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Abstract—We consider the problem of throughput-optimal
packet dissemination, in the presence of an arbitrary mix of
unicast, broadcast, multicast and anycast traffic, in a general
wireless network. We propose an online dynamic policy, called
Universal Max-Weight (UMW), which solves the above problem
efficiently. To the best of our knowledge, UMW is the first
throughput-optimal algorithm of such versatility in the context
of generalized network flow problems. Conceptually, the UMW
policy is derived by relaxing the precedence constraints associated
with multi-hop routing, and then solving a min-cost routing and
max-weight scheduling problem on a virtual network of queues.
When specialized to the unicast setting, the UMW policy yields a
throughput-optimal cycle-free routing and link scheduling policy.
This is in contrast to the well-known throughput-optimal Back-
Pressure (BP) policy which allows for packet cycling, resulting
in excessive delay. Extensive simulation results show that the
proposed policy incurs a substantially lower delay as compared
to the BP policy. The proof of throughput-optimality of the UMW
policy combines techniques from stochastic Lyapunov theory with
a sample path argument from adversarial queueing theory and
may be of independent theoretical interest.

I. INTRODUCTION

The Generalized Network Flow problem refers to efficient
transportation of messages, generated at source node(s), to a
set of designated destination node(s) over a multi-hop network.
Depending on the number of destination nodes associated with
each source node, the problem is known either as unicast
(single destination node), broadcast (all node are destination
nodes), multicast (some nodes are destination nodes) or any-
cast (several choices for a single destination node). Over the
last few decades, a tremendous amount of research effort has
been directed to address each of the above problems in dif-
ferent networking contexts. However, despite the increasingly
diverse mix of internet traffic, to the best of our knowledge,
there exists no universal solution to the general problem,
only isolated solutions that do not interoperate and are often
suboptimal. In this paper, we provide the first such universal
solution: A throughput optimal dynamic control policy for the
generalized network flow problem.

We start with a brief discussion of the above networking
problems and then survey the relevant literature.

In the Broadcast problem, packets generated at a source
need to be distributed among all nodes in the network. In the
classic paper of Edmonds [1], the broadcast capacity of a wired
network is derived and an algorithm is proposed to compute

This work was supported by the NSF Grants CNS-1217048 and CNS-
1524317.

978-1-5090-5336-0/17/$31.00 ©2017 |EEE

the set of maximum number of edge-disjoint spanning trees,
which together achieve the maximum broadcast throughput.
The resulting algorithm is combinatorial in nature and does
not have a wireless counterpart, with associated interference-
free edge activations. Following Edmonds’ work, a variety
of different broadcast algorithms have been proposed in the
literature, each one targeted to optimize different metrics,
such as, delay [2], energy consumption [3] and fault-tolerance
[4]. In the context of optimizing throughput, the paper [5]
proposes a randomized broadcast policy, which is optimal
for wired networks. However, extending this algorithm to the
wireless setting proves to be difficult [6]. In the paper [7], we
propose an optimal broadcast algorithm for a general wireless
network, albeit with exponential complexity. In addition to
this, in a recent series of papers [8] [9], we propose a simple
throughput-optimal broadcast algorithm for wireless networks
with an underlying DAG topology. However, this algorithm
does not extend to non-DAG networks.

The Multicast problem is a generalization of the broadcast
problem, in which the packets generated at a source node
needs to be efficiently distributed to a subset of nodes in the
network. In its combinatorial version, the multicast problem
reduces to finding the maximum number of edge-disjoint trees,
spanning the source node and destination nodes. This problem
is known as the Steiner Tree Packing problem, which is NP-
hard [10]. Numerous algorithms have been proposed in the
literature for solving the multicast problem. In [11] [12], back-
pressure type algorithms are proposed for multicasting over
wired and wireless networks respectively. These algorithms
forward packet over a set of pre-computed distribution trees
and are limited to the throughput obtainable by those trees.
Moreover, computing and maintaining these trees is imprac-
tical in large and time-varying networks. Note that, because
of packet duplications, the Multicast and Broadcast problems
do not satisfy standard flow conservation constraints, and thus
the design of throughput-optimal algorithms is non-trivial.

The Unicast problem involves a single source and a single
destination. The celebrated Back-Pressure (BP) algorithm [13]
was proposed for the unicast problem. In this algorithm,
the routing and scheduling decisions are taken based on
local queue length differences. As a result, BP explores all
possible paths for routing and usually takes a long time
for convergence, resulting in considerable queueing delay,
especially in lightly loaded networks. Subsequently, a number
of refinements have been proposed to improve the delay
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characteristics of the BP algorithm. In the paper [14], the BP
algorithm is combined with hop length based shortest path
routing for faster route discovery, and the paper [15] proposes
a second order algorithm to improve delay.

