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Abstract—In this paper, we analyze the impact of commu-
nication failures on the performance of optimal distributed
frequency control. We consider a consensus-based control
scheme, and show that it does not converge to the optimal
solution when the communication network is disconnected.
We propose a new control scheme that uses the dynamics
of power grid to replicate the information not received from
the communication network, and prove that it achieves the
optimal solution under any single communication link failure.
In addition, we show that this control improves cost under
multiple communication link failures.

Next, we analyze the impact of discrete-time communica-
tion on the performance of distributed frequency control. In
particular, we will show that the convergence time increases as
the time interval between two messages increases. We propose
a new algorithm that uses the dynamics of the power grid, and
show through simulation that it improves the convergence time
of the control scheme significantly.

I. INTRODUCTION

The main objective of a power grid is to generate power,
and transmit it to the consumers. The power grid balances
supply and demand through frequency control. This is done
both at the local (generator) level, and the wide-area level
as follows.

1) Primary Frequency Control (Droop Control): A
local frequency controller that balances the power by
speeding up or slowing down the generators; i.e. creat-
ing deviation from the 60Hz nominal frequency; this
controller responds to the changes in power within
milliseconds to seconds.

2) Secondary Frequency Control (AGC): AGC is a
centralized frequency controller that re-adjusts the set
points of generators to balance the power and restores
the nominal frequency; this is a close-loop automatic
controller that is applied every 2-4 seconds and requires
communication network between AGC and generators.

3) Economic Dispatch: This is a centralized controller
that reschedules the generators to minimize the cost
of generation; this control decision is made by the
ISO every 10-15 minutes, and requires communication
network between ISO and generators.

The future power grid is going to integrate renewable
energy resources. This will increase the fluctuations in the
generation, and requires more reserve capacity to balance
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the power. One of the approaches to balancing power
without having large reserve capacities is demand response,
where loads are “adjustable” and participate in balancing the
power. Since the number of loads is large, they cannot be
controlled in a centralized manner. Thus, it is essential to use
“distributed” control for demand response that incorporates
all three stages of traditional frequency control.

Recently, there have been many attempts to develop
distributed frequency control mechanisms. In [1], the authors
consider the case that the total amount of required power is
known, and designed a distributed algorithm that determines
the amount of load participation to minimize the cost. In [2],
the authors design a distributed frequency controller which
balances the power under unknown changes in the amount
of generation and load, and compare its performance with a
centralized controller.

In [3], the authors propose a primary control mechanism,
similar to the droop control, for microgrids leading to a
desirable distribution of power among the participants, and
propose a distributed integral controller to balance the power.
These results are extended in [4], where the authors use a
similar averaging-based distributed algorithm to incorporate
all three stages of frequency control in microgrids. More-
over, in [5], the authors propose a similar consensus-based
algorithm for optimal frequency control in transmission
power grid.

In [6], the authors use a primal-dual algorithm to design
a primary frequency control for demand response in power
grid. The results are extended in [7] and [8], where the
authors design a primal-dual algorithm to model all three
stages of a traditional frequency control in the power grid.

Although there exist several different distributed fre-
quency control mechanisms in the literature, they all rely on
the use of communication to exchange control information
(e.g., Lagrangian multipliers). Moreover, convergence to
an optimal solution requires the underlying communica-
tion network to be connected. In addition, in the design
and analysis of all these controllers, it is assumed that
the communication messages between neighboring nodes
are transmitted in continuous time; however, in practice,
these messages will be transmitted in discrete time. In this
paper, we analyze the performance of a consensus-based
control scheme under communication failures. We show
that when the communication network is disconnected, the
control scheme balances the power by retrieving the normal
frequency; however, its cost is not optimal. Moreover, we
analyze the effect of discrete-time communication on the
convergence time of this control scheme.

Next, we propose a novel control algorithm which uses
the information from the power flow to replicate the direct
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information received from the communication network.
We prove that our algorithm achieves the optimal solution
under any single communication link failure. We also show
via simulation results that our algorithm improves the cost
under multiple communication failures. Finally, we propose
a sequential algorithm based on our control mechanism, and
show that it improves the convergence time under discrete-
time communication.

The rest of this paper is organized as follows. In Sec-
tion II, we describe the power grid’s model. In Section
III, we describe a consensus-based distributed frequency
control, and analyze it under communication link failures
and discrete-time communication. In Section IV, we will
propose a novel decentralized control for a two-node system
and prove its optimality and stability, and in Section V, we
extend our control mechanism for multi-node systems under
disconnected communication networks. Next, in Section VI,
we propose a sequential control algorithm that improves
the convergence time under discrete-time communication.
Finally, we conclude in Section VII. Due to the page limit,
the proofs of some theorems have been omitted, and can be
found in [9].

