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Abstract—We propose an interdependent random geometric
graph (RGG) model for interdependent networks. Based on this
model, we study the robustness of two interdependent spatially
embedded networks where interdependence exists between ge-
ographically nearby nodes in the two networks. We study the
emergence of the giant mutual component in two interdependent
RGGs as node densities increase, and define the percolation
threshold as a pair of node densities above which the mutual giant
component first appears. In contrast to the case for a single RGG,
where the percolation threshold is a unique scalar for a given
connection distance, for two interdependent RGGs, multiple pairs
of percolation thresholds may exist, given that a smaller node
density in one RGG may increase the minimum node density
in the other RGG in order for a giant mutual component to
exist. We derive analytical upper bounds on the percolation
thresholds of two interdependent RGGs by discretization, and
obtain 99% confidence intervals for the percolation thresholds
by simulation. Based on these results, we derive conditionsfor
the interdependent RGGs to be robust under random failures
and geographical attacks.

I. I NTRODUCTION

Cyber-physical systems such as smart power grids and
smart transportation networks are being deployed towards
the design of smart cities. The integration of communication
networks and physical networks facilitates network operation
and control. In these integrated networks, one network depends
on another for information, power, or other supplies in order
to properly operate, leading to interdependence. For example,
in smart grids, communication networks rely on the electric
power from power grids, and simultaneously control power
generators [1]. Failures in one network may cascade to another
network, which potentially makes the interdependent networks
vulnerable to failures and attacks.

Cascading failures in interdependent networks have been
extensively studied in the statistical physics literaturesince the
seminal work in [2], where each of the two interdependent
networks is modeled as a random graph. Nodes in the two
random graphs are interdependent, and a node is functioning
if both itself and its interdependent node are in the giant
components of the respective random graphs. After initial
node failures in the first graph, their interdependent nodesin
the second graph fail. Thus, a connected component in the
second graph may become disconnected, and the failures of
the disconnected nodes cascade back to (their interdependent)
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nodes in the first graph. As a result of the cascading failures,
removing a small fraction of nodes in the first random graph
destroys the giant components of both graphs.

To model spatially embedded networks, an interdependent
lattice model was studied in [3]. Under this model, geograph-
ical attacks may cause significantly more severe cascading
failures than random attacks. Removing nodes in a finite region
(i.e., a zero fraction of nodes) may destroy the infinite clusters
in both lattices [4].

If every node in one network is interdependent with multiple
nodes in the other network, and a node is content to have at
least one supply node, failures are less likely to cascade [5],
[6]. Although the one-to-multiple interdependence existsin
real-world spatially embedded interdependent networks (e.g., a
control center can be supported by the electric power generated
by more than one power generator), it has not been previously
studied using spatial graph models.

We use a random geometric graph (RGG) to model each of
the two interdependent networks. The two RGGs are allowed
to have different connection distances and densities, which can
represent two networks that have different average link lengths
and scales. These differences between the two networks were
not captured in the lattice model studied in the previous
literature. Moreover, the interdependent RGG model is able
to capture the one-to-multiple interdependence in spatially
embedded networks, and provides a more general framework
for studying interdependent networks.

Robustness is a key design objective for interdependent
networks. We study the conditions under which a positive
fraction of nodes are functioning in interdependent RGGs
as the number of nodes approaches infinity. In this case,
the interdependent RGGspercolate. Consistent with previous
research [2], [3], [5], the robustness of interdependent RGGs
under random failures and geographical attacks is measured
by whether percolation exists after the failures and attacks. To
the best of our knowledge, our paper is the first to study the
percolation of interdependent spatial network models using a
mathematically rigorous approach.

The main contributions of this paper are as follows.

1) We propose an interdependent RGG model for two inter-
dependent networks, which captures the differences in the
scales of the two networks as well as the one-to-multiple
interdependence in spatially embedded networks.



2) We derive the first analytical upper bounds on the per-
colation thresholds of the interdependent RGGs, above
which a positive fraction of nodes are functioning.

3) We obtain99% confidence intervals for the percolation
thresholds, by mapping the percolation of interdependent
RGGs to the percolation of a square lattice where the
probability that a bond in the lattice is open is evaluated
by simulation.

4) We characterize sufficient conditions for the interde-
pendent RGGs to percolate under random failures and
geographical attacks. In particular, if the node densities
are above any upper bound on the percolation threshold
obtained in this paper, the interdependent RGGs remain
percolated after a geographical attack.

The rest of the paper is organized as follows. We state the
model and preliminaries in Section II. We derive analytical
upper bounds on percolation thresholds in Section III, and ob-
tain confidence intervals for percolation thresholds in Section
IV. In Section V, we study the robustness of interdependent
RGGs under random failures and geographical attacks. Section
VI concludes the paper.

