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Abstract—We consider an opportunistic communication system
in which a secondary transmitter communicates over the unused
time slots of a primary user. In particular, we consider a system in
which the primary user is uncooperative and transmits whenever
its buffer is nonempty, and the secondary user relies on feedback
from its receiver in order to decide when to transmit. The
objective of the secondary user is to maximize its own throughput
without degrading the throughput of the primary user. We
analyze the maximum achievable throughput of the secondary
user by formulating the problem as a partially observable
Markov decision process. We derive bounds on the optimal
solution and find a channel access policy for the secondary user
that is near-optimal when the primary user’s exogenous arrival
rate is low. These results are then used to characterize the set
of arrival rates to the primary and secondary users that may be
stably supported by the system.

I. INTRODUCTION

Many currently deployed wireless devices underutilize their

allocated spectrum. As a result, the concept of spectrum

sharing has emerged as a method for increasing spectral

efficiency. In a spectrum sharing system, a secondary user

opportunistically communicates over a primary user’s channel

in order to utilize times when the channel is idle (see Fig. 1).

In this paper, we consider an uncooperative primary user that

transmits whenever it has packets available to send. Then, the

objective of the secondary user is to decide when to transmit

in order to maximize its own throughput without degrading

the throughput of the primary user.

In many wireless settings, the secondary user may rely

upon channel sensing to detect the primary user’s activity

on the channel in order to avoid collisions. For this setting,

the spectrum sharing problem has been well studied in the

literature under the assumptions of both perfect and imperfect

channel sensing [1]–[7]. Of particular interest are the works of

[5] and [6] which consider optimal channel access policies for

network models similar to those considered in this paper, with

the assumption that the secondary user has access to channel

sensing.

In this work, we consider systems in which channel sensing

is unavailable. This may arise in settings where the ratio of

the channel’s propagation delay to packet transmission time

is large [8], such as in satellite communications, wide-area
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wireless networks, or certain spread spectrum systems (e.g.,

frequency hopping). Our goal is to design a transmission

policy for the secondary user that attempts to take advantage

of the primary user’s idle slots. The key challenge is that

the secondary user cannot observe the primary user’s queue

backlog and must rely on feedback from its receiver in order

to make transmission decisions.

In the following, we explore fundamental limits on the

maximum throughput that is achievable by the secondary user

while still allowing the primary user to meet its throughput

requirements. Since the primary user’s behavior is driven by

whether it has packets available to send, a state which is hidden

from the secondary user, the problem can be modeled as a

partially observable Markov decision process (POMDP). In

general, finding analytical solutions to POMDPs is difficult

[9]. Herein, we proceed to derive lower and upper bounds on

the optimal solution and relate these results to conditions for

queue stability of the primary and secondary users. When the

arrival rate to the primary user is low, these results provide

a near-optimal secondary user policy. For higher rates, our

results provide a meaningful characterization of the spectrum

sharing system’s maximum throughput.

II. PROBLEM FORMULATION

We consider a time slotted system with two users commu-

nicating over a shared collision channel (see Fig. 1). The first

user, which we refer to as the primary user, transmits a packet,

in a time slot, whenever its queue is nonempty. Packets arrive

to the primary user’s queue according to a Bernoulli process

with rate λ ∈ (0, 1) and can be transmitted in the slot in which

they arrive. Let A(t) ∈ {0, 1} be the number of arrivals to the

primary user’s queue in time slot t and Q(t) be the number

of packets in the queue after arrival A(t).

The objective of the secondary user is to maximize its rate

of successful transmissions over the channel. The channel is

modeled as a collision channel. Thus, if at time slot t only

the primary or secondary user transmits, the transmission is

successful, and if both users transmit at time t, both transmis-

sions are unsuccessful. Both users receive ternary feedback

immediately after each time slot indicating whether the time

slot contained a successful transmission, a collision, or was

idle. Primary user packets that are involved in a collision

remain in the primary user’s queue awaiting a future successful

transmission.
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The secondary user does not have access to channel sensing

and must rely only on its history of actions and ternary

feedback up to time slot t − 1 in order to decide whether to

attempt transmission at time slot t. We assume the secondary

user knows that A(t) is Bernoulli and the value of λ but cannot

directly observe either A(t) or Q(t). This leads to a partially

observable Markov decision process with the objective of

maximizing the time average expected reward rate (i.e., the

expected rate of successful secondary user transmissions). Our

goal is to devise a policy that maps the history of actions and

ternary feedback to a decision on whether or not to transmit

at the given time slot such that the rate of expected successful

transmissions by the secondary user is maximized. Note that,

from the above, the secondary user can only obtain successful

transmissions during time slots when the primary user’s queue

is empty. Therefore, in order to have a nonzero throughput,

the secondary user must allow the primary user to service its

arrival process.