II. SYSTEM MODEL

Let GP = {NP , EP} be the power grid, where NP
denotes the set of power nodes, and EP denotes the set of
power lines. The power at every node j, whether it is a
generator or a load, consists of adjustable and unadjustable
parts. The unadjustable part is the amount of power that
cannot be changed; i.e. fixed demand or generation. The
adjustable part is the amount of power that can be changed;
i.e. controllable load or generation. The sum of the total
power determines the amount of power imbalance in the
grid, which leads to the frequency deviation. The role of a
controller is to balance the power by using the adjustable
power at all nodes with minimum cost. Next, we describe
the dynamics of the power grid which translate the power
imbalance to frequency deviation. Then, we describe the
optimal control policy.

Let Mj be the inertia of node j, and Dj be the droop
coefficient of node j. Moreover, let pj(t) be the unadjustable
power and uj(t) be the adjustable power (control) at node
j and at time t. In addition, let Bjk be the susceptance
of power line (j, k), and fjk(t) be the amount of power
flow from node j to node k at time t. We can describe
the dynamics of the power grid using the swing equation
at every node and the power flow equation at every line as
follows.

Mjω̇j(t) = −Djωj(t) + pj(t) + uj(t)−
∑

k:(j,k)∈EP

fjk(t)

j ∈ NP (1a)

ḟjk(t) = Bjk(ωj(t)− ωk(t)) (j, k) ∈ EP (1b)

The objective of our control is to minimize the total cost
of adjustable power at steady-state while balancing power.
Let p∗j be the steady-state unadjustable power, u∗j be the
steady-state adjustable power (control), and Cj be the cost of
adjustable power at node j. Moreover, let f∗jk be the steady-
state power flow from node j to node k. The optimal steady-
state control can be formulated as follows.

min
u∗,f∗

∑
j∈NP

1

2
Cju

∗2
j (2a)

s.t. p∗j + u∗j −
∑

k:(j,k)∈EP

f∗jk = 0 j ∈ NP (2b)

It was shown in [5] and [4] that such system is asymp-
totically stable and the optimal solution to equation (2) has
the form of Ciu

∗
i = Cju

∗
j , where

∑
j∈N u

∗
j = −

∑
j∈N p

∗
j .

Here, we consider the linearized version of swing equation
as opposed to nonlinear form in [5] and [4].

III. DISTRIBUTED CONTROL

Let the power grid be supported by a connected com-
munication network GC = {NC , EC}, where NC denotes the
set of communication nodes, and EC denotes the set of com-
munication links. The optimal distributed frequency control
can be described by the following differential equation.

Ciu̇i(t) = −ωi(t)−Ci

∑
j:(i,j)∈EC

(Ciui(t)−Cjuj(t)) i ∈ NP

(3)
Accordingly, the distributed control works as follows:

node i measures the local frequency ωi, receives the informa-
tion Cjuj(t) from the neighbor nodes via the communication
network, and updates the local control value ui(t). It is
shown in [5] and [4] that if the communication network is
connected, the control mechanism in equation (3) converges
to the optimal solution, which is globally asymptotically
stable.
A. Impact of Communication Link Failures

The control mechanism in equation (3) will achieve the
optimal solution if the communication network is connected.
However, if the communication network is disconnected,
while power will be balanced, optimal cost may not be
achieved; i.e. it cannot guarantee that Ciu

∗
i = Cju

∗
j for all

i, j nodes. Next, we show via an example that the impact
on the cost could be significant.

Fig. 1. Power Grid Toy Example - Solid lines are power lines and dashed
lines are communication lines.

Consider the power grid in Figure 1 (The data of the
grid and the costs can be found in [9]). In this example,
the communication network has the same topology as the
power grid. The total load in this grid is 25 p.u., and we
increase the load in node 3 by 5 p.u. (20% total increase).
Simulation results show that the optimal cost, by applying
control mechanism 3 under a fully connected communication
network, is 23.27. If the communication link between nodes
2 and 7 fails, the cost increases to 35.69, while the cost
under no communication is 39.11. This example shows that
the failue of only one communication link could have a
significant impact on the cost of distributed control.
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B. Impact of Discrete-time Communication
In the design and analysis of the distributed control

mechanism described in equation (3), it is assumed that the
communication messages are updated in continuous time.
However, in reality, the communication messages will be
updated in discrete time. Let T be the time interval between
two communication messages. Then, the distributed control
can be described as follows.

