]. The proof itself suggests the choice of T .

C. Proof Sktech to Theorem 3 and Corollary 1

For simplicity, we assume that traffic is uniform such that
E[Xij ] = β

N and Var(Xij) = σ2

N for all i, j ∈ [N ]. The
analysis can be easily extended to non-uniform traffic.

We discuss the expected coflow-level delay experienced by
a conforming and a non-conforming coflow, respectively.
• Conforming coflows are cleared within 2 frames: the frame

where they arrive plus the frame where they are cleared. As
a result, the coflow-level delay experienced by a conforming
coflow is at most 2T time slots, i.e.,

Delay(conforming) ≤ 2T.

• A non-conforming coflow first waits for at most T slots (the
frame where it arrives) and then waits in the separate FIFO
queue. As a result, the coflow-level delay experienced by a
non-conforming coflow is

Delay(non-conforming) ≤ T + Delay(FIFO queue).

Let η be the long-term fraction of non-conforming coflows.
Then the average coflow-level delay of an arbitrary coflow is

E[W ] ≤ (1− η)2T + η[T + Delay(FIFO queue)]. (2)

In the following, we choose T = O(logN) (the specific value
of T will be made clear later). Under such a choice of T , we
prove that η is miniscule and Delay(FIFO queue) is not very
large. Thus, it can be concluded that E[W ] = O(logN).
Step 1: Determine the value of T .

We first show that the overflow probability decreases expo-
nentially with the frame size T .

Lemma 4. Let Po be the overflow probability in an arbitrary
frame. If ρ < 1, there exists some constant γ > 0 such that

Po ≤ 2N exp(−γT ). (3)

Proof. (Sketch) Note that an overflow occurs in the k-th frame
if the clearance time of L(k) is greater than T − 1 slots, i.e.,
if any of the following 2N inequalities is violated.∑

j

Lij(k) < T, i = 1, · · · , N,∑
i

Lij(k) < T, j = 1, · · · , N,
(4)

where Lij(k) is the number of packets that arrive to
queue (i, j) during the k-th frame. Clearly,

∑
j Lij(k) (or∑

i Lij(k)) is the total number of packets that arrive to input
i (or destined for output j) during the k-th frame, which
corresponds to the number of packet arrivals during T time
slots in a Poisson process with batch arrivals where the arrival
rate is λ and the mean batch size is β.

Let Y (T ) be the total number of packet arrivals during T
time slots in the above batch Poisson process. It is clear that
Y (T ) =

∑N(T )
n=1 Bn. Here, N(T ) is the number of coflow

arrivals during the T time slots, and has a Poisson distribution
with rate λT ; Bn is the number of packets brought by the n-th
coflow to a certain input or output port, which is identically
distributed as

∑
j Xij or

∑
iXij and E[Bn] = β. By Wald’s

equality, we have E[Y (T )] = E[N(T )]E[B1] = ρT < T if
ρ < 1. By the Chernoff bound, we can prove that there exists
some constant γ > 0 such that

P[Y (T ) ≥ T ] ≤ exp(−γT ). (5)

Applying the union bound, we can conclude that the overflow
probability (i.e., at least one of the 2N inequalities in (4)
is violated) is bounded by Po ≤ 2N exp(−γT ), which
completes the proof.

Remark 1. Lemma 4 implies that if we want to keep the
overflow probability below δ, we can choose T ≥ log(2N/δ)

γ ,
where γ > 0 is some constant independent of N . Since T is
an integer, we can choose

T = d log(2N/δ)

γ
e. (6)

The value of δ will be specified later such that T = O(logN)
and the average coflow-level delay is also O(logN). The
constant γ can also be found in a systematic way but omitted
here for brevity (see the technical report [27] for details).
Remark 2. Lemma 4 holds only if ρ < 1. If ρ ≥ 1, E[Y (T )] =
ρT ≥ T and the Chernoff bound (5) does not hold.
Step 2: Determine the value of η.

Next, we derive an upper bound for the long-term fraction
of non-conforming coflows, i.e.,

η = lim
K→∞

∑K
k=1Anon(k)∑K
k=1A(k)

,

where A(k) is the total number of coflows that arrive during
the k-th frame and Anon(k) is the number of non-conforming
coflows in the k-th frame. We begin by identifying a stochastic
bound for the number of coflow arrivals in an overflow frame.