III. POMDP MODEL

We proceed to give a concrete formulation of the problem

as a POMDP following the notation of [9]. At each discrete

time t, the state of the system is the queue size of the

primary user, Q(t) ∈ {0, 1, 2, . . .}, and the secondary user

may take an action u(t) ∈ U = {TR,NT } where TR denotes

transmission and NT no transmission. The state Q(t) is

unobservable to the secondary user. Instead, ternary feedback

provides an observation z(t) ∈ Z = {S,C, I} where S

denotes a successful transmission, C a collision, and I an idle

slot. The observed ternary feedback is given by the following

function of Q(t) and u(t)

z(t) =















S, if Q(t) = 0 and u(t) = TR

S, if Q(t) > 0 and u(t) = NT

C, if Q(t) > 0 and u(t) = TR

I, if Q(t) = 0 and u(t) = NT

.

To inform its decisions, the secondary user has at its disposal

the history H(t) of all past actions and observations (i.e.,

H(t) = {u(0), . . . , u(t− 1), z(0), . . . , z(t− 1)}). Without

loss of generality, we assume Q(−1) = 0 and this fact is

known to the secondary user.

A solution to the POMDP is a policy π = {f0, f1, f2, . . . }
that provides for each time t a mapping ft such that

ft (H(t)) ∈ U . Define by B(t) the reward process of the

POMDP where

B(t) =

{

1, if Q(t) = 0, u(t) = TR

0, otherwise
.

(i.e., a reward of 1 is accrued for each successful secondary

user transmission.) An optimal solution to the POMDP is a

policy that achieves

µ∗ , max
π

lim sup
T→∞

E

[

1

T

T−1
∑

t=0

B(t)

]

. (1)

Fig. 1. Primary and secondary users transmitting over a collision channel.
The secondary user’s objective is to maximize its throughput.

This objective is equivalent to maximizing the throughput of

the secondary user given that at each time t the secondary user

always has an available packet to send.

Given H(t), a probability mass function on the distribution

of Q(t) may be computed. In general, evaluating the optimal

solution to a POMDP is difficult [9]. In the following sections

we derive lower and upper bounds on (1) as a function of λ.

IV. LOWER BOUND

We derive a lower bound on (1) by evaluating the perfor-

mance of a class of simple, suboptimal randomized stationary

policies, π′. Policy π′ is defined as follows: at each time

slot t, π′ does not transmit if the ternary feedback indicates

a collision at time slot t − 1 and otherwise transmits with

probability p. For a given value of λ, p can be optimized to

obtain the maximum secondary user throughput attainable by

this class of policies. This gives the following result.

Theorem 1. There exists a value of p, denoted p∗, such that

the randomized stationary policy π′ achieves a secondary user

throughput

µ∗

lb , lim
T→∞

E

[

1

T

T−1
∑

t=0

B(t)

]

=







1− 2λ, for λ ≤ 1
3

(1−λ)2

4λ , for λ > 1
3

(2)

We plot (2) as a function of λ in Fig. 2. The proof is based

on a Markov chain analysis of the policy and is omitted for

brevity. Note that under policy π′, the primary user’s queue

satisfies the following notion of stability.

Corollary 1. Under policy π′ with p = p∗, the primary user’s

queue is recurrent.

This result is intuitive, since the secondary user may only

obtain successful transmissions during time slots when the

primary user’s queue is empty.

V. UPPER BOUND

We next provide an upper bound on (1). We begin with the

following two lemmas.

Lemma 1. A policy that minimizes the expected time between

successful secondary user transmissions, maximizes the sec-

ondary user’s throughput.

2016 IEEE International Symposium on Information Theory

1243



Proof. Recall that we assume that at time t = −1,Q(−1) = 0,
and this fact is known by the secondary user. Now, assume at

time t−1, the secondary user makes a successful transmission.