The Anycast problem involves routing from a single source
to any one of several feasible destinations. Anycast is in-
creasingly used in Content-Distribution Networks (CDN5) for
optimally distributing geo-replicated contents [16].

Our proposed solution uses a virtual network of queues
- one virtual queue per link in the network. We solve the
routing problem dynamically by using a “weighted-shortest-
route” computation on the virtual network and then using the
corresponding route on the physical network. Optimal link
scheduling is performed by a max-weight activation, also in
the virtual network, and then using the resulting activation
in the physical network. The overall algorithm is dynamic,
cycle-free, and solves the generalized routing and schedul-
ing problem optimally (i.e., maximally stable or throughput-
optimal). In addition to this, the proposed UMW policy offers
the following advantages:

1) Generalized Solution: Unlike the BP policy, which
solves only the unicast problem, the proposed UMW
policy efficiently addresses all of the aforementioned
network flow problems in both wired and wireless
networks in a very general setting.

2) Delay Reduction: Although the celebrated BP policy
is throughput-optimal, its average delay performance is
known to be poor due to the occurrence of packet-
cycling in the network [14] [17]. In our proposed UMW
policy, each packet traverses a dynamically selected
acyclic route, which drastically reduces the average
latency.

3) State-Complexity Reduction: Unlike the BP policy,
which maintains per-flow queues at each node, the
proposed UMW policy maintains only a virtual queue
counter and a priority-queue per link, irrespective of the
number and type of flows in the network. This reduces
the amount of overhead that needs to be maintained for
efficient operation.

4) Efficient Implementation: In the BP policy, routing
decisions are made hop-by-hop by the intermediate
nodes. This puts a considerable amount of computational
overhead on the individual nodes. In contrast, in the
proposed UMW policy, the entire route of a packet
is determined at its source (similar to dynamic source-
routing [18]). Hence, the entire computational require-
ment is transferred to the source, which often has higher
computational/energy resources than the nodes in the
rest of the network (e.g., wireless sensor networks).

The rest of the paper is organized as follows: In section II we
discuss the basic system model and formulate the problem. In
section III we give a brief overview of the proposed UMW
policy. In section IV we discuss the structure and dynamics
of the virtual queues, on which UMW is based. In section
V we prove its stability property in the multi-hop physical

network. In section VI we discuss implementation details. In
section VII we provide extensive simulation results, comparing
UMW with other competing algorithms. In section VIII we
conclude the paper with directions for further research. Due to
space limitations, the details of technical proofs of theorems
have been provided in the technical report [19].

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

We consider a wireless network with arbitrary topology,
represented by the graph G(V, E). The network consists of
|[V| = n nodes and |E| = m links. Time is slotted. A link,
if activated, can transmit one packet per slot. Due to wireless
interference constraints, only certain subsets of links may be
activated together at any slot. The set of all admissible link-
activations is known as the activation set, and is denoted by
M C 28, We do not impose any restriction on the structure
of the activation set M. As an example, in the case of
node-exclusive or primary interference constraints [20], the
activation set M pimary consists of the set of all matchings
[21] in the graph G(V, E). Wired networks are a special case
of the above model, where the activation set Myied = 2.
In other words, in wired networks, packets can be transmitted
over all links simultaneously.

B. Traffic Model

In this paper, we consider the Generalized Network Flow
problem, where incoming packets at a source node are to be
distributed among an arbitrary set of destination nodes in a
multi-hop fashion. Formally, the set of all distinct classes of
incoming traffic is denoted by C. A class c traffic is identified
by its source node s € V and the set of its required
destination nodes D(©) C V. As explained below, by varying
the structure of the destination set D(¢) of a class ¢, this
general framework yields the following four fundamental flow
problems as special cases:

o UNICAST: All class ¢ packets, arriving at a source
node s(°), are required to be delivered to a single
destination node D) = {¢(°)}.

e BROADCAST: All class ¢ packets, arriving at a
source node s(c), are required to be delivered to all
nodes in the network, i.e., D) =V,

e MULTICAST: All class ¢ packets, arriving at a
source node s(¢), are required to be delivered to a
proper subset of nodes D(©) = {') (%) +(9} ¢
V.

e ANYCAST: A Packet of class c, arriving at a source
node s, is required to be delivered to any one of
a given set of k nodes D = {9 @\ @ .. tl®.
Thus the anycast problem is similar to the unicast
problem, with all destinations forming a single
super destination-node.
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Arrivals are assumed to be i.i.d. at every slot, with A(°)(¢)
packets from class ¢ arriving at the source node s(¢) at slot ¢.
The mean rate of arrival for class ¢ is EA)(t) = \(¢). The
arrival rate vector is given by A = {\(®), ¢ € C}. Total number
of external packet arrivals to the entire network at any slot ¢
is assumed to be bounded by a finite number A, ;.