Lemma 5. Suppose N(T ) is a Poisson random variable with
rate λT . Given that an overflow occurs in a frame, the number
of coflows arrivals in this frame is stochastically dominated
by N(T ) + T/β when T is sufficiently large.

Proof. (Sketch) Let N(T ) be the total number of coflow
arrivals in an arbitrary frame of T time slots. Clearly, N(T )
is a Poisson random variable with rate λT . Denote by
X(n) = (X

(n)
ij ) the traffic matrix of the n-th coflow, and

let L be the aggregate traffic matrix of these coflows, i.e.,
L =

∑N(T )
n=1 X(n). It is clear that an overflow occurs if the

clearance time of L is greater than T − 1, i.e., τ(L) ≥ T . We
first find a lower bound on the overflow probability when T
is sufficiently large.
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Claim 1. There exists some T0 > 0 such that for any T > T0
the overflow probability

P
[
τ(L) ≥ T

]
≥ P

[
N(T ) ≥ T/β

]
.

This claim can be proved by applying Central Limit Theorem.
Next we evaluate the probability that there are at least m

coflow arrivals in an overflow frame.

Claim 2. Given that an overflow occurs in a frame, the
probability that there are at least m coflow arrivals in this
frame is upper bounded by P[N(T ) ≥ m|N(T ) ≥ T/β] when
T is sufficiently large, i.e.,

P
[
N(T ) ≥ m

∣∣∣τ(L) ≥ T
]
≤ P

[
N(T ) ≥ m

∣∣∣N(T ) ≥ T/β
]
.

This claim can be easily proved by using Claim 1 and
elementary probability calculations.

Claim 3. If N(T ) is a Poisson random variable, then
P[N(T ) ≥ m+ r|N(T ) ≥ r] ≤ P[N(T ) ≥ m].

This claim was proved in Appendix B of [18].
The above claims imply that when T is sufficiently large

P
[
N(T ) ≥ m

∣∣∣τ(L) ≥ T
]
≤ P

[
N(T ) ≥ m

∣∣∣N(T ) ≥ T

β

]
≤ P

[
N(T ) ≥ m− T

β

]
= P

[
N(T ) +

T

β
≥ m

]
,

where the first inequality is due to Claim 2 and the second
inequality is due to Claim 3. The above inequalities imply
that given an overflow occurs in a frame, the number of coflow
arrivals in this frame is stochastically dominated by N(T )+T/
β when T is sufficiently large. This completes the proof of
Lemma 5.

With Lemma 5, we can find an upper bound for the long-
term fraction of non-conforming coflows.

Lemma 6. If the overflow probability is δ, the long-term
fraction of non-conforming coflows among all coflows is upper
bounded by η ≤ 2δ

ρ when the frame size T is sufficiently large.

Proof. According to Lemma 5, the expected number of non-
conforming coflows in an overflow frame is at most λT+T/β
(note that this is a loose bound since we treat all the coflows
in an overflow frame as non-conforming coflows). As a result,
the long-term fraction of non-conforming coflows is

lim
K→∞

∑K
k=1Anon(k)∑K

k=1A(k)
≤ lim

K→∞

δK(λT + T/β)

KλT
=
δ(λT + T/β)

λT
.

Note that the inequality holds because the number of overflow
frames is δK as K → ∞ and the average number of non-
conforming coflows in each overflow frame is at most λT+T/
β. Noticing that T ≥ 1 and ρ = λβ < 1, we have η ≤
δ(λT+T/β)

λT = δ(1 + T
ρT ) ≤ δ( 1

ρ + 1
ρ ) = 2δ

ρ , which completes
the proof.

Step 3: Determine delay in the separate FIFO queue.

The third step is to find an upper bound for the average delay
experienced by non-conforming coflows in the separate FIFO
queue. Note that Lemma 4 shows that whenever ρ < 1, the
overflow probability δ can be made arbitrarily small by setting
the frame size T as in (6). In particular, we can choose the
frame size to be T = d log(2N/δ)γ e = O(logN3) = O(logN)

to achieve the overflow probability δ = O( 1
N2 ). Under such a

choice of T , we can prove the following lemma.

Lemma 7. Under a proper choice of T , the FIFO queue
holding non-conforming coflows is stable whenever ρ < 1 and
the average delay experienced by non-conforming coflows in
the FIFO queue is O(NT 3).

