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Abstract—In spectrum-sharing networks, primary users have
the right to preempt secondary users, which significantly
degrades the performance of underlying secondary users. In this
paper, we use backup channels to provide reliability guarantees
for secondary users. In particular, we study the optimal white
channel assignment that minimizes the amount of recovery
capacity (i.e., bandwidth of backup channels) needed to meet a
given reliability guarantee. This problem is shown to be coupled
by two NP-hard objectives. We characterize the structure of
the optimal assignment and develop bi-criteria approximation
algorithms. Moreover, we investigate the scaling of the recovery
capacity as the network size becomes large. It is shown that the
recovery capacity is negligible as compared to the total traffic
demands in a large-scale network.

I. INTRODUCTION

In spectrum-sharing networks1, secondary users can access
spectrum holes (referred to as white channels) that are not used
by primary users. While spectrum sharing enables efficient
utilization of spectrum resources, secondary networks built
upon white channels can suffer from severe performance
degradation since secondary users must stop using a white
channel whenever it is reclaimed by a primary user (this event
is called channel preemption). Thus, it is necessary to provide
protection for secondary users to guarantee their reliability
against channel preemptions.

There have been numerous efforts towards achieving
reliable communications for secondary users. One of the
important issues in this context is how the secondary network
should recover from channel preemptions. A straightforward
approach is to let disrupted links switch to another idle
white channel on the fly [3] [4]. This approach can, however,
experience unpredictable delay until idle white channels
become available. In contrast to the on-the-fly reconfiguration
method, Yue et al. [5] propose to assign an extra white
channel to each link in advance, in order to recover from any
single channel preemption. In multi-hop networks, rerouting
can be used to find a detour around interrupted links [6] [7].
Some recent works [8] [9] combine channel switching and
rerouting to recover secondary users’ traffic. Another line of
research focuses on “risk mitigation”, which seeks to reduce
the negative effects of channel preemptions on secondary
networks. Zhao et al. [10] and Kuo et al. [11] exploit channel
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1The spectrum-sharing feature may be enabled via cognitive radios [1],
geographic databases [2], etc.

statistics to predict channel availability and design reliable
MAC protocols to reduce the probability of being preempted.
Cao et al. [12] and Mihnea et al. [13] study reliable channel
assignments that maintain the network connectivity after any
single channel preemption.

Although the above schemes enhance the reliability of
secondary networks, most of them only provide “best-effort
reliability”. There is no guarantee on, for example, the
number of channel preemptions the secondary network can
recover from, or the ability to fulfill a certain reliability
requirement. In this paper, we allow secondary users to specify
a reliability requirement and investigate how to adhere to such
a requirement at the minimum cost.

Our approach uses backup channels to recover from
preemptions. These backup channels can be licensed channels
leased temporarily at a cost [14], or currently unused white
channels. Note that these backup channels do not necessarily
stay idle when they are not used for recovery; the only
requirement is that they should be available when needed for
recovery (possibly at a cost).

Due to the scarcity and relative high costs of backup
channels, it is necessary to minimize the amount of recovery
capacity (i.e., bandwidth of backup channels) that should be
provisioned. Although many factors can affect the amount
of required recovery capacity, we focus on the influence of
white channel assignment. Specifically, we study the optimal
white channel assignment that minimizes the recovery capacity
required to meet a certain reliability requirement such that the
network is able to recover secondary users’ traffic from a given
number of white channel preemptions.

Unfortunately, this problem is shown to be intractable and
coupled by two NP-hard objectives. As a result, we conduct
bi-criteria analysis and propose bi-criteria approximation
algorithms for white channel assignment. Our simulations
validate the performance of the proposed algorithms.

Another important contribution of this paper is the
characterization of the scaling of the recovery capacity. It turns
out that the required recovery capacity becomes negligible as
compared to the total network traffic as the network becomes
large. Our simulations show that under the proposed channel
assignment schemes the required recovery capacity is usually
less than 1% of the total traffic. Thus, it is possible to provision
guaranteed reliability in a large-scale secondary network at
minimum cost.