Then, H(t) = {u(0), . . . , u(t−1) = TR, z(0), . . . , z(t−1) =
S} and the secondary user knows Q(t − 1) = 0. However,
given Q(t − 1) = 0, the actions u(0), . . . , u(t − 1) and

observations z(0), . . . , z(t − 1) are independent of all future

events. Additionally, the future starting at time t is statistically

the same as at time 0. Therefore, every successful transmission

by the secondary user renews the system and there exists an

optimal policy that, after each successful transmission, ignores

all actions and observations that preceded the successful

transmission.

Under this optimal policy, the intervals between successful

transmissions are independent and identically distributed and

thus form a renewal process. By the elementary renewal

theorem [10, Theorem 5.6.2] we have

lim sup
T→∞

E

[

1

T

T−1
∑

t=0

B(t)

]

=
1

E [D]
. (3)

where E [D] is the mean time between successful transmis-

sions. Thus, a policy that minimizes E [D] must maximize

throughput (cf. (1)).

Next, we show that there exists an optimal policy under

which the secondary user chooses to not transmit after colli-

sions.

Lemma 2. There exists a policy that maximizes the secondary

user’s throughput and adopts the following rule: if z(t− 1) =
C, then action u(t) = NT is selected.

The intuition behind Lemma 2 is simple. Since after a

collision we know that the primary user’s queue is nonempty,

a transmission by the secondary user will result in another

collision. We omit the complete proof for brevity.

A. Augmented System Model

Define N(t) to be the maximum number of packets that

could potentially be in the primary user’s queue at time slot t

(i.e., the maximum possible value of Q(t) given H(t)). Note
that every time we observe z(t−1) = I or obtain a successful

secondary user transmission, we know N(t) = 1 since either

event implies Q(t− 1) = 0.
Now, to derive an upper bound on the secondary user’s

throughput, we augment the observation space Z to include

additional information beyond ternary feedback. Any policy

that ignores this additional feedback is admissible under the

original system. Thus, the optimal solution to the augmented

system is an upper bound on the original system.

Our augmentation is as follows. Assume the primary user

serves packets in first come first served (FCFS) order and

each packet is timestamped with the time slot in which it

arrived to the primary user’s queue. The new observation

space consists of Z and the timestamps on the primary

user’s successfully transmitted packets. Upon observing the

timestamp the secondary user knows that all packets that may

have arrived to the primary user’s queue prior to the timestamp

have been successfully transmitted. Define τ(t) to be the most

recently observed timestamp by the secondary user by the

start of time slot t. Then, uncertainty only remains over those

packets that may have arrived between time τ(t) and current

time t. Clearly, following the observation of a new timestamp,

N(t) = t − τ(t) is equal to the number of time slots in

which a packet may have arrived to the primary user’s queue

since the most recent successfully transmitted packet and is

the maximum number of packets that could potentially be in

the primary user’s queue at time t.

B. Augmented System as a Total Cost Problem

We now formulate a stochastic shortest path problem with

the goal of minimizing the expected time until the next

successful transmission by the secondary user. By Lemma 1,

this is equivalent to maximizing the throughput. Furthermore,

by Lemma 2, there exists an optimal policy that, given a

collision at time t−1, chooses not to transmit at time t; thereby

allowing the previously collided primary user packet to be

successfully transmitted. We therefore restrict our attention to

policies that take action u(t) = NT whenever z(t− 1) = C.

In the following, we analyze the augmented system model in

order to bound the optimal solution to the original system.

Given the above, we formulate an infinite horizon Markov

decision process (MDP) over stage index k ∈ {0, 1, . . .}. The
index k defines a subsequence tk of the sequence t, where the

subsequence corresponds to the time slots t not following a

collision (i.e., z(t−1) 6= C). Given that we force the policy to

choose u(t) = NT whenever z(t−1) = C, one can see that tk
corresponds to those time slots where decisions about which

action to take must be made. Note that N(tk) completely

characterizes the secondary user’s knowledge about Q(tk) at

time tk. Moreover,

P (Q(tk) = q|N(tk) = n) = (nq)λ
q(1 − λ)n−q.

Therefore, an optimal policy may be a function of N(tk)
instead of H(tk) [9].
We define the states of our MDP as N(tk) ∈ N =

{0, 1, 2, . . .} and actions as u(tk) ∈ U . Our state space N
is composed of two parts. Prior to obtaining a successful

transmission, the system is in states {1, 2, . . .} which cor-

responds to the maximum possible size of Q(tk), as defined

above. However, when the secondary user obtains a successful

transmission, the system enters a trapping state, 0, and remains

there for all future indices at no further cost. We now give the

state transition probabilities and (negative) reward function of

the MDP. They are subsequently explained.