Proof. (Sketch) Note that non-conforming coflows are placed
in a discrete-time FIFO queue and are served one at a time.
At the end of each frame, a batch of non-conforming coflows
arrives to this queue, with probability δ. Since non-conforming
coflows arrive to the FIFO queue in batches, the arrivals of
non-conforming coflows are dependent. To circumvent this
dependence, we notice that the arrivals of different batches
of non-conforming coflows are independent: in each frame,
there is a batch arrival with probability δ, independent of any
other frames. As a result, we overestimate the delay of any
individual non-conforming coflow by the delay experienced
by the entire batch of non-conforming coflows (i.e., the time
between the arrival of the entire batch and the completion of
all the non-conforming coflows in this batch) plus T slots (the
size of the frame in which the non-conforming coflows arrive).

As an overestimate, all the coflows that arrive in an overflow
frame are treated as non-conforming coflows. Let M be
the total number of non-conforming coflows in an overflow
frame, and denote by X̃(n) = (X̃

(n)
ij ) the traffic of the n-

th non-conforming coflow in this overflow frame. Let L̃ =∑M
n=1 X̃

(n) be the aggregate traffic matrix associated with
these non-conforming coflows. It follows that the service time
for the entire batch of non-conforming coflows is U = τ(L̃)
(measured in the number of frames since only one slot per
frame is used to serve non-conforming coflows). Clearly, the
service times for different batches of non-conforming coflows
are independent. As a result, if the entire batch of non-
conforming coflows is treated as a “customer”, the FIFO queue
is a discrete-time GI/GI/1 queue with Bernoulli arrivals (of rate
δ per frame) and general service time U . The average waiting
time (measured in the number of frames) in such a system can
be exactly characterized [26]:

Delay(FIFO queue) =
δE[U2]− δE[U ]

2(1− δE[U ])
+ E[U ]. (7)

It can be shown (see the technical report [27] for details) that

E[U ] = Θ(NT 2), E[U2] = Θ(N2T 4). (8)

Taking (8) into (7), we have

Delay(FIFO queue) ≤ O(T 4) +O(NT 2) = O(NT 2).
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Note that the above delay is measured in the number of frames,
which implies that the expected delay (measured in the number
of timeslots) in the FIFO queue is O(NT 3).

Finally, it is worth mentioning that the GI/GI/1 queue is
stable whenever δE[U ] < 1. Since δ = O( 1

N2 ) and E[U ] =
Θ(NT 2) = Θ(N log2N), such an inequality can be made to
hold true for any N ≥ 1 under a suitably small δ.

Remark. If ρ ≥ 1, then Lemma 4 does not hold and
the overflow probability δ cannot be made arbitrarily small
regardless of the choice of T . In this case, the FIFO queue
holding non-conforming coflows is unstable.

Step 4: Putting it all together.
Finally, we can evaluate the average coflow-level delay

experience by both conforming and non-conforming coflows.
By Lemma 6, the fraction of non-conforming coflows is at
most η ≤ 2δ

ρ . If ρ < 1, Lemma 4 shows that we can choose the
frame size to be T = d log(2N/δ)γ e = O(logN3) = O(logN)

to achieve the overflow probability δ = O( 1
N2 ). Under such

a choice of T , Lemma 7 shows that Delay(FIFO queue) =
O(NT 3). Taking the values of T , η and Delay(FIFO queue)
into (2), we can conclude that the average coflow-level delay
under the CAB policy is

E[W ] ≤ (1− 2δ

ρ
)2T +

2δ

ρ
[T + Delay(FIFO queue)]

≤ 2T +
2δ

ρ
Delay(FIFO queue)

= O(T ) +O(δNT 3) = O(T ) = O(logN).

(9)

This completes the proof to Theorem 3.
The above proof to Theorem 3 shows that the coflow-level

delay experienced by any conforming coflow is no greater
than 2T = O(logN) and the fraction of conforming coflows
is more than 1 − 2δ

ρ = 1 − O( 1
N2 ). As a result, the CAB

policy also ensures that the O(logN) delay is achievable for
an arbitrary coflow with high probability 1 − O( 1

N2 ), which
completes the proof to Corollary 1.