The remainder of this paper is organized as follows.
We introduce the network model and describe the problem
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in Section II. Next, we study the optimal white channel
assignment under a given reliability requirement in Section
III. Finally, simulation results are presented in Section IV and
conclusions are given in Section V.

II. MODEL AND PROBLEM DESCRIPTION

A. Network Model

We consider a spectrum-sharing network where primary
users own a set of licensed channels referred to as white
channels. Any idle white channel can be accessed by
secondary users, but it should be vacated if a primary user
appears in that channel (referred to as channel preemption).
When channel preemptions happen, secondary users switch
to backup channels in order to resume communications. The
recovery capacity refers to the bandwidth of backup channels
we need to provision in order to meet a certain reliability
requirement which will be specified in Section III.

The secondary network is represented by an undirected
graph G = (V,E), where V is the set of secondary nodes
and E is the set of links. There is a link between two
secondary nodes if they can directly communicate with each
other. We consider the one-hop interference model where
adjacent links cannot be active on the same channel at the
same time. Although such an interference model is restrictive,
it serves as the foundation for understanding more complex
interference models (e.g., see [15] [16]). Moreover, the one-
hop interference model is an appropriate model for many
practical wireless systems such as spread-spectrum systems,
millimeter-wave networks [17], etc. Each link e is associated
with a traffic demand re which is determined by some higher-
layer policies (e.g., routing and flow control). We denote by W
the set of white channels. Each white channel w can sustain
a data rate up to Rw,e over link e.

Now we describe the set of feasibility conditions on white
channel assignment in order to sustain the given traffic
demands. Let y be an |E|× |W | binary matrix whose element
ywe = 1 if white channel w is assigned to link e. Note that
if white channel w is assigned to link e, this link should be
scheduled for at least re

Rw,e
fraction of time in order to meet

the traffic demand re. Under the one-hop interference model,
the set of links that can be activated simultaneously on the
same channel form a matching, and interfering matchings can
access the same white channel in a time-sharing manner. As
a result, the set of feasible schedules can be represented by
the convex hull of all matchings, i.e., the matching polytope.
Based on Edmond’s matching polytope description [23], we
can write the following feasibility conditions:∑

e∈δ(v)

re
Rw,e

ywe ≤ 1,∀v ∈ V,w ∈W (1)

∑
e∈E(U)

re
Rw,e

ywe ≤
|U | − 1

2
, ∀U ∈ V, w ∈W (2)

∑
w∈W

ywe = 1,∀e ∈ E (3)

ywe ∈ {0, 1}, ∀e ∈ E,w ∈W.
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(b) Channel Assignment II

Fig. 1. Two different assignments of white channels.

In (1), we denote by δ(v) the set of links incident on node
v. In (2), we define V = {U ⊆ V : |U | odd ≥ 3} to be
a collection of node sets with odd cardinality, and E(U) is
the set of links whose both ends are in U . For each white
channel w, the corresponding constraints in (1) and (2) are
Edmond’s matching polytope description over the set of links
using that channel. Specifically, the constraints in (1) require
the total schedule length of channel w not to exceed one; the
constraints in (2) are called “odd-set constraints” and we refer
readers to [18] or [23] for a detailed explanation. Overall, the
constraints in (1) and (2) force all of the traffic demands to be
schedulable under one-hop interference by using the given set
of white channels. Hajek et al. [18] use a similar formulation
to characterize schedulability in a single-channel case. Finally,
the constraints in (3) force each link to be assigned exactly
one white channel.

A channel assignment y is said to be feasible if it satisfies
all of the above constraints.

B. Problem Description

Due to the scarcity and relatively high costs of backup
channels, it is necessary to minimize the amount of recovery
capacity (i.e., bandwidth of backup channels) needed to
comply with a certain reliability requirement. In this paper,
the secondary network is required to survive a given number
of channel preemptions even in the worst case.