C. Policy-Space

An admissible policy 7 for the generalized network flow
problem executes the following two actions at every slot ¢:

o LINK ACTIVATIONS: Activating a subset of interference-
free links s(t) from the activation set M.

e PACKET DUPLICATIONS AND FORWARDING: Possibly
duplicating ! and forwarding packets over the activated
links. Due to the link capacity constraint, at most one
packet may be transmitted over an active link per slot.

The set of all admissible policies is denoted by II. The set II
is unconstrained otherwise and includes policies which may
use all past and future packet arrival information.

A policy 7 € II is said to support an arrival rate-vector X if,
under the action of the policy m, the destination nodes of any
class c receive distinct class ¢ packets at the rate A\(9), ¢ € C.
Formally, let R(°)(t) denote the number of distinct class-c
packets, received in common by all destination nodes i € D(¢),
under the action of the policy 7, up to time #2.

Definition 1. [Policy Supporting Rate-Vector A]: A policy m €
11 is said to support an arrival rate vector X if

R (t)

lim inf =\,
t—o00

Veel, w.p.l (1)

The network-layer capacity region A(G,C) 3 is defined to
be the set of all supportable rates, i.e.,

A(G,C) o {Ae R‘fl : 3m € II supporting A} (2)

Clearly, the set A(G,C) is convex (using the usual time-sharing
argument). A policy 7* € II, which supports any arrival rate
A in the interior of the capacity-region A(G,C), is called a
throughput-optimal policy.

D. Admissible Routes of Packets

We will design a throughput-optimal policy, which delivers
a packet p to any node in the network at most once.* This
immediately implies that the set of all admissible routes 7(¢)
for packets of any class ¢, in general, comprises of trees rooted
at the corresponding source node (). In particular, depending
on the type of class c traffic, the topology of the admissible
routes 7 () takes the following special forms:

'In order to transmit a packet over multiple downstream links (e.g. in
Broadcast or Multicast), the sender must duplicate the packet and send the
copies to the respective downstream link buffers.

2To be precise, any one of the destination nodes for Anycast.

3Note that, Network-layer capacity region is, in general (e.g. multicast),
different from the Information-Theoretic capacity region [22].

4This should be contrasted with the popular throughput-optimal unicast
policy Back-Pressure [13], which does not satisfy this constraint and may
deliver the same packet to a node multiple times, thus potentially degrading
its delay performance.

o UNICAST TRAFFIC: T(9 = set of all s(©) — ¢(c)
paths in the graph G.

o BROADCAST TRAFFIC: T(¢) = set of all spanning
trees in the graph G, rooted at s(e),

e MULTICAST TRAFFIC: T(©) = set of all Steiner
trees [10] in G, rooted at 5@ and spanning the
vertices D) = {tgc)7 téc), . 7t,(f)}.

« ANYCAST TRAFFIC: T(®) = union of all s(®) — ¢\
paths in the graph G, i = 1,2, ... k.

E. Characterization of the Network-Layer Capacity Region

Consider any arrival vector A € A(G,C). By definition,
there exists an admissible policy 7 € II, which supports the
arrival rate A by means of storing, duplicating and forwarding
packets efficiently. Taking time-averages over the actions of
the policy m, it is clear that there exists a randomized flow-
decomposition and scheduling policy to route the packets such
that none of the edges in the network is overloaded. Indeed, in
the following theorem, we show that for every A € A(G,C),
there exist non-negative scalars {A§C>}, indexed by the admis-
sible routes TZ-(C) € T7( and a convex combination of the
link-activation vectors ft € conv(M) such that,

A= 3 A veec 3)
T eT @
A (def) Z >‘z('C) <m, VeckE. 4)

(i,¢):e€T T Ve T (o)

Eqn. (3) denotes decomposition of the average incoming flows
into different admissible routes and Eqn. (4) denotes the fact
that none of the edges in the network is overloaded, i.e. arrival
rate of packets to any edge e under the policy 7 is at most the
rate allocated by the policy 7 to the edge e to serve packets.
To state the result precisely, define the set A to be the set of all
arrival vectors \ € R‘fl, for which there exists a randomized
activation vector t € conv(M) and a non-negative flow
decomposition {)\EC)}, such that Eqns. (3) and (4) are satisfied.
We have the following theorem:

Theorem 1. The network-layer capacity region A(G,C)
is characterized by the set A, up to its boundary.