For n ≥ 1, the transition probabilities are given by

P (N(tk+1) = m|N(tk) = n, u(tk)) =














(1− λ)n, for u(tk) = TR, m = 0
λ(1 − λ)n+1−m, for u(tk) = TR, 2 ≤ m ≤ n+ 1
(1− λ)n−1, for u(tk) = NT, m = 1
λ(1 − λ)n−m, for u(tk) = NT, 2 ≤ m ≤ n

(4)
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For n ≥ 1, the reward function, which counts the number of

time slots between successful transmissions by the secondary

user, is given by

g (N(tk) = n, u(tk), N(tk+1) = m) =






0, for u(tk) = TR, m = 0
−2, for u(tk) = TR, m ≥ 2
−1, for u(tk) = NT, m ≥ 1

(5)

We now explain (4) and (5). Suppose at stage k, N(tk) =
n ≥ 1. If the policy selects u(tk) = TR, with probability (1−
λ)n the primary user’s queue will be empty and the secondary

user will obtain a successful transmission. Then, N(tk+1) = 0
and no cost is incurred. However, with probability 1 − (1 −
λ)n the primary user’s queue will be nonempty. When this

happens, a collision occurs at time tk, the secondary user elects

to not transmit at the next time slot to allow the primary user

to successful transmit the previously collided packet, and the

next subsequence decision point tk+1 = tk + 2. Thus, a total

of two time slots are lost by this event (cf., (5) case 2) and a

new value N(tk+1) is obtained according to the distribution

of (4) case 2.
If, on the other hand, the policy selects u(tk) = NT

the secondary user cannot obtain a successful transmission

but also cannot incur a collision. Then, the next subsequent

decision point is tk+1 = tk + 1, one time slot is lost (cf., (5)

case 3), and the next value of N(tk+1) can be shown to be

given by (4) cases 3 and 4.
Given the transition probabilities (4) and reward process

(5), our objective is to obtain a policy π = {f0, f1, . . . } that

maximizes

σ , lim
K→∞

E

[

K−1
∑

k=0

g (N(tk), u(tk), N(tk+1))

∣

∣

∣

∣

∣

N(t0) = 1

]

.

(6)

We define σ∗ to be the maximum, attainable value of (6) over

the set of all policies.

Note that following a successful secondary user transmis-

sion, N(t) = 1. Then, (6) can be seen to be the (negative)

expected number of time slots until the beginning of the next

successful transmission by the secondary user starting from

a time slot immediately following a successful transmission.

Using (3), an upper bound on µ∗ is

µ∗

ub ,
1

1− σ∗
.

The specified Markov decision process is a negative ex-

pected total-reward problem with a countable state space and

finite action space. By [11, Theorem 7.3.6] such a problem

has an optimal deterministic, stationary policy (i.e., there

exists an optimal policy π∗ = {f∗, f∗, . . . } such that f∗

deterministically maps f∗(N(tk)) ∈ U).
Now, consider a deterministic stationary policy that chooses

to transmit in states N(tk) ∈ {1, . . . ,M − 1} and not transmit

in state N(tk) = M (i.e., the smallest numbered state in

which the policy decides to not transmit is M ). It follows

that states {M + 1,M + 2, . . . } are unreachable from states

{0, 1, 2, . . . ,M}. Thus, states {0, 1, 2, . . . ,M} form a finite

state Markov chain under this policy, and Bellman’s equations

for this policy have a solution over these states. Denote

by V (n) the cost-to-go of state n ∈ {0, 1, . . . ,M}. From
equations (4) and (5) we see that Bellman’s equations for the

policy are given by the following. For states 1, 2, . . . ,M − 1
in which the policy transmits

V (n) =

n
∑

m=1

λ(1 − λ)n−m (V (m+ 1)− 2) ,

for n = 1, 2, . . . ,M − 1. (7)

For state M in which the policy does not transmit

V (M) = (1− λ)M (V (1)− 1)+
M
∑

m=1

λ(1 − λ)M−m (V (m)− 1) . (8)

Furthermore, V (0) = 0, since once entering state 0 no more

negative reward is accrued.