Given a recovery requirement, the amount of recovery
capacity we need to provision depends on how much traffic is
lost due to channel preemptions, which is largely determined
by the assignment of white channels. For example, Fig. 1
illustrates two different channel assignments with 3 white
channels. Each link has one-unit traffic demand, and we
assume white channels have sufficiently large capacity such
that any channel assignment is feasible (as long as each link
is assigned exactly one white channel). Suppose we want to
survive any single white channel preemption. In Fig. 1(a), the
preemption of channel 1 will cause the failures of two adjacent
links, which requires two units of recovery capacity under one-
hop interference. In contrast, the channel assignment in Fig.
1(b) only requires one unit of recovery capacity, since any
links that can fail at the same time (i.e., due to the failure
of a single white channel) can be activated simultaneously.
Our goal is to find a feasible white channel assignment
that requires the minimum recovery capacity subject to a
certain recovery requirement.



III. ROBUST WHITE CHANNEL ASSIGNMENT

In this section, we develop robust white channel assignment
schemes that fulfill a given recovery requirement at minimum
cost. Specifically, the network is required to survive any k
white channel preemptions, i.e., the backup channels should
be able to support the traffic demands on the links disrupted
by any k white channel preemptions. Hence, the goal is
to find a feasible white channel assignment requiring the
minimum recovery capacity to protect against any k channel
preemptions. This problem is referred to as WhiteRec:

min
C,y feasible

C

s.t.
∑
w∈S

∑
e∈δ(v)

re
C
ywe ≤ 1,∀v ∈ V, ∀S ∈ W(k) (4)

∑
w∈S

∑
e∈E(U)

re
C
ywe ≤

|U | − 1

2
, ∀U ∈ V, S ∈ W(k), (5)

where the meanings of δ(v), E(U) and V are the same
as in (1)-(2), and W(k) = {S ⊆ W : |S| = k} is a
collection of channel sets with cardinality k. Similar to (1)
and (2), the constraints in (4) and (5) correspond to Edmond’s
matching polytope description, requiring that after any k
channel preemptions the traffic demands on the disrupted links
be schedulable by using a backup channel with capacity C.

A. Complexity Analysis
In this section, we investigate the complexity of WhiteRec.

In fact, solving this problem involves finding a white channel
assignment that is both feasible (in order to support the
traffic demands as described in (1)-(3)) and optimal (in order
to minimize the recovery capacity as defined in (4)-(5)).
Unfortunately, both of these problems are NP-hard.
Theorem 1. Finding a feasible white channel assignment that
sustains the given traffic demands is NP-hard.
Theorem 2. Finding a white channel assignment that requires
the minimum recovery capacity is NP-hard. Moreover, even if
any channel assignment is feasible (i.e., the capacity of each
white channel is sufficiently large such that the traffic demands
are always sustainable under any channel assignment), the
problem remains NP-hard.

The proofs to Theorems 1 and 2 are based on a reduction
from the Bin Packing Problem and the Partition Problem,
respectively, and can be found in the technical report [25].
The two theorems imply that WhiteRec is a complicated
problem coupled by two NP-hard objectives: finding a
feasible assignment to support the traffic demand and
finding an optimal assignment that requires the minimum
recovery capacity. To address this difficulty, we introduce a
technique called bi-criteria approximation [19] which allows
the feasibility constraints to be violated by a bounded amount
while ensuring some approximation ratio with respect to the
recovery capacity. The formal definition is as follows.

Definition 1 (Bi-Criteria Approximation). An algorithm
achieves (ρ, φ)-approximation to WhiteRec if the following
two conditions are satisfied simultaneously.

- It requires at most ρ times of the minimum recovery capacity.
- It guarantees that at least φ-fraction of the traffic demand
is sustained over each link.