II. M ODEL

A. Preliminaries on RGG and percolation

An RGG in a two-dimensional square consists of nodes
generated by a Poisson point process and links connecting
nodes within a given connection distance [7]. LetG(λ, d, a2)
denote an RGG with node densityλ and connection distance
d in an a × a square. The studies on RGG focus on the
regime where the expected number of nodesn = λa2 is large.
We first present some preliminaries useful for developing
our model. Thegiant componentof an RGG is a connected
component that containsΘ(n) nodes. A node belongs to the
giant component with a positive probabilityΘ(n)/n if the
giant component exists. For a given connection distance, the
percolation thresholdis a node density above which a node
belongs to the giant component with a positive probability (i.e.,
a giant component exists) and below which the probability
is zero (i.e., no giant component exists). By scaling, if the
percolation threshold isλ∗ under connection distanced, then
the percolation threshold isλ∗c2 under connection distance
d/c. Therefore, without loss of generality, in this paper, we
study the percolation thresholds represented by node densities,
for given connection distances.

The RGG is closely related to thePoisson boolean model
[8], where nodes are generated by a Poisson point process
on an infinite plane. Let G(λ, d) denote a Poisson boolean
model with node densityλ and connection distanced. The
difference betweenG(λ, d) andG(λ, d, a2) is that the number
of nodes inG(λ, d) is infinite while the expected number of
nodes inG(λ, d, a2) is large but finite. The Poisson boolean
model can be viewed as a limit of the RGG as the number
of nodes approaches infinity. The percolation threshold of
G(λ, d) under a givend is defined as the node density above
which a node belongs to theinfinite cluster with positive

probability and below which the probability is zero. It has been
shown that a node belongs to the infinite cluster with positive
probability if and only if an infinite cluster exists, and thus
the percolation ofG(λ, d) can be equivalently defined as the
existence of the infinite cluster [8]. Moreover, the percolation
threshold ofG(λ, d) is identical with the percolation threshold
of G(λ, d, a2) [7], [9].

B. Interdependent RGGs

Two interdependent networks are modeled by two RGGs
G1(λ1, d1, a

2) andG2(λ2, d2, a
2) on thesamea× a square.

A node in one graph is interdependent withall the nodes in
the other graph within theinterdependent distanceddep. See
Fig. 1 for an illustration. Nodes in one graph aresupply nodes
for nodes in the other graph withinddep. The physical inter-
pretation of supply can be either electric power or information
that is essential for proper operation.

Fig. 1. Two interdependent RGGs with interdependent distance ddep.

We define mutual component and giant mutual component
in interdependent RGGs, in the same way as one defines the
connected component and giant component in a single RGG.

Definition 1. Let V 0
i denote nodes in a connected component

in Gi(λi, di, a
2), ∀i ∈ {1, 2}. If each node inVi ⊆ V 0

i has
at least one supply node inVj ⊆ V 0

j within ddep, ∀i, j ∈
{1, 2}, i 6= j, then nodesV1 andV2 form amutual component
of the interdependent RGGs.

If, in addition,Vi containsΘ(ni) nodes, whereni = λia
2,

∀i ∈ {1, 2}, thenV1 andV2 form a giant mutual component.

A mutual component can be viewed as an autonomous sys-
tem in the sense that nodes in a mutual component have supply
nodes in the same mutual component, and in each graph, nodes
that belong to a mutual component are connected regardless of
the existence of nodes outside the mutual component. Note that
a node can receive supply from any of its supply nodes in the
same mutual component. Nodes in a giant mutual component
are functioning, since they are connected to a large number
of nodes in the network. This definition of functioning is
consistent with previous research on interdependent networks
based on random graph models [2].

For a fixed ddep, if a giant mutual component exists in
interdependent RGGsG1(λ1, d1, a

2) andG2(λ2, d2, a
2), then

a giant mutual component exists in interdependent RGGs
G′

1(λ
′

1, d1, a
2) andG2(λ2, d2, a

2), whereλ′

1 > λ1. This can
be explained by couplingG′

1 with G1 as follows. By randomly
removing each node inG′

1 independently with probability



1 − λ1/λ
′

1, the remaining nodes inG′

1 has densityλ1, and
a giant mutual component exists in the interdependent RGGs
that consist ofG2 and the RGG formed by the remaining nodes
in G′

1. Since adding nodes to a graph does not disconnect any
mutual component, a giant mutual component exists in the
interdependent RGGsG′

1 and G2. By the same analysis, a
giant mutual component also exists in interdependent RGGs
G1(λ1, d1, a

2) andG′

2(λ
′

2, d2, a
2) for a fixedddep, if λ′

2 > λ2.
We define a percolation threshold of two interdependent

RGGs as follows.