Proof of Theorem 1 consists of two parts: converse and
achievability. Proof of the converse is given in Appendix A
of [19], where we show that all supportable arrival rates must
belong to the set A. The main result of this paper, developed
in the subsequent sections, is the construction of an efficient
admissible policy, called Universal Max-Weight (UMW),
which achieves any arrival-rate in the interior of the set A.
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III. OVERVIEW OF THE UMW PoLICY

In this section, we present a brief overview of the operation

of the UMW policy, designed and analyzed in the subsequent
sections. Central to the UMW policy is a global state-vector,
called virtual queues Q(t) used for packet routing and link
activations. Each component of the virtual queues is updated
at every slot according to a one-hop queueing (Lindley)
recursion, corresponding to a relaxed network, described in
detail in section IV. Unlike the well-known Back-Pressure
algorithm for the unicast problem [13], in which packet routing
decisions are made hop-by-hop using physical queue lengths
Q(t), the UMW policy prescribes an admissible route to
each incoming packet immediately upon its arrival. This route
selection decision is dynamically made by solving a suitable
min-cost routing problem (e.g., shortest path, MST etc.) at
the source with edge costs given by the current virtual queue
length vector Q(t) Link-activation decisions at each slot are
made by a Max-Weight algorithm with link-weights set equal
to Q(t) Having fixed the routing and activation policy as
above, in section V we design a packet scheduling algorithm
for the physical network, which efficiently resolves contention
among multiple packets that wait to cross the same (active)
edge at the same slot in the physical network. We show that
the overall policy is throughput-optimal. One significantly new
feature of our algorithm is that, unlike BP, this algorithm is
entirely oblivious to the length of the physical queues of the
network and utilizes the auxiliary virtual queue lengths for
stabilizing the former.
Our proof of throughput-optimality of UMW leverages ideas
from deterministic adversarial queuing theory and combines it
effectively with the stochastic Lyapunov-drift based techniques
and may be of independent theoretical interest.

IV. GLOBAL VIRTUAL QUEUES: STRUCTURES,
ALGORITHMS, AND STABILITY

In this section, we introduce the notion of virtual queues,
which is obtained by relaxing the dynamics of the physical

queues of the network in the following fashion 7.

A. Precedence Constraints

In a multi-hop network, if a packet p is being routed along
the path T =1y — Iy — ... — I, where I; € E is the i link
on its path, then by the principle of causality, the packet p
cannot be physically transmitted over the j™ link /; if it has not
already been transmitted by the first j —1 links Iy, 12, ..., l;_1.
This constraint is known as the precedence constraint in the
network scheduling literature [24]. In the following, we make
a radical departure by relaxing this constraint to obtain a
simpler single-hop virtual system, which will play a key role
in designing our policy and its optimality analysis.

SNote that our notion of virtual queues is completely different from and
unrelated to the notion of shadow-queues proposed earlier in [17], [12] and
virtual queues proposed in [23].

4
Qua(t) P>
p2(t)
aw 5 [[[[ O
23 (t)
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A Multihop Network G Virtual Queues

Fig. 1: Illustration of the virtual queue system for the four-node
network G. Upon arrival, the incoming packet p, belonging to a
unicast session from node 1 to 4, is prescribed a path 7, =
{{1,2},{2,3},{3,4}}. Relaxing the precedence constraints, the
packe~t p is counted as an arrival to the virtual queues Q12 and Q23
and (34 simultaneously at the same slot. In the physical system,
the packet p may take a while before reaching any edge in its path
depending on the control policy.

B. The Virtual Queue Process {Q(t)};>1

The Virtual queue process Q(t) = (Qe(t),e € E) is an
|E| = m dimensional controlled stochastic process, imitating
a fictitious queueing network without the precedence con-
straints. In particular, when a packet p of class ¢ arrives at
the source node (), a dynamic policy 7 prescribes a suitable
route T(9)(¢t) € T() to the packet. Denoting the set of all
edges in the route T(°)(t) by {i1,ls,...,l;}, this incoming
packet induces a virtual arrival simultaneously at each of the
virtual queues (Ql),z = 1,2,...,k, right upon its arrival
to the source. Since the virtual network is assumed to be
relaxed with no precedence constraints, any packet present in
the virtual queue is eligible for service. See Figure 1 for an
illustration.

The (controlled) service process allocated to the virtual queues
is denoted by {p™(¢)}+>1. We require the service process to
satisfy the same activation constraints as in the original system,
ie., u(t) € M,Vt.