Ciu̇i(t) = −ωi(t)− Ci

∑
j:(i,j)∈EC

(Ciui(t)− Cjuj(KT ))

i ∈ NP , KT ≤ t ≤ (K + 1)T (4)

Define the convergence time t∗ to be the first time such
that |(Cost(t∗) − Cost∗)| < 0.01, where Cost(t∗) is the
cost at time t∗ and Cost∗ is the optimal cost. By running
the control in equation (4) on the power grid in Figure 1
for different values of T , it can be seen that the time of
convergence increases as T increases (See Figure 2).

Fig. 2. Convergence Time increases as T increases.

IV. DECENTRALIZED CONTROL FOR TWO-NODE
SYSTEM

In this section, we consider a two-node system connected
by a power line and communication link as in Figure 3(a). As
described, when the communication link fails, node i does
not receive information Cjuj(t) and node j does not receive
information Ciui(t). Therefore, the optimal cost cannot be
achieved. Next, we propose a control algorithm that uses
the dynamics of the power grid instead of direct information
Ciui(t) and Cjuj(t), and still achieves the optimal solution.

Previously, the adjustable power at both nodes i and j
was updated based on the local frequency and the infor-
mation received from the neighboring node. In our control
scheme, we update the adjustable power at every node based
on the local frequency and a local artificial variable, where
this variable is updated based on the power flow dynamics
between the two nodes. Since the changes in the flow is a
function of the frequency at both nodes, it contains some
indirect information about the adjustable control as well as
the cost of the neighbor node. We prove that this information
is enough to guarantee the optimality of the our control
scheme.

Let qi and qj be the two artificial variables at nodes i and
j, respectively. Our decentralized control for the two-node
system without any communication link can be described as
follows.

Ciu̇i(t) = −ωi(t)− qi(t) (5a)
Cj u̇j(t) = −ωj − qj(t) (5b)

q̇i(t) = −
ḟij
Bij
− 2qi(t) (5c)

q̇j(t) =
ḟij
Bij
− 2qj(t) (5d)

As described, control at node i is updated only based on
the local frequency ωi and the value of artificial variable qi.
Moreover, value of qi is updated based on the derivative of
flow fij which can be observed locally. Similarly, control at
node j depends on the local frequency ωj and the derivative
of flow fji which can be observed locally. Thus, there is
no need to a communication network between nodes i and
j. Next, we claim that the new control achieves the optimal
solution (See Figure 3).

(a) Two-Node System
with Communication

(b) Two-Node System
without Communication

Fig. 3. Let t0 be the time failure: node i knows cjuj(t0) and node j
knows ciui(t0); Nodes i and j can initialize qi(t0) and qj(t0) properly
to guarantee optimality

Using the new control as in equations (5), the dynamics
of the system can be written as follows.

Miω̇i(t) = −Diωi(t) + pi(t) + ui(t)− fij(t) (6a)
Mjω̇j(t) = −Djωj(t) + pj(t) + uj(t) + fij(t) (6b)

ḟij(t) = Bij(ωi(t)− ωj(t)) (6c)
Ciu̇i(t) = −ωi(t)− qi(t) (6d)
Cj u̇j(t) = −ωj(t)− qj(t) (6e)
q̇i(t) = −(ωi(t)− ωj(t))− 2qi(t) (6f)
q̇j(t) = −(ωj(t)− ωi(t))− 2qj(t) (6g)

In the following, we will prove the optimality and
stability of the dynamical system described in equation (6).

A. Optimality
Theorem 1: Let qi(t0) = −qj(t0) = Ciui(t0) −

Cjuj(t0). Then, the equilibrium point of the two-node
system without any communication link as described in
equation (6) achieves the optimal cost.

Proof:
In order to prove the optimality, we need to show that

equation (6) guarantees ω∗i = ω∗j = 0 and Ciu
∗
i = Cju

∗
j

at the equilibrium point; i.e. power is balanced, and cost is
minimized.

At the equilibrium, all of the derivatives in equation (6)
are equal to zero. Therefore, we will have the following
equations.