In the following sections, we first analyze the bi-criteria
structure of WhiteRec. Based on the analysis, several
approximation algorithms are developed and their bi-criteria
approximation ratios are studied.

B. Bi-Criteria Analysis

In this section, we investigate the bi-criteria structure of
the optimal feasible solution to WhiteRec. Specifically, we
are interested in the structure that requires the minimum
recovery capacity (i.e., optimality analysis, Sec. III-B1) and
that sustains the given traffic demands (i.e., feasibility analysis,
Sec. III-B2). Finally, the relationship between optimality and
feasibility is discussed.

1) Optimality Analysis: We first study the structure of
the optimal assignment that requires the minimum recovery
capacity. The particular form of WhiteRec allows us to express
the required recovery capacity C in a closed form. It is easy
to see that constraints in (4) are equivalent to

C ≥M1(y, k), (6)

where M1(y, k) = max
v∈V,S∈W(k)

∑
w∈S

∑
e∈δ(v)

rey
w
e .

Similarly, constraints in (5) are equivalent to

C ≥M2(y, k), (7)

where M2(y, k) = max
U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e .

Combining (6) and (7), we can rewrite constraints (4) and (5)
in WhiteRec as

C ≥ max{M1(y, k),M2(y, k)} , C(y, k). (8)

In other words, given a white channel assignment y, the
value of C(y, k) is the minimum recovery capacity required
to recover from any k channel preemptions. As a result,
WhiteRec can be rewritten as

min
y

C(y, k)

s.t. y is feasible.

Note that M2(y, k) corresponds to the “odd-set constraints”
in (5) which are difficult to handle in general. Hence,
it is natural to consider the relaxation of WhiteRec by
neglecting M2(y, k). The relaxed problem is referred to as
WhiteRecApprox, i.e.,

min
y

M1(y, k)

s.t. y is feasible.

The following lemma shows that the relaxation of M2(y, k)
only leads to a small loss in optimality.



Lemma 1. For any channel assignment y, we have

M1(y, k) ≤ C(y, k) ≤ 1.5M1(y, k). (9)

Proof. The lower bound follows from the definition of
C(y, k). To show the upper bound, we notice that

M2(y, k) = max
U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e

=
1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
v∈U

∑
e∈δ(v)∩E(U)

rey
w
e

≤ 1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
v∈U

∑
w∈S

∑
e∈δ(v)

rey
w
e

≤ 1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
v∈U

M1(y, k)

=
1

2
M1(y, k)max

U∈V

2|U |
|U | − 1

=
3

2
M1(y, k).

The second inequality is due to the definition of M1(y, k), and
the last equality holds because |U | ≥ 3.

Lemma 1 shows that the optimal solution to WhiteRecApprox
attains 1.5-approximation to the original problem WhiteRec
with respect to the required recovery capacity C(y, k).

2) Feasibility Analysis: Next, we study the feasibility
conditions (1)-(3) and investigate the structure of channel
assignments that are able to sustain the largest amount
of traffic. In particular, we investigate the relationship
between feasibility and optimality, which is important for our
subsequent bi-criteria approximation analysis.

It is clear that deciding feasibility is equivalent to the
following optimization problem FEASI which finds the
maximum fraction of traffic that can be sustained over each
link.

FEASI : max
y,β

β

s.t.
∑
e∈δ(v)

βre
Rw,e

ywe ≤ 1, ∀v ∈ V,w ∈W (10)

∑
e∈E(U)

βre
Rw,e

ywe ≤
|U | − 1

2
, ∀U ∈ V, w ∈W (11)

∑
w∈W

ywe = 1,∀e ∈ E (12)

ywe ∈ {0, 1}, ∀e ∈ E,w ∈W.

Clearly, the original problem WhiteRec is feasible if and only
if the optimal value β∗ in FEASI is greater or equal to 1.
Now let β(y) be the maximum value of β in FEASI under an
assignment y. The following lemma relates β(y) to C(y, 1).