Definition 2. A pair of node densities(λ∗

1, λ
∗

2) is a percola-
tion thresholdof two interdependent RGGs, given connection
distancesd1, d2 and the interdependent distanceddep, if a giant
mutual component exists inG1(λ1, d1, a

2) andG2(λ2, d2, a
2)

for λ1 > λ∗

1 and λ2 > λ∗

2, and no giant mutual component
exists otherwise.

For fixed d1, d2 andddep, there may exist multiple perco-
lation thresholds. Intuitively, the larger the node density is in
one graph, the smaller the required node density is in the other
graph in order for the giant mutual component to exist. This
is in contrast with the situation for a single RGG where there
is a unique percolation threshold for a fixedd.

There is a non-trivial phase transition in the interdependent
RGGs. If λi is smaller than the percolation threshold of a
single RGGGi(λi, di, a

2), clearly there does not exist a giant
mutual component in the interdependent RGGs. Therefore,
λ∗

i > 0, ∀i ∈ {1, 2}. As we will see in the next section,
there exist percolation thresholdsλ∗

i < ∞, ∀i ∈ {1, 2}, which
concludes the non-trivial phase transition.

Given that the conditions for the percolation of
Gi(λi, di, a

2) and Gi(λi, di) are the same, in most
parts of the paper we study the percolation of two
interdependent Poisson boolean models on the same infinite
plane,GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep), by applying
techniques in continuum percolation. The percolation of
GIntDep is defined as the existence of aninfinite mutual
cluster, which consists of an infinite number of connected
nodes in bothG1(λ1, d1) andG2(λ2, d2) where every node
has at least one supply node in the same infinite mutual
cluster. In the rest of the paper we sometimes useGi to
denote bothGi(λi, di, a

2) andGi(λi, di). The model that it
refers to will be clear from the context.

C. Related work

The model which is closest to ours is the interdependent
lattice model, first proposed in [10] and further studied in
[3], [4]. In this model, nodes in a network are represented
by the opensites(nodes) of a square lattice, where every site
is open independently with probabilityp. Network links are
represented by thebonds(edges) between adjacent open sites.
Every node in one lattice is interdependent withonerandomly
chosen node within distancerd in the other lattice. The
percolation threshold of the interdependent lattice modelis
characterized as a function ofrd, assuming the samep in both
lattices [10]. Percolation of the model where some nodes do

not need to have supply nodes was studied in [3]. The analysis
relies on quantities estimated by simulation and extrapolation,
such as the fraction of nodes in the infinite cluster of a lattice
for any fixed p, which cannot be computed rigorously. In
contrast, we study the percolation of the interdependent RGG
model using a mathematically rigorous approach.

III. A NALYTICAL UPPER BOUNDS ON PERCOLATION

THRESHOLDS

In interdependent RGGs, nodes in the giant mutual com-
ponent are viewed as functioning while all the other nodes
are not. Thus, a node is functioning only if it is in the giant
component of its own graph, and it depends on at least one
node in the giant component of the other graph. For any node
b1 in G1, although the number of nodes inG2 within distance
ddep from b1 follows a Poisson distribution, the number of
functioning nodes is hard to calculate, since the fraction of
nodes in the giant component ofG2 is unknown. Moreover,
the nodes in the giant component ofG2 are clustered, and
thus the thinning of the nodes inG1 due to a lack of supply
nodes inG2 is difficult to characterize. To overcome these
difficulties, we consider the percolation of two RGGs jointly,
instead of studying the percolation of one RGG with reduced
node density due to a lack of functioning supply nodes.

We now give an overview of our approach. We develop
mapping techniques (discretizations) to characterize theperco-
lation of GIntDep by the percolation of a discrete model. Map-
pings from a model whose percolation threshold is unknown
to a model with known percolation threshold are commonly
employed in the study of continuum percolation. For example,
one can study the percolation threshold of the Poisson boolean
modelG(λ, d) by mapping it to a triangle lattice and relating
the state of a site in the triangle lattice to the point process of
G(λ, d). By the mapping, the percolation of the triangle lattice
implies the percolation ofG(λ, d). Consequently, an upper
bound on the percolation threshold ofG(λ, d) is given byλ
for which the triangle lattice percolates, a known quantity[11],
[8]. In general, more than one mapping can be applied, and the
key is to search for a mapping that gives a good (smaller) upper
bound. Following this idea, we propose different mappings
that fit different conditions to obtain upper bounds on the
percolation thresholds ofGIntDep.

A. Ratiod2/d1 is small

Given GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep), without
loss of generality we assume thatd1 ≤ d2. Moreover, we
assume thatddep ≥ max(d1/2, d2/2) = d2/2 (see the remark
at the end of the section for comments on this assumption).
Let c = ⌊d2/d1⌋ = max{c : d2/d1 ≥ c, c ∈ N}. For small
c, we study the percolation ofGIntDep by mapping it to an
independent bond percolation of a square lattice, and prove
the following result.