ω∗i − ω∗j = 0 (7a)
ω∗i − q∗i = 0 (7b)
ω∗j − q∗j = 0 (7c)
− (ω∗i − ω∗j )− 2q∗i = 0 (7d)
− (ω∗j − ω∗i )− 2q∗j = 0 (7e)

Solving equations (7) results in ω∗i = ω∗j = 0, which
guarantees that power is balances at the equilibrium point.
In addition, we will have q∗i = q∗j = 0.

Equations (6f) and (6g) show that q̇i(t) = −q̇j(t) for all
time t ≥ t0. Since we have initialized qi(t0) = −qj(t0), it
is easy to see that qi(t) = −qj(t) for t ≥ t0.
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Next, we subtract equation (6e) from equation (6d).
Thus, we will have Ciu̇i−Cj u̇j = −(ωi−ωj)− 2qi which
is equal to the equation (6f). Therefore, q̇i = Ciu̇i − Cj u̇j .

By taking integral over both sides from t = t0 to infinity,
we will have (Ciu

∗
i − Ciui(t0)) − (Cju

∗
j − Cjuj(t0)) =

q∗i − qi(t0), and assumption qi(t0) = Ciui(t0) − Cjuj(t0)
results in ciu

∗
i − Cju

∗
j = q∗i . Since q∗i = 0, Ciu

∗
i = Cju

∗
j

which guarantees the optimality of the equilibrium point.

B. Stability
Next, we prove that the equilibrium point of the dy-

namical system described in equation (6) is globally asymp-
totically stable. Since our dynamical system is linear, it is
enough to show that the roots of the characteristic polyno-
mial of the system are all located in the negative side of the
plane.

Let D,M,C ∈ R2×2 be diagonal matrices denoting
the droop coefficient, inertia and cost at nodes i and j,
respectively. Let B be the susceptance of the power line
between nodes i and j. Moreover, let Ap ∈ R2×1 be the
node-edge incidence matrix, LB

p = ApBA
T
p be the weighted

laplacian matrix of the power grid, and Lc ∈ R2×2 be the
laplacian matrix of the communication network. Finally, let
s(λ) be the characteristic polynomial of the system.

By applying the schur complement formula as well as
elementary row operations, s(λ) can be simplified to the
following (See [9] for more details).

s(λ) = (λ+ 2)det(M−1)det(H(λ)) where H(λ) =[
(λ2D + λ3M + λC−1) + (λLcD + λ2LcM + (2 + λ)LB

p )
]

Since the system is linear, it is enough to show that the
real parts of all roots of characteristic polynomial s(λ) are
negative.

Theorem 2: The conditions in equation (8) are sufficient
to guarantee that the equilibrium point of the system de-
scribed in equation 6 is globally asymptotically stable.

M � 0 (8a)
1

2
(LcM +MLc) +D � 0 (8b)

1

2
(LcD +DLc) + LB

P + C−1 � 0 (8c)

λmin[(L
B
p +

1

2
(LcD +DLc) + C−1)]×

λmin[(
1

2
(LcM +MLc) +D)] > 4Bmax{M1,M2} (8d)

Proof: See [9]. Here, M1 and M2 are the diagonal
elements of matrix M .

Next, we argue that sufficient conditions in equations
(8a)-(8d) often hold in practice. Condition (8a) holds as
inertia is a positive value. Condition (8b) holds as the inertia
of nodes in a distribution network is very small; and the
matrix becomes strictly diagonally dominant. Conditions
(8c) and (8d) hold if the cost values are scaled down; i.e.
increase C−1. Note that the only requirement for optimality
of the control is that the ratio of power distribution be
proportional to the inverse ratio of costs. Thus, scaling all
the cost values will not affect the solution.

V. CONTROL UNDER COMMUNICATION LINK FAILURES

In this section, we extend the idea in Section IV to
multi-node systems. In particular, we introduce a new con-
trol mechanism that uses the dynamics of the power flow
between adjacent nodes to replicate the direct information
transmitted between them via a communication link. We
show that our new control mechanism achieves the optimal
solution under single communication link failure, and im-
proves the cost under multiple communication link failures.

A. Single Communication Link Failure
Consider the power grid and communication network in

Figure 4. Suppose the communication link between nodes
i and j fails. We claim that if nodes i and j update
their local control decision only based on the power flow
between nodes i and j, and the rest of the nodes keep their
previous control rule, the dynamical system will converge
to the optimal solution. The new control mechanism can be
described as follows.