By the definition of cost-to-go, V (1) defined by (7) is the

same as (6), (i.e., V (1) = σ). For a given value of λ we now

optimize V (1) over integer value M in order to characterize

σ∗. Note that if M = 1, the expected time until a successful

transmission is unbounded. Thus, we restrict our attention to

M ≥ 2. The optimization is over the set of all policies that do

not transmit in at least one state. However, it may be shown

that as M goes to infinity, V (1) approaches the value of σ

obtained by the policy that transmits in all states.

C. Solving Bellman’s Equations

In this section we show that µ∗

ub can be found using a

simple search over integer values M . We omit the proofs

for brevity. We begin by giving the solution to V (1) from

Bellman’s equations, (7) and (8).

Proposition 1.

V (1) =















(2−4λ)(λ(1−λ))M−1+2λ(1−λ)M−1
−λM−1

(1−2λ)(λM−1
−1)(1−λ)M−1 , for λ 6= 1

2

( 1

2 )
M−1

+M−
3

2

( 1

2 )
M

−
1

2

, for λ = 1
2

(9)

We now give the following proposition for (9).

Proposition 2. Over integers M > 1, there exists an M∗ such

that V (1) is monotonically increasing for 1 < M ≤ M∗ and

monotonically decreasing for M ≥ M∗.

Proposition 2 implies that we may find µ∗

ub from (9) by a

simple linear search over the integers M ≥ 2. In Fig. 2, we

plot µ∗

ub which was computationally found in this way. We

observe, µ∗

ub implies that policy π′ with p = p∗ performs very

well when the rate λ is low.
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Fig. 2. The upper and lower bounds on µ∗ . The line 1 − λ is shown for
reference.

VI. SECONDARY USER QUEUE STABILITY

The previous sections gave lower and upper bounds on the

maximum secondary user throughput, µ∗, assuming that the

secondary user always had an available packet to send at

every time slot. In this section, we remove this assumption

and instead assume that packets arrive to the secondary user

as a Bernoulli process As(t) with rate λs. Packets awaiting

transmission by the secondary user are kept in a FCFS queue.

The queue backlog at time t is denoted by Qs(t). We now

relate µ∗

lb and µ∗

ub to conditions on λs for stability of the

secondary user’s queue.

A. Finite Queueing Delay for λs < µ∗

lb

By definition, the arrival process As(t) has i.i.d. interarrival
times. Additionally, assume we apply policy π′ with the modi-

fication that transmissions are only attempted whenQs(t) > 0.
Then, from the definition of π′, it may be seen that the service

time of each packet is i.i.d. with rate µ∗

lb. Define, Wr as the

queueing delay of the rth packet to arrive to the queue. Then

a well known result for GI/GI/1 queues, in general, is that

P (Wr < ∞) = 1

for all r if λs < µ∗

lb [12]. Thus, every packet that arrives to the

secondary user’s queue, exits in finite time with probability 1
if λs < µ∗

lb.

B. Necessary Condition for Mean Rate Stability

A discrete-time queue is defined to be mean rate stable if

[13]

lim
T→∞

E [Qs(T )]

T
= 0.

Mean rate stability is a weak form of queue stability in that

many other definitions of queue stability imply it under general

assumptions [13]. Now, at every time T ,

Qs(T ) ≥
T−1
∑

t=0

As(t)−
T−1
∑

t=0

B(t).

This implies,

lim inf
T→∞

E

[

Qs(T )

T

]

≥ lim
T→∞

E

[

1

T

T−1
∑

t=0

As(t)

]

− lim sup
T→∞

E

[

1

T

T−1
∑

t=0

B(t)

]

≥ λs − µ∗.

Thus, a necessary condition for mean rate stability is λs ≤
µ∗ ≤ µ∗

ub.

VII. CONCLUSION

In this paper, we studied the throughput of a secondary user

opportunistically communicating over the unused time slots of

an uncooperative primary user. In particular, we considered the

setting where channel sensing is unavailable and the secondary

user must rely upon feedback in order to make transmission

decisions. We characterized the achievable throughput of the

secondary user by deriving upper and lower bounds and

established conditions on the arrival rate for the system to

be stable.

Possible extensions to our work include the consideration

of correlated arrivals to the primary user, as well as multiple

primary channels. We expect that correlated arrivals would

make it easier for the secondary user to predict the primary

user’s behavior, leading to higher throughputs. The case of

multiple primary channels would give rise to the additional

problem of channel selection. That is, in addition to deciding

whether or not to transmit, the secondary user must decide

which channel to transmit on.
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