Theorem 1. If (λ1, λ2) satisfies

(1− e−λ1d
2

1
/8)c(1− e−λ2c

2d2

1
/8) > 1/2,



then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates,
wherec = ⌊d2/d1⌋, d1 ≤ d2, andddep≥ d2/2.

Proof. We first construct a square lattice as follows. Partition
the plane into small squares of side lengths = d1/2

√
2. A

large square consists ofc×c small squares and has side length
cs. The diagonalsof the large squares form the bonds of a
square latticeL, illustrated by the thick line segments in Fig. 2.

The state of a bond inL is determined by the point process
of GIntDep in the large square that contains the bond. A bond
(v1, v2) is open if the following conditions are both satisfied.

1) There is at least one node fromG1 in each of the two
small squares that contain the ends (v1 and v2) of the
bond, and they are connected through nodes fromG1,
all within the large square of side lengthcs.

2) There is at least one node fromG2 in the large square
that contains the bond.

Fig. 2. Mapping to a square lattice forc = 3.

The first condition is satisfied if there exists a sequence of
adjacent small squares, each of which contains at least one
node in G1, from the small square that containsv1 to the
small square that containsv2. (Each small square isadjacent
to its eight immediate neighbors.) In the example of Fig. 2,
these sequences include 3-5-7, 3-2-4-7, and 3-6-8-7.

To obtain a closed-form formula, instead of computing the
exact probability, we compute a lower bound on the probability
that the first condition is satisfied. The probability is lower
bounded by the probability that thec small squares that
intersect the bond each contain at least one node fromG1,
given by

p1 ≥ (1 − e−λ1d
2

1
/8)c.

The probability that the second condition is satisfied is

p2 = 1− e−λ2c
2d2

1
/8.

Given that the two Poisson point processes inG1 andG2

are independent, the probability that a bond is open isp1p2.
It remains to prove that the percolation ofL implies the

percolation ofGIntDep. Consider two adjacent open bonds
(v1, v2), (v2, v3) in L. Let S1 andS2 denote the two adjacent
large squares of side lengthcs that contain the two open bonds.

LetS′

1 andS′

2 denote two adjacent small squares of side length
s that containsv2, within S1 andS2, respectively. See Fig. 2
for an illustration. Since(v1, v2), (v2, v3) are open, under the
second condition, nodes ofG2 exist in S1 andS2 and they
are connected, because they are within distance2

√
2cs ≤ d2.

Under the first condition, nodes ofG1 form a connected path
from the small square (withinS1, marked as 7 in Fig. 2)
containingv1 to S′

1, and another path from the small square
(within S2) containingv3 to S′

2. Moreover, the two paths are
joined, because any pair of nodes inS′

1 and S′

2 are within
distance2

√
2s = d1. Given that any pair of nodes within a

large square have distance at most
√
2cs ≤ d2/2 ≤ ddep, all

the nodes have at least one supply node inside the large square
that contains an open bond. To conclude, if the open bonds in
L form an infinite cluster, then the nodes inGIntDep form an
infinite mutual cluster.

The event that a bond is open depends on the point
processes in the large square that contains the bond, and is
independent of whether any other bonds are open. As long as
the probability that a bond is open,p1p2, is larger than1/2,
which is the threshold for independent bond percolation in a
standard square lattice [12],GIntDep percolate.

The bound can be made tighter for any givenc = ⌊d2/d1⌋,
by computing more precisely the probability that the first
condition is satisfied. We provide an example to illustrate the
computation of an improved upper bound.

Example:Consider an example whered1 = 1, d2 = 2ddep=
3. The probability that there is at least one node fromG2 in
the large square of side length3/2

√
2 is p2 = 1− e−9λ2/8.

The probability that a small square contains at least one
node fromG1 is ps = 1 − e−λ1/8. The probability that the
first condition is satisfied is

p1 = p3s + (1− ps)p
4
s + (1− ps)p

4
s − (1− ps)p

6
s, (1)

obtained by considering all the sequences of adjacent small
squares. Sincep1 computed by Eq. (1) is larger thanp3s for
any fixedps, the bound onλ2 is smaller for any fixedλ1.

B. Ratiod2/d1 is large

In the mapping fromGIntDep to the square latticeL, the
condition for a bond to be open becomes overly restrictive
asd2/d1 increases. A path joining the two large squares that
contain two adjacent bonds do not have to cross the small
squares that contain the common end of the two bonds. We
obtain another upper bound on the percolation threshold of
GIntDep, given by the following theorem. This upper bound is
tighter than the bound in Theorem 1 for larger values ofd2/d1.

Theorem 2. If (λ1, λ2) satisfies
[

1−
4

3
(m+1)em log 3(1−p)

][

1−
4

3
(2m+1)em log 3(1−p)

]

p
′

> 0.8639,

then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates,
where p = 1 − e−λ1d

2

1
/8, p′ = 1 − e−2D2λ2 , D =

min(d2/
√
10, ddep/

√
5),m = ⌊2D/d1⌋, d1 ≤ d2, and ddep ≥

d2/2.