Cku̇k(t) = −ωk(t)− Ck

∑
l:(k,l)∈EC

(Ckuk(t)− Clul(t))

k ∈ N\{i, j} (9a)
Ciu̇i(t) = −ωi(t)− qi(t) (9b)
Cj u̇j(t) = −ωj(t)− qj(t) (9c)
q̇i(t) = −(ωi(t)− ωj(t))− 2qi(t) (9d)
q̇j(t) = −(ωj(t)− ωi(t))− 2qj(t) (9e)

According to equation (9), all the nodes that are con-
nected to node i via the communication network, receive
the information ciui(t) from node i; however, node i does
not update its control based on the information received
from other nodes via communication network. Similarly,
all the nodes connected to node j via the communication
network, update their control based on the information
Cjuj they receive from node j; however, node j does
not use the information it receives from other nodes via
the communication network. Instead, nodes i and j update
their control only based on their local frequency and the
power flow between nodes i and j. This control rule can be
interpreted as a master/slave algorithm, where nodes i and j
are the master nodes that guarantee Ciu

∗
i = Cju

∗
j , and the

rest of nodes are the slave nodes that follow the changes in
nodes i and j.

Fig. 4. Power Grid and Communication Network - Solid lines are power
lines and dashed lines are communication lines.

Theorem 3: Suppose the communication link between
nodes i and j fails at time t0 (disconnecting the commu-
nication network), but the two nodes are connected via a
power line. By updating the control mechanism according to
equation (9), and initializing qi(t0) = −qj(t0) = Ciui(t0)−
Cjuj(t0), the optimal solution will be achieved.
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Proof: Equation (9a) guarantees that Cku
∗
k = Clu

∗
l for

all k ∈ N\{i, j}. In particular, for any node k connected
to node i, Cku

∗
k = Ciu

∗
i , and for any node k connected

to node j, Cku
∗
k = Cju

∗
j . On the hand, equations (9b)-(9e)

guarantee that Ciu
∗
i = Cju

∗
j (See Theorem 1 for optimality

of a two-node system). Therefore, the equilibrium point is
optimal.

Corollary 1: Suppose the power grid has a connected
topology, and the original communication network contains
a subtree of the power grid. Then, the control mechanism
described in equation (9) achieves the optimal solution,
under any single communication link failure.

Proof: Let an arbitrary communication link (i, j) fail.
If there does not exist a power line between nodes i and
j, the communication topology is guaranteed to remain
connected as it still contains a subtree of the power grid.
Thus, the control mechanism will not be updated, and the
optimal solution will be achieved. If there exists a power
line between nodes i and j, the control mechanism will be
updated as in equation (9), which guarantees to achieve the
optimal solution.

Similar to the two-node system, one can find sufficient
conditions under which the updated control mechanism in
equation (9) is globally asymptotically stable for a multi-
node system. For more details See [9].

Consider Figure 1, and suppose that the communication
link between nodes 2 and 7 fail. Under the original control
mechanism, the cost increases from 23.27 to 35.69. How-
ever, the new control mechanism will achieve the optimal
solution.

We compare the frequency response of the original
control under full communication and the new control under
single communication link failure. For simplicity, we only
show the angular velocities at nodes 2 and 7 in Figures
5(a) and 5(b); however, the same results hold for all the
other nodes. We observed that for all nodes, the frequency
response of the two control mechanisms are very similar,
indicating that the new control mechanism will not create
any abrupt changes in the frequency of the system.

(a) Frequency Response of Origi-
nal Control under Full Communi-
cation

(b) Frequency Response of New
Control under Single Link Com-
munication Failure

Fig. 5. Comparing the frequency responses

B. Multiple Communication Link Failures
In this section, we consider the case that multiple com-

munication links fail (See Figure 6 as an example.) We
generalize the control mechanism described for the single
communication link failures as follows.

Consider pairs of nodes that have lost their commu-
nication links, but they are connected via power lines.
Let F be the set of such nodes. Moreover, let qi be the
artificial variable for every node i ∈ F , and initialize it as
qi(t0) =

∑
j∈F :(i,j)∈EP

(Ciui(t0)− Cjuj(t0)).

The update control rule can be written as follows.

Cru̇r(t) = −ωr(t)− Cr

∑
l:(r,l)∈EC

(Crur(t)− Clul(t))

r ∈ N\F (10a)
Ciu̇i(t) = −ωi(t)− qi(t) i ∈ F (10b)

q̇i(t) = −
∑

j∈F :(i,j)∈EP

(ωi(t)− ωj(t))− 2qi(t) (10c)

It can be seen from equation (10) that every pair of node
i and j that have lost their communication link, but are
connected via a power line will switch to the new control
rule, where the control rule at the rest of nodes remains
the same. This control rule does not guarantee to achieve
the optimal solution; however, we show that in practice it
improves the cost.