Lemma 2.
Rmin

C(y, 1)
≤ β(y) ≤ Rmax

C(y, 1)
,

where Rmin and Rmax are the minimum and the maximum
white channel capacity, respectively.

Proof. From constraints (10)-(11), it follows that

β(y) = min{Z1(y), Z2(y)},

where
Z1(y) = min

v∈V,w∈W

1∑
e∈δ(v) rey

w
e /Rw,e

,

Z2(y) = min
U∈V,w∈W

1
2
∑

e∈E(U) rey
w
e /Rw,e

|U |−1

.

Under the above notations, FEASI becomes

max
y

min{Z1(y), Z2(y)}

s.t.
∑
w∈W

ywe = 1,∀e ∈ E

ywe ∈ {0, 1}, ∀e ∈ E,w ∈W.
It is clear that

Z1(y) ≥
Rmin

maxv∈V,w∈W
∑
e∈δ(v) rey

w
e

=
Rmin

M1(y, 1)
,

and similarly we have Z2(y) ≥ Rmin

M2(y,1) . Then we obtain that

β(y) ≥ min{ Rmin

M1(y, 1)
,

Rmin

M2(y, 1)
}

=
Rmin

max{M1(y, 1),M2(y, 1)}
=

Rmin

C(y, 1)
.

Similarly, we can show β(y) ≤ Rmax

C(y,1) .

This lemma shows that if an assignment y yields a smaller
C(y, 1), it tends to sustain more traffic. In particular, if
white channels are homogeneous with capacity R, the lemma
implies β(y) = R

C(y,1) . In this case, minimizing the recovery
capacity required to survive a single preemption is equivalent
to maximizing the amount of sustainable traffic. Therefore, this
lemma bridges feasibility and optimality, which is important
for our subsequent bi-criteria approximation analysis.

C. Algorithm 1: Greedy Algorithm

In this section, we propose a simple greedy algorithm to
solve WhiteRec and analyze its bi-criteria approximation ratio.

Without loss of generality, let the links in the secondary
network be indexed by e1, · · · , en, where n = |E|. The
greedy algorithm assigns a white channel to each of these links
sequentially. Suppose we are deciding the channel assignment
for link ei = (u, v), and define δ(u, v) = δ(u)∪ δ(v), i.e., the
set of links incident on node u or node v. The greedy rule
is to pick the white channel that currently sustains the least
traffic over the links in δ(u, v). The detailed procedures are
presented in Algorithm 1, where Ew corresponds to the set of
links that are assigned channel w.

Algorithm 1 Greedy White Channel Assignment
1: Initialize Ew = ∅, ∀w ∈W ;
2: for ei = e1, · · · , en do
3: Assign white channel w∗ to link ei = (u, v), where

w∗ = arg minw∈W
∑
e∈δ(u,v)∩Ew

re;
4: Ew∗ ← Ew∗ ∪ {ei};
5: end for

The bi-criteria approximation ratio of this greedy algorithm
is given in Theorem 3, where we define Rmin and Rmax to



be the minimum and the maximum white channel capacity,
respectively.

Theorem 3. Suppose there exists a feasible solution to
WhiteRec. Then the greedy algorithm achieves (ρ, 1

ρ
Rmin

Rmax
)-

approximation to WhiteRec, where ρ = 3
2 (3− 2

|W | ).

Proof. The first approximation ratio ρ can be proved in a
similar way to the optimality of the Shortest-Processing-Time-
First rule in traditional machine scheduling problems [20]. The
second approximation ratio 1

ρ
Rmin

Rmax
can be verified by applying

Lemma 2 which relates feasibility and optimality. The detailed
proof is presented in the technical report [25].

For instance, if there are 2 homogeneous white channels, the
greedy algorithm is guaranteed to sustain at least 1

3 traffic
demands while requiring less than 3 times of the minimum
recovery capacity in WhiteRec.