This upper bound is obtained by mappingGIntDep to a
dependent bond percolation modelLD. The mapping from
the Poisson boolean modelG(λ, d) to LD was first proposed
in [13] to study the percolation threshold ofG(λ, d), and later
applied to the study of the robustness of random geometric
networks [14]. We briefly describe the method in the previous
literature that usesLD to study the percolation ofG(λ, d), and
then prove Theorem 2 based on a similar method.

1) 1-dependent bond percolation modelLD: In the stan-
dard bond percolation model on a square latticeL, the event
that a bond is open is independent of the event that any other
bond is open. If in a square latticeLD, the event that a bond is
open may depend on the event that its adjacent bond is open,
but is independent of the event that any non-adjacent bond is
open, thenLD is a 1-dependent bond percolation modelon a
square lattice. With the additional restriction that each bond
is open with an identical probability, an upper bound on the
percolation threshold ofLD is 0.8639 [13].

The 1-dependent bond percolation modelLD can be used to
study the percolation ofG′ where the points are generated by
homogeneous Poisson point processes. To construct a mapping
from G′ to LD, consider two adjacentD×D squaresS1 and
S2 and let R be the rectangle formed by the two squares.
A bond (v1, v2) that connects the centers ofS1 and S2 is
associated withR. Figure 3 illustrates the square lattice formed
by the bonds, represented by thick line segments.

Fig. 3. Square latticeLD formed by the bonds.

Lemma 3. Let the state of bond(v1, v2) be determined by the
homogeneous Poisson point processes ofG′ insideR, and the
conditions for a bond to be open be identical for all bonds.
Then the bonds form a 1-dependent bond percolation model
LD with identical bond open probabilities.

The proof of this lemma can be found in the technical report
[15]. By properly setting the conditions for a bond to be open,
the percolation ofLD can imply the percolation ofG′. We
first look at an example in [12] that studies the percolation of
G(λ, d), and extend the technique to studyGIntDep.

Example [12]: Let a bond be open if a path inG(λ, d)
crosses1 R′ horizontally and another path inG(λ, d) crosses
S′

1 vertically, whereR′ is a (2D − 2d)× (D − 2d) rectangle
that has the same center asR, andS′

1 is a(D−2d)×(D−2d)

1A path crosses a rectangleR′ = [x1, x2] × [y1, y2] horizontally if the
path consists of a sequence of connected nodesv1, v2, . . . , vn−1, vn, and
v2, . . . , vn−1 are inR′, x(v1) ≤ x1, x(vn) ≥ x2, y1 ≤ y(v1), y(vn) ≤
y2, wherex(vi) is thex-coordinate ofvi and y(vi) is the y-coordinate of
vi. A path crosses a rectangle vertically is defined analogously.

square that has the same center asS1. The reason for consid-
eringR′ andS′

1 is that the existence of the two crossing paths
over R′ and S′

1 is entirely determined by the point process
within R, while the existence of links within distanced from
the boundaries (and thus the crossings overR) may depend
on nodes outsideR.

If two adjacent bonds are open, the paths inG(λ, d) in the
two rectangles are joined. To see this, note that in Fig. 4,
if the black and blue bonds (same direction) are both open,
the crossings 1 and 2 intersect. If the black and red bonds
(perpendicular) are both open, the crossings 1 and 3 intersect.

Fig. 4. Crossings over rectangles associated with two adjacent open bonds
are joined.

If the square latticeLD percolates, open bonds form an
infinite cluster. Paths inG(λ, d) across the rectangles associ-
ated with the open bonds are connected and form an infinite
cluster. Therefore, a node density above whichLD percolates
is an upper bound on the percolation threshold ofG(λ, d).

2) Proof of Theorem 2:We mapGIntDep to LD by letting
a bond inLD be open if the following three conditions are
satisfied in its associated rectangleR = S1∪S2. The size of the
rectangle satisfiesD = min(d2/

√
10, ddep/

√
5) ≥ d2/2

√
5.

1) A path fromG1 crossesR′ horizontally, whereR′ is a
(2D−2d1)×(D−2d1) rectangle that has the same center
asR.

2) A path fromG1 crossesS′

1 vertically, whereS′

1 is a(D−
2d1)× (D− 2d1) square that has the same center asS1.

3) There is at least one node fromG2 in R.
To bound the percolation thresholds ofGIntDep, in the

technical report [15], we prove that the percolation ofLD

implies the percolation ofGIntDep, and compute the probability
that the three conditions are satisfied using a method similar
to [16].