Fig. 6. Power Grid and Communication Network - Solid lines are power
lines and dashed lines are communication lines.

Consider the power grid in Figure 1, and assume that
the communication links between nodes 1 and 2 and nodes
2 and 5 have failed. Under the original control, the cost
increases from 23.27 to 36.87 which is 58% increase in the
optimal cost. However, our control described in equation
(10) achieves a cost of 25.45, which is only 9% increase
in the optimal cost (49% improvement). In addition, we
observed that the new control policy will not lead to any
unacceptable changes in the frequency response.

VI. CONTROL WITH DISCRETE-TIME COMMUNICATION

In this Section, we study the impact of discrete-time
communication on the performance of distributed frequency
control. As discussed in Section III-B, when the time
interval between communication messages increases, the
convergence time increases. In this Section, we propose an
algorithm that sequentially updates the control of pairs of
nodes using the dynamics of the power flow between them.
Using simulation results, we show that the new algorithm
converges much faster than the original one.

Let T be the time interval between communication
messages. Let ES = {e1, · · · , em} = EP ∩ EC be the set of
pairs of nodes that share the power lines and communication
links. The algorithm is as follows.

Let communication messages update at time instants
KT , where K ≥ 0. At each time interval KT ≤ t <
(K+1)T , the algorithm selects a link er ∈ ES , and updates
the control according to equations (9), where i and j are the
end-nodes of the selected link er. The only difference is in
equation (9a), where the control should be updated based
on the most recent communication message received at time
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KT ; i.e. Cku̇k(t) = −ωk(t) − Ck

∑
l:(k,l)∈EC (Ckuk(t) −

Clul(KT )) ∀k 6= i, j. At the beginning of next time
interval, new communication messages will be received, and
the algorithm selects the next link in ES . The algorithm
keeps iterating on the links in sequence until convergence is
achieved.

Figure 7 shows the sequence of link selection and control
updates at nodes. This algorithm improves the convergence
rate because during each interval, it uses the additional
information from the dynamics of the power grid to update
the control at each node.

Fig. 7. Power Grid and Communication Network - Solid lines are power
lines and dashed lines are communication lines. The shared edges between
the power grid and communication network are (2, 3), (3, 4), (3, 5), (5, 6),
and the algorithm sequentially selects one of these edges, and uses its power
flow to control the power changes at nodes.

We applied the original control scheme as well as the
new control scheme to the power grid in Figure 1. For
simplicity, we only show the results for two nodes 1 and
5; however, the results are the same for the rest of nodes.
Figures 8(a) and 8(b) show that increasing the value of T
increases the convergence time under the original control.
Figures 8(c) and 8(d) indicate that by applying the new
control mechanism, the convergence time for T = 1s is
similar to the convergence time of the original control for
T = 1ms. In addition, it can be seen that although the gen-
eral behavior of the power under both control mechanisms
are similar, there are some fluctuations in the value of power
under the new control algorithm. However, by comparing the
frequency response of the control mechanisms in Figures
8(e) and 8(f), it can be seen that the fluctuations in the
frequency response of nodes under the new algorithm are
negligible.

VII. CONCLUSION

In this paper, we analyzed the impact of communication
failures as well as discrete-time communication messages
on the performance of optimal distributed frequency control.
We considered the consensus-based algorithm proposed in
[5] and [4], and showed that although the control mechanism
can balance the power, it will not achieve the optimal
solution under communication failures.

Next, we proposed a novel control mechanism that uses
the dynamics of the power flow between two nodes instead
of the information received directly from the communication
link between them. We proved that our algorithm achieves
the optimal solution under any single communication link
failure. We also used simulation results to show that the new
control improves the cost under multiple communication link
failures.

Finally, we showed that the convergence time of the
distributed control increases as the time between two com-
munication messages increases. We proposed a sequential
control scheme which uses the dynamics of the power grid,

(a) T=1ms; Original Control (b) T=1s; Original Control

(c) T=1ms; Original Control (d) T=1s; New Control Algorithm

(e) Frequency Response of Orig-
inal Control for T=1ms

(f) Frequency Response of New
Control for T=1s

Fig. 8. Comparing the power and frequency response for large T under
new control with small T under the original control

and using simulation results, we showed that it improves the
convergence time significantly.
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