Let AZ(t) is the total number of virtual packet arrival (from
all classes) to the virtual queue Qe at time ¢ under the action
of the policy m, i.e.,

AT(t) =) A M)1(e € T (b)), Ve e E. (5)
ceC

Hence, we have the following one-step evolution (Lindley
recursion) of the virtual queue process {Qe(t)}i>1:

Qe(t+1) = (Qe(t) + AT(t) —uZ (1)), Yee E,  (6)

We emphasize that AT (t) depends on the route 7(°)(t)
that the policy chooses, from the set of all admissible routes
T(), Ye. An optimal choice of T(¢)(t) is given as follows.
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C. Dynamic Control and Stability of the Virtual Queues

Next, we design a dynamic routing and link activation policy
for the virtual network, which stabilizes the virtual queue
process {Q(t)};>1, for all arrival rate-vectors A € int(A).
This policy is obtained by minimizing the one-step drift of a
quadratic Lyapunov-function of the virtual queue lengths (as
opposed to the real queue lengths used in the Back-Pressure
policy [13]). In the following section, we will show that when
this dynamic policy is used in conjunction with a suitable
packet scheduling policy in the physical network, the overall
policy is throughput-optimal.

To derive a stabilizing policy for the virtual network, consider
a quadratic Lyapunov function L(Q(t)) defined in terms of
the virtual queue lengths:

)= Q)

From the one-step dynamics of the virtual queues (6), we have:

Qe(t+1)* < (Qelt) — pZ (1) + AZ(t))?
Qe(H) + (AZ(£)? + (uZ (1) +2Qc (1)
= 2Qc(H)uc (t) — 2p (D) AL(?)
Since p7 () > 0 and AT (t) > 0, we have
Ge+1)- Q) < (AT + (I (0)
T 2Qc(AI(t) = 2Qe(t)pe (t)
Hence, the one-step Lyapunov drift A™(), conditional on the

current virtual queue lengths Q(t), under the operation of any
admissible Markovian policy 7 € II is upper-bounded by

AL (1)

AT(t) € E(LQ(t+1) - ( Q)IQ))
< B+2) Q.ME(AI(1)Q(1))
(a)
— 23 QUE(u(1)1Q() ™

eck

()

where B is a constant, bounded by > (E(AT(t))?
E(pg(1)?) < Afax +m.

The upper-bound on the drift, given by (7), holds good for
any admissible policy in the virtual network. In particular,
by minimizing the upper-bound point wise, and exploiting
the separable nature of the objective, we derive the following
decoupled dynamic routing and link activation policy for the

virtual network:

+

Dynamic Routing Policy: The optimal route for each class c,
over the set of all admissible routes, is selected by minimizing
the following cost function, identified by (a) in Eqn. (7)

=) Qe(t)AL(t)

eckE

RoutingCost™

We remind the reader that A7 (¢) is the routing-policy-induced
arrival to the virtual queue corresponding to the link e at time

IEEE Conference on Computer Communications

t.
Using Eqn. (5), we may rewrite the objective-function as

=340 S a0

ceC eckE

RoutingCost™ (e € 7 (t))) (8)
Using the separability of the objective (8) across classes, the
above optimization problem decomposes into the following
min-cost route-selection problem To(p)t( ) for each class c:

(t) € argmin <Z Qe(t)1(e € T(C))>

T ()T (e) ccE

T(C)

opt (9)
Depending on the type of flow of class ¢, the optimal route-
selection problem (9) reduces to one of the following well-
known combinatorial problems on the weighted graph G, with
its edges weighted by the current virtual queue lengths Q(¢):

« UNICAST TRAFFIC: T.5)(t) = The shortest 5(¢) —
t(©) path in the weighted-graph G.

« BROADCAST TRAFFIC: T.")(t) = The minimum
weight spanning tree rooted at the source s(), in the

weighted-graph G.

o MULTICAST TRAFFIC: To(gi() = The mini-
mum weight Steiner tree rooted at the source
s(© and spanning the destinations D) =
(#9489 (C)} in the weighted-graph G.

o ANYCAST TRAFFIC: To(;l()
k shortest s(¢) — t§”> paths, i = 1,2,...,
weighted-graph G.

The shortest of the
k, in the

Thus, the routes are selected according to a dynamic source
routing policy [18]. Apart from the minimum weight Steiner
tree problem for the multicast traffic (which is NP-hard with
several known efficient approximation algorithms [25]), all of
the above routing problems on the weighted virtual graph may
be solved efficiently using standard algorithms [26].