Remark:We have assumed thatddep ≥ max(d1/2, d2/2) =
d2/2 in this section. To see that this is a reasonable assump-
tion, note that nodes inG1 that have at least one functioning
supply node are restricted in the regionRdep, whereRdep is a
union of disks with radiusddep centered at nodes in the giant
component ofG2. If Rdep is fragmented, it is not likely for
disks of radiusd1/2 < d2/2 centered at random locations
within Rdep to overlap, and it is not likely that a functioning
giant component will exist inG1, unless the node density
in G1 is large. Therefore, the interdependent distanceddep

should be large enough so thatRdep is a connected region,
to avoid a large minimum node density inG1. The region
Rdep can be made larger by increasing eitherλ2 or d2. Setting



ddep ≥ d2/2 avoids increasingλ2 high above the percolation
threshold ofG2, in order forRdep to be connected. In Section
IV, we propose more general approaches that do not require
this assumption.

IV. CONFIDENCE INTERVALS FOR PERCOLATION

THRESHOLDS

In the previous section, we discussed a method of mapping
the percolation ofGIntDep to the percolation of the 1-dependent
bond percolation modelLD. The previous mapping and the
mapping that we consider in this section both satisfy the
following: 1) the percolation ofLD implies the percolation
of GIntDep; 2) the event that determines the state of a bond
depends only on the point process within its associated rect-
angle, thus preserving the 1-dependent property. The event
probability can be computed or bounded analytically in the
previous section. In contrast, in this section, we considerevents
whose probabilities are larger under the same point processes
but can only be evaluated by simulation. Since the events that
we consider in this section are more likely to occur under the
same point processes, the mappings yield tighter bounds.

Our mappings fromGIntDep toLD extend the mappings from
G(λ, d) to LD proposed in [13]. For completeness, we first
briefly summarize the mappings in [13] that determine upper
and lower bounds on the percolation threshold ofG(λ, d).

Upper bound forG(λ, d) [13]: Recalling Fig. 3, the event
that a bond(v1, v2) ∈ LD is open is determined by the point
process ofG(λ, d) in the rectangleR = S1∪S2, whereS1 and
S2 are squares. LetVi denote the largest component formed
by the points ofG(λ, d) in Si. If Vi is the unique largest
component inSi (∀i ∈ {1, 2}) andV1 andV2 are connected,
then the bond is open. Otherwise, the bond is closed.

If LD percolates, open bonds form an infinite cluster. As
a result, the largest components in the squares that intersect
the open bonds are connected inG(λ, d) and they form an
infinite cluster. Therefore, a node densityλ, above which the
probability that a bond is open is larger than 0.8639, is an
upper bound on the percolation threshold ofG(λ, d).

Lower bound forG(λ, d) [13]: Let theconnection process
of G(λ, d) be the union of nodes and links inG(λ, d). Let
the complementof the connection process be the union of
the empty space that do not intersect nodes or links. If
the complement of the connection process form a connected
infinite region, then all the connected clusters inG(λ, d) have
finite sizes andG(λ, d) does not percolate [13], [17]. Consider
the complement of the connection process in rectangleR.
Let a bond (inLD) associated with rectangleR be open if
the complement process forms a horizontal crossing2 over the
rectangleR′ and a vertical crossing over the squareS′

1.
If LD percolates, the complement process forms an infinite

region andG(λ, d) does not percolate. To conclude, a node
density, under which the probability that the complement

2The complement of a connection process forms a horizontal crossing over
a rectangle if a curve in the rectangle touches the left and right boundaries of
the rectangle and the curve does not intersect any nodes or links. The vertical
crossing of the complement process is defined analogously.

process forms the two crossings is above 0.8639, is a lower
bound on the percolation threshold ofG(λ, d).

A. Upper bounds forGIntDep

Two mutual componentsM = V1 ∪ V2 and M̂ = V̂1 ∪ V̂2

form one mutual component if and only ifVi and V̂i are
connected inGi (∀i ∈ {1, 2}). The necessity of the condition
is obvious. To see that this condition is sufficient, note that
every node in the connected component formed byVi and V̂i

has at least one supply node which belongs to the connected
component formed byVj and V̂j (∀i, j ∈ {1, 2}, i 6= j).
The condition can be generalized naturally for more than two
mutual components to form one mutual component.

Algorithm 1 An algorithm that greedily computes a mutual
componentMgreedy(S) in regionS.

1) Identify the largest connected componentV 0
i (S) in

Gi(S), whereGi(S) consists of the nodes and links ofGi

in S. If there are multiple largest connected components,
apply any deterministic tie-breaking rule (e.g., choose the
component that contains a nodes with the smallestx-
coordinate).

2) Remove nodes inV 0
i (S) that do not have supply nodes

in V 0
j (S) (∀i, j ∈ {1, 2}, i 6= j). Identify the largest

connected componentV 1
i (S) formed by the remaining

nodes inV 0
i (S) (∀i ∈ {1, 2}), and apply the same tie-

breaking rule.
3) Repeat step 2 untilV k+1

i (S) = V k
i (S) (∀i ∈ {1, 2}). Let

Mgreedy(S) = V k
1 (S) ∪ V k

2 (S).