D. Discussions

Computational Complexity. The computational complexity
of the CAB policy can be analyzed in a similar way to the
original batching policy [18]. The computational complexity
is O(N1.5 logN) per slot.

Choosing Parameters. In the CAB policy, the frame size is
set to be T = d log(2N/δ)γ e. As a result, we need to choose the
parameters δ and γ. In the technical report [27], we present a
rigorous way in obtaining the value of δ and γ.

VII. SIMULATION RESULTS

In this section, we numerically evaluate the coflow-level
performance achieved by the CAB policy.

A. Simulation Setup

In our simulations, coflows arrive to the system according
to a Poisson process with rate λ = 0.3 (per slot). The flow
sizes (Xij’s) follow a geometric distribution with mean β

N
where β = 2.5 (measured in the number of packets). Hence,
the offered load is ρ = 0.75. The simulation is run for a
sufficiently long time (106 slots) such that the steady state
is reached. The frame size T is set as in equation (6) where
the parameters γ and δ can be obtained in a systematic way
described in the technical report [27].

B. Scaling with N →∞
First, we evaluate the scaling of coflow-level delay as N →

∞. The following schemes are compared:
(1) CAB policy.
(2) Randomized scheduling as described in Section V.
(3) Max-Weight Matching (MWM) scheduling: the schedule

in slot t is the maximum weight matching of Q(t) where
Q(t) = (Qij(t)) is the queue length matrix in slot t.

Figure 2 shows the comparison of these schemes with
respect to the average coflow-level delay, where the horizontal
axis is on a logarithmic scale. As the theoretical bound
suggests, the CAB policy achieves the logarithmic scaling as
N → ∞ (i.e., a straight line in the figure). By comparison,
the average coflow-level delay achieved by the randomized
scheme grows much faster with N . Moreover, it can be
observed that the CAB policy outperforms the randomized
scheme even for very small N (e.g., N = 40).

Another interesting observation is that the MWM policy has
an exceptional coflow-level performance. It is observed that
the MWM policy empirically achieves the optimal logarithmic
coflow-level delay scaling as N →∞. The MWM policy also
slightly outperforms the CAB policy by some constant factor.
Unfortunately, the coflow-level delay analysis of the MWM
policy is very challenging and left for future work.

C. Coflow-level Delay Dilation

Next, we compare the coflow-level delay with the packet-
level delay under the randomized policy and the CAB policy.
In particular, we are interested in the coflow-level delay
dilation factor which is the ratio between the average coflow-
level delay and the average packet-level delay. As is illus-
trated in Figure 3, the randomized policy has a coflow-level
delay dilation factor of O(logN); this observation empirically
validates the tightness of the O(N logN) bound shown in
Theorem 2 (note that the average packet delay achieved by the
randomized policy is exactly Θ(N)). By comparison, the delay
dilation factor for the CAB policy remains at a constant level
as N →∞, which shows the benefits of “coflow-awareness”.

D. Scaling with ρ→ 1

Finally, we numerically study the sensitivity of the coflow-
level performance under different scheduling policies as the
offered load ρ → 1. This is shown in Figure 4. Clearly, the
CAB policy is more sensitive to the offered load ρ than the
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Fig. 2. Average coflow-level delay under different
scheduling policies. Note that the horizontal axis
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Fig. 4. Scaling of average coflow-level delay as
ρ → 1 (N = 200). Note that the vertical axis is
in the log scale.

randomized policy. In the heavy-traffic regime, the randomized
policy even outperforms the CAB policy. Indeed, it is shown
in the technical report [27] that the average coflow-level delay
achieved by the randomized policy grows as O( 1

1−ρ ) as ρ→ 1.
By comparison, the CAB policy achieves O( 1

(1−ρ)2 ) average
coflow-level delay as ρ → 1. As a result, the price for the
better scaling with N is the worse dependence on ρ.

VIII. CONCLUSION

In this paper, we investigate the optimal scaling of coflow-
level delay in an N × N input-queued switch as N → ∞.
We develop lower bounds on the coflow-level delay that can
be achieved by any scheduling policy. In particular, when
flow sizes have light-tailed distributions, the lower bound
O(logN) can be attained by the proposed Coflow-Aware
Batching (CAB) policy. Thus, the optimal scaling of coflow-
level delay is O(logN) under light-tailed flow sizes.
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