Dynamic Link Activation Policy: A feasible link activation
schedule p*(t) € M is dynamically chosen at each slot by
maximizing the term identified by (b) in Eqn. (7), given as

follows:
u()Eargmax(ZQe e)

HeM ecE

(10)

This is the well-known max-weight scheduling policy, which
can be solved efficiently under various interference models
(e.g., Primary or node-exclusive model [27]).

In solving the above routing and scheduling problems, we
tacitly made the assumption that the virtual queue vector Q(t)
is globally known at each slot, which might not be practically
feasible. We will discuss practical distributed implementation
of our algorithm in section VL.

In the following Theorem, we establish stability of the virtual
queues under the above policy, which will be instrumental for
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proving throughput-optimality of the UMW policy.

Theorem 2. Under the above dynamic routing and link
scheduling policy, the virtual queue process {Q(t)}1>0 is

strongly stable for any arrival rate X € int(A), i.e.,

T—1
lim sup% Z Z E(Q.(t)) < oc.

T—o0 t=0 ecE

Proof. The proof involves a stochastic Lyapunov drift argu-
ment. See Appendix B of [19] for details. O

‘As a consequence of the strong stability of the virtual queues
{Qec(t),e € E}, we have the following sample-path result,
which will be the key to our subsequent analysis:

Lemma 1. Under the action of the above policy, we have

Sfor any X € int(A):
Qe(t)
4

lim
t—o00

=0, Vee E, w.p. L

In other words, the virtual queues are rate-stable [28].

Proof. See Appendix D of [19]. O

The sample path result of Lemma 1 may be interpreted as
follows: For any given realization w of the underlying sample
space (2, define the function

F(w,t) = max Qe(w,t).

Note that, for any ¢ € Z, due to the boundedness of arrivals
per slot, the function F'(w, t) is well-defined and finite. In view
of this, Lemma (1) states that under the action of the UMW
policy, F(w,t) = o(t) almost surely. ® This result will be
used in our sample pathwise stability analysis of the physical
queueing process {Q(t)}i>o0-

D. Consequence of the Stability of the Virtual Queues

It is apparent from the virtual queue evolution equation (6),
that the stability of the virtual queues under the UMW policy
implies that the arrival rate at each virtual queue is at most
the service rate offered to it under the UMW routing and
scheduling policy. In other words, effective load of each edge
e in the virtual system is at most unity. This is a necessary
condition for stability of the physical queues when the same
routing and link activation policy is used for the multi-hop
physical network. In the following, we make the notion of
“effective-load” mathematically precise.

6g(t) = ot) if limg—oo 22 = 0.

Skorokhod Mapping: Iterating on the system equation (6),
we obtain the following well-known discrete time Skorokhod-
Map representation [29] of the virtual queue dynamics

Qe(t) = ( sup
1<7<t

+
(AZ(t—1,1) —S;r(t—T,t))) , 1D

where A7 (t1,t2) e S 271 A7 (7), is the total number of

T=t1
arrivals to the virtual queue Q). in the time interval [t1,¢2)

and ST (t1,t2) 2 th:_ti pr (7), is the total amount of service
allocated to the virtual queue Q. in the interval [t1,t2). For
completeness, we provide a proof of Eqn. (11) in Appendix
C of [19].

Combining Equation (11) with Lemma 1, we conclude that
under the UMW policy, almost surely for any sample path

w € Q, for each edge e € E and any ¢y < t, we have

Ae(w;tht) < Se(w;t()at) + F(w7t)v (12)

where F(w,t) = o(t).

Implications for the Physical Network: Note that, every

packet arrival to a virtual queue Q. at time ¢ corresponds to a
packet in the physical network, that will eventually cross the
edge e. Hence the loading condition (12) implies that under
the UMW policy, the total number of packets injected during
any time interval (¢o,t], willing to cross the edge e, is less
than the total amount of service allocated to the edge e in that
time interval up to an additive term of o(t). Thus informally,
the “effective load” of any edge e € E' is at most unity.
By utilizing the sample-path result in Eqn. (12), in the follow-
ing section we show that there exists a simple packet schedul-
ing scheme for the physical network, which guarantees the
stability of the physical queues, and consequently, throughput-
optimality.