Let a bond(v1, v2) in LD be open if the two components
Mgreedy(S1) and Mgreedy(S2) form one mutual component,
where Mgreedy(Si) is computed by Algorithm 1. See the
technical report [15] for the rationale behind this algorithm.
SinceMgreedy(Si) is unique in any squareSi, a connected
cluster in LD implies that {Mgreedy(Si)} form one mutual
component inGIntDep, whereSi are the squares that intersect
the open bonds in the connected cluster. If the probability that
a bond is open is larger than 0.8639,LD percolates andGIntDep

also percolate.
An alternative condition for a bond to be open is that nodes

in Mgreedy(R) form a horizontal crossing over rectangleR′

and a vertical crossing over squareS′

1 in both graphs (recall
Fig. 4 and the condition for two mutual components to form
one mutual component). In order for the existence of the two
crossings to only depend on the point processes inR, in the
definition ofR′ andS′

1, d = max(d1, d2, ddep).
An upper bound on the percolation threshold can be ob-

tained by either approach. The smaller bound obtained by the
two approaches is a better upper bound on the percolation
threshold ofGIntDep.

B. Lower bounds forGIntDep

In GIntDep, the connection process consists of nodes and
links in mutual components. To avoid the heavy computation
of mutual components, we study another model in which the



connection process̃Pi of Gi in the new modeldominates3 the
connection processPi of Gi in GIntDep (∀i ∈ {1, 2}). As a
consequence, the complement of the connection processP̃ c

i

of Gi in the new model is dominated byP c
i (∀i ∈ {1, 2}). If

P̃ c
i percolates, thenP c

i percolates andPi does not percolate.
If either P1 or P2 does not percolate, thenGIntDep do not
percolate. Thus, node densities under which at least one of
P̃ c
1 and P̃ c

2 percolates are lower bounds on the percolation
thresholds ofGIntDep.

The new model can be viewed to have arelaxed supply
requirement. In this model, every node (as opposed to nodes
in the same mutual component) is viewed as a valid supply
node for nodes in the other graph. A nodebi in Gi is
removed if and only if there is no node inGj within the
interdependent distanceddep from bi (∀i, j ∈ {1, 2}, i 6= j).
After all such nodes are removed, the remaining nodes in
Gi are connected if their distances are within the connection
distancedi. The computation of the connection processP̃i is
efficient and avoids the computation of mutual components in
GIntDep through multiple iterations.

The connection process̃Pi in the new model dominates
Pi in the original modelGIntDep. On the one hand, for any
realization, all the links inPi are present inP̃i, because all
the nodes in a mutual component have supply nodes, and links
between these nodes are present in the new model as well.
On the other hand, in the new model, nodes in a connected
component̃Vi in Gi may depend on nodes in several connected
components inGj . In contrast, inGIntDep, Ṽi may be divided
into several mutual components and links do not exist between
two disjoint mutual components.

An algorithm that computes a lower bound on the percola-
tion threshold ofGIntDep is as follows. First obtain the connec-
tion process̃Pi in the new model. Next in the2D×D rectangle
R, consider the complement of the connection processP̃ c

i . Let
pi denote the probability that there is a horizontal crossing
over R′ and a vertical crossing overS′

1 in the processP̃ c
i ,

whereR′ andS′

1 are the same as before. A lower bound on
the percolation threshold ofGIntDep is given by node densities
under whichmax(p1, p2) ≥ 0.8639.

C. Confidence intervals

The probability that a bond is open can be represented by
an integral that depends on the point processes in the rectangle
R. However, direct calculation of the integral is intractable, so
instead the integral is evaluated by simulation. In every trial of
the simulation, nodes inG1 andG2 are randomly generated
by the Poisson point processes with densitiesλ1 and λ2,
respectively. The events that a bond is open are independent
in different trials. Let the probability that a bond is open be
p given (λ1, λ2). The probability that a bond is closed ink
out of N trials follows a binomial distribution. The interval
[0.8639, 1] is a 99.5% confidence interval [18] forp, given
that N = 100 and k = 5. If k < 5, p ∈ [0.8639, 1] with a

3A connection process dominates another if the nodes and links in the first
process form a superset of the nodes and links in the second process, for any
realization ofGi.

higher confidence. This suggests that ifk ≤ 5, with 99.5%
confidencep ≥ 0.8639 and the 1-dependent bond percolation
modelLD percolates given(λ1, λ2).