V. OPTIMAL CONTROL OF THE PHYSICAL NETWORK

With the help of the virtual queue structure as defined
above, we next focus our attention on designing a throughput-
optimal control policy for the multi-hop physical network.
As discussed in Section II, a control policy for the physical
network consists of three components, namely (1) Routing, (2)
Link-activations and (3) Packet-scheduling. In the proposed
UMW policy, the (1) Routing and (2) Link-activations for
the physical network is done exactly in the same way as in
the virtual network, based on the current values of the virtual
queue state-variables Q(t), described in Section IV-C. There
exist many possibilities for the third component, namely the
packet scheduler, which efficiently resolves contention when
multiple packets attempt to cross an active edge e at the same
time-slot ¢. Popular choices for the packet scheduler include
FIFO, LIFO etc. In this paper, for technical reasons, we focus
on a particular scheduling policy which has its origin in the
context of adversarial queueing theory [30]. In particular, we
extend the Nearest To Origin (NTO) policy to the generalized
network flow setting in wireless network, where a packet is
allowed to be duplicated. This policy was proposed in [31] in
the context of wired networks for the unicast problem. Our
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priority[pile, = —2
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Fig. 2: A schematic diagram showing the scheduling policy ENTO in
action. The packets p; and p2 originate from the sources S; and Sa.
Part of their assigned routes are shown in blue and red respectively.
The packets contend for crossing the active edge es at the same
time slot. According to the ENTO policy, the packet p2 has higher
priority (having crossed a single edge es4 from its source) than p;
(having crossed two edges e; and ez from its source) for crossing
the edge e3. Note that, although a copy of pi might have already
crossed the edge es, this edge does not fall in the path connecting
the source S; to the edge es and hence does not enter into priority
calculations.

proposed scheduling policy is called Extended NTO (ENTO)
and is defined as follows:

Definition 2 (Extended NTO). If multiple packets attempt
to cross an active edge e at the same time slot t, the
Extended Nearest To Origin (ENTO) policy gives priority
to the packet which has traversed the least number of hops
along its path from its origin up to the edge e.

The Extended NTO policy may be easily implemented by
maintaining a single priority queue [26] per edge. The initial
priority of each incoming packet at the source is set to zero.
Upon transmission by any edge, the priority of a transmitted
packet is decreased by one. The transmitted packet is then
copied into the next-hop priority queue(s) (if any) according
to its assigned route. See Figure 2 for an illustration. The
pseudocode for the full UMW policy is given in Algorithm 1.

We next state the following theorem which proves stability
of the physical queues under the ENTO policy:

Theorem 3. Under the action of the UMW policy with
ENTO packet scheduling, the physical queues are rate-

stable [28] for any arrival vector X € int(A), ie.,

tiy 2zcc2 Qo0

t—o00

=0, w.p.l

Algorithm 1 Universal Max-Weight Algorithm (UMW) at slot
t for the Generalized Flow Problem in a Wireless Network
Require: Graph G(V, E), Virtual queue lengths {Q,(t),e €
E} at the slot t.
1: [Edge-Weight Assignment] Assign each edge of the
graph e € E a weight W, (t) equal to Q.(t), i.e.

W(t) + Q(t)

2: [Route Assignment] Compute a Minimum Weight Route
T©(t) € Te(t) for a class ¢ incoming packet in the
weighted graph G(V, E), according to Eqn. (9).

3. [Link Activations] Choose the activation p(t) from the
set of all feasible activations M, which maximizes the
total activated link-weights, i.e.

wp(t) « arg max s - W(t)

4: [Packet Forwarding] Forward physical packets from the
physical queues over the activated links according to the
ENTO scheduling policy.

5: [Virtual Queue Counter Update] Update the virtual
queues assuming a precedence-relaxed system, i.e.,

- _ +
Q4t+1)€-(Q4ﬂ+w%@)—qu> , YVee E

Proof. This theorem is proved by extending the argument of
Gamarnik [31] and combining it with the sample path loading
condition in Eqn. (12). See Appendix E of [19] for details. [

As a direct consequence of Theorem 3, we have the main
result of this paper:

Theorem 4. The UMW policy is throughput-optimal.

Proof. For any class ¢ € C, the number of packets R®© (1),
received by all nodes i € D(°) may be bounded as follows:

A©0,8) = 37 Qu(t) 2 RO < 4©0,1),

ecE

13)

where the lower-bound () follows from the observation that if
a packet p of class ¢ has not reached at all destination nodes
D), then at least one copy of it must be present in some
physical queue.
Dividing both sides of Eqn. (13) by ¢, taking limits and using
SLLN and Theorem 3, we conclude that w.p. 1

RO)(t)

lim =
t—o00 t

Hence from the definition (1), we conclude that UMW is
throughput-optimal.

O
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VI. DISTRIBUTED IMPLEMENTATION

The UMW policy in its original form, as given in Algorithm
1, is centralized in nature. This is because the sources need
to know the topology of the network and the current value
of the virtual queues Q(t) to solve the shortest route and the
Max-Weight problems at steps (2) and (3) of the algorithm.
Although the topology of the network may be obtained effi-
ciently by topology discovery algorithms [32], keeping track
of the virtual queue evolution (Eqn. (6)) is more subtle. Note
that, in the special case where all packets arrive only at a
single source node, no information exchange is necessary and
the virtual queue updates (Step 5) may be implemented at
the source locally. In the general case with multiple sources,
it is necessary to periodically exchange packet arrival infor-
mation among the sources to implement Step 5 exactly. To
circumvent this issue a heuristic version of UMW policy,
referred to as UMW (heuristic) in the following, may be used
in practice where physical queue lengths Q(t) are used as a
surrogate for the virtual queue lengths Q(t) for weight and
cost computations in Algorithm 1. Routing based on physical
queue lengths still requires an exchange of queue length
information. However, this can be implemented efficiently
using the standard distributed Bellman-Ford algorithm. The
simulation results in section VII-B show that the heuristic
policy works well in practice and its delay performance is
substantially better than the virtual queue based optimal UMW
policy in wireless networks.

VII. NUMERICAL SIMULATION

A. Delay Improvement Compared to the Back Pressure Policy
- the Unicast Setting

To empirically demonstrate superior performance of the
UMW policy over the Backpressure policy in the unicast
setting, we simulate both policies in the wired network shown
in Figure 3. All links have unit capacity. We consider two
concurrent unicast sessions with source-destination pairs given
by (s1 = 1,1 = 8) and (s2 = 5,ts = 2) respectively.
It is easy to see that Max-Flow(s; — ¢;) = 2 and
Max-Flow(s; — t2) = 1 and there exist mutually disjoint
paths to achieve the optimal rate-pair (A1,A2) = (2,1).
Assuming Poisson arrivals at the sources s; and sy with
intensities \; = 2p and Ay = p, 0 < p < 1, where p denotes
the “load-factor”, Figure 4 shows a plot of total average queue
lengths as a function of the load factor p under the operation
of the BP, UMW (optimal) and UMW (heuristic) policy.

From the plot, we conclude that both the optimal and
heuristic UMW policies outperforms the BP policy in terms of
average queue lengths, and hence (by Little’s Law), end-to-end
delay, especially in low-to-moderate load regime. The primary
reason being, the BP policy, in principle, explores all possible
paths to route packets to their destinations. In the low-load
regime, the packets may also cycle in the network indefinitely,
which increases their latency. The UMW policy, on the other
hand, transmits all packets along “optimal” acyclic routes. This
results in substantial reduction in end-to-end delay. We also

Fig. 3: The wired network topology used for unicast simulation

70 . .
——— UMW (optimal)
60 —— BP

* UMW (heuristic)

Avg. Queue Lengths

0 0.2 0.4 0.6 0.8

Fig. 4: Comparing the delay-performances of the BP and UMW
(optimal and heuristic) policies in the unicast setting of Fig. 3.

note that the heuristic version outperforms the optimal policy
in terms of delay. This is explored further in the following.

B. Using the Heuristic UMW policy for Improved Latency in
the Wireless Networks - the Broadcast Setting

Next, we empirically demonstrate that the heuristic UMW
policy not only achieves the full broadcast capacity but yields
better delay performance in this particular wireless network.
As discussed earlier, the heuristic policy is practically eas-
ier to implement in a distributed fashion. We simulate a
3 x 3 wireless grid network shown in Figure 5, with primary
interference constraints [20]. The broadcast capacity of the
network is computed to be \* = % [7]. The ENTO policy
is used for packet scheduling. The average queue length is
plotted in Figure 6 as a function of the packet arrival rate A
under the operation of the (a) UMW (optimal) and (b) UMW
(heuristic) policies. The plot shows that the heuristic policy
results in much smaller queue lengths than the optimal policy.
The reason being that physical queues capture the network
congestion “more accurately” for proper link-activations.

VIII. CONCLUSION

In this paper we have proposed a new, efficient and
throughput-optimal policy, named Universal Max-Weight
(UMW), for the Generalized Network Flow problem. The
UMW policy can simultaneously handle a mix of Unicast,
Broadcast, Multicast and Anycast traffic in arbitrary networks
and is empirically shown to exhibit superior performance
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Fig. 6: Comparing Avg. Queue lengths as a function of arrival
rate for the optimal (in blue) and the heuristic (in red) UMW
Policy for the grid network in Figure 5 in the broadcast setting.

compared to the existing policies. The next step would be to
formally investigate whether the UMW policy still retains its
throughput-optimality when implemented with physical queue
lengths, instead of the virtual queue lengths. An affirmative
answer to this question would imply a more efficient imple-
mentation of the policy.
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