Based on this method, with99.5% confidence an upper
bound on the percolation threshold ofGIntDep can be obtained
by declaring a bond to be open using the method in Section
IV-A, and with 99.5% confidence a lower bound can be
obtained by declaring a bond to be open using the method
in Section IV-B. For a fixedλ∗

2, a 99% confidence interval for
λ∗

1 is obtained, given by the interval between the upper and
lower bounds. Confidence intervals for different percolation
thresholds can be obtained by changing the value ofλ∗

2 and
repeating the computation. We make a similar remark as
in [13]. The confidence intervals are rigorous, and the only
uncertainty is caused by the stochastic point process in the
2D × D rectangle. This is in contrast with the confidence
intervals obtained by estimating whetherGIntDep percolate
based on extrapolating the observations of simulations in a
finite region (which is usually not very large because of limited
computational power).

D. Numerical results

The simulation-based confidence intervals are much tighter
than the analytical bounds. Given thatd1 = d2 = 2ddep = 1,
andλ∗

2 = 2, the upper and lower bounds onλ∗

1 are 2.25 and
1.80, respectively, both with99.5% confidence. In contrast,
even ifλ∗

2 → ∞, the analytical upper bound onλ∗

1 is no less
than 3.372, which is the best available analytical upper bound
for a singleG1 [11]. Confidence intervals for the percolation
thresholds are plotted in Fig. 5.
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Fig. 5. The intervals between bars are99% confidence intervals for percola-
tion thresholds. The confidence intervals of two differentGIntDep are plotted.

V. ROBUSTNESS OF INTERDEPENDENTRGGS UNDER

RANDOM FAILURES AND GEOGRAPHICAL ATTACKS

Removing nodes independently at random with the same
probability in an RGG amounts to reducing the node density
of the Poisson point process. To study the robustness of
two interdependent RGGsG1 andG2 under random failures,
the first step is to obtain the upper and lower bounds on
percolation thresholds. With the bounds, we can determine



which graph is able to resist more random node removals,
by comparing the gap between the node densityλi and the
percolation thresholdλ∗

i given λj (i, j ∈ {1, 2}, i 6= j). The
graph that can resist a smaller fraction of node removals is
the bottleneck for the robustness of the interdependent RGGs.
Besides, we can compute the maximum fraction of nodes that
can be randomly removed from two graphs while guaranteeing
the interdependent RGGs to be percolated.

We next show that the interdependent RGGs still percolate
after a geographical attack that removes nodes in a finite con-
nected region, if the node densities of the two graphs beforethe
attack are above anyupper boundon the percolation thresholds
obtained in this paper (either analytical or simulation-based).
Recall that we obtained upper bounds on the percolation
thresholds ofGIntDep by mapping the percolation ofGIntDep

to the bond percolation of either a standard square latticeL
or the 1-dependent square latticeLD. Moreover, whether a
bond e is open is entirely determined by the point processes
in a finite regionRe that contains the bond. After removing
nodes ofGIntDep in a connected finite geographical region, the
state of a bonde may change from open to closed only ifRe

intersects the attack region. LetRf be the union ofRe that
intersects the attack region. The regionRf is also a connected
finite region. As long asL or LD still percolates after setting
bonds inRf to be closed,GIntDep percolate.

Results from the percolation theory indeed indicate that
setting all the bonds in a finite regionRf to be closed does
not affect the percolation ofL or LD. For any percolatedL,
the probability that there exists a horizontal crossing of open
bonds over akl × l rectangle approaches 1 for any integer
k > 1, as l → ∞ (Lemma 8 on Page 64 of [12]). The
percolation ofL (after setting all bonds inRf to be closed)
is justified by the fact that the connected open bonds across
rectangles form a square annulus that does not intersectRf

(shown in Fig. 6), which is a standard approach to prove the
percolation ofL [12]. Moreover, the percolation ofLD after all
bonds inRf are closed can be proved in the same approach,
by noting that the probability that open bonds ofLD form
a horizontal crossing over a rectangle approaches 1 as the
rectangle size increases to infinity [13].

If the kl× l rectangle is large but finite, the probability that
a horizontal crossing formed by open bonds exists is close
to 1 if L or LD percolates. Therefore, the same analysis
demonstrates the robustness of finite interdependent RGGs
under geographical attacks that remove a positive fractionof
nodes in a connected region. Simulations for the robustnessof
interdependent RGGs under geographical attacks can be found
in the technical report [15].

VI. CONCLUSION

We developed an interdependent RGG model for interde-
pendent spatially embedded networks. We obtained analytical
upper bounds and confidence intervals on the percolation
thresholds. The percolation thresholds of two interdependent
RGGs form a curve, which shows the tradeoff between the
two node densities in order for the interdependent RGGs to

Fig. 6. Open bonds form a connected path across rectangles aroundRf .

percolate. The curve can be used to study the robustness of
interdependent RGGs to random failures. Moreover, if the
node densities are above any upper bound on the percolation
thresholds obtained in this paper, then the interdependent
RGGs remain percolated after a geographical attack.
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