The advantage of the greedy algorithm is in its simplicity. In
fact, it does not require any global information when assigning
channels for each individual link; thus, this greedy algorithm
can even be implemented in a distributed manner, where more
fresh local information can be used to improve the overall
performance. Moreover, it is applicable to arbitrary networks.
Although the theoretical approximation ratio of this algorithm
is relatively loose, its practical performance turns out to be
much better than the theoretical guarantee2 (see Section IV).
Moreover, it is possible to improve the approximation ratio in a
wide range of graphs. For example, it is shown in the technical
report [25] that the approximation ratio can be improved by a
factor of 1.5 in bipartite graphs.

D. Algorithm 2: Interference-Free Assignment

The above greedy algorithm is simple and has provable
performance in any scenario but suffers from the relatively
loose approximation ratio. In this section, we discuss an
alternative channel assignment scheme, called Interference-
Free Assignment (IFA), which is less general than the greedy
algorithm but achieves much better performance.

Definition 2 (Interference-Free Assignment). An assignment
y is said to be interference-free if any two interfering links
are assigned distinct white channels.

For example, the channel assignment in Fig. 1(b) is
interference-free while the one in Fig. 1(a) is not. Conceivably,
IFA requires less recovery capacity since links that fail
together due to any single channel preemption do not interfere
with each other and can be activated simultaneously. Through
the rest of this section, we study the properties of IFA. In
particular, we will show IFA has nearly-optimal performance.

We first investigate the conditions for the existence of IFA.
Note that IFA requires that adjacent links be assigned different
channels; this is similar to edge coloring where each white
channel corresponds to a color. From Vizing’s Theorem [22]
for edge coloring, we have the following observation:

2Similar greedy algorithms have been shown to perform extremely well for
frequency assignment in WDM-based optical networks [24].

Observation 1. There exists an interference-free channel
assignment if the number of white channels is greater than
the maximum node degree, i.e., |W | > dmax.

The above observation shows that IFA does not always exist
and is thus less general than the greedy algorithm. However,
the condition shown in the above observation is very mild in
practice since the number of white channels is usually much
larger than the number of neighbors a node has [8].

Now we develop an algorithm for constructing an
interference-free assignment (Algorithm 2). This algorithm
gives an interference-free assignment whenever |W | > dmax.
Note that this algorithm is still valid if |W | ≤ dmax but it
does not have a provable performance in this case. Note also
that this algorithm colors edges with white channels and there
are several polynomial-time algorithms that can perform edge-
coloring with dmax + 1 colors in a simple graph (e.g., [21]),
therefore Algorithm 2 can be run in polynomial time.

Algorithm 2 Interference-Free Channel Assignment
1: Color the graph with dmax +1 colors, which partitions the

edges into dmax + 1 matchings;
// These matchings are denoted by I1, · · · , Idmax+1.

2: for i = 1 : dmax + 1 do
3: Assign edges in matching Ii to white channel wi, where

wi = i mod |W |;
4: end for

Next, we investigate the properties of IFA. The most
important one is given in Lemma 3 which shows that any
interference-free channel assignment minimizes M1(y, k).

Lemma 3. Consider any two interference-free channel
assignments ȳ, ỹ and any non-interference-free assignment
ŷ. Then the following relationship holds: M1(ȳ, k) =
M1(ỹ, k) ≤M1(ŷ, k) for all k ∈ Z+.

Proof. For any interference-free assignment ȳ, let S̄ ∈ W(k)
and v̄ ∈ V be such that

M1(ȳ, k) =
∑
w∈S̄

∑
e∈δ(v̄)

reȳ
w
e . (13)

Since ȳ is interference-free, all the links incident on a node
are assigned different white channels. This is also true for
another interference-free assignment ỹ. Thus, there exists a
set S̃ ∈ W(k) such that

{e ∈ δ(v̄) :
∑
w∈S̃

ỹwe = 1} = {e ∈ δ(v̄) :
∑
w∈S̄

ȳwe = 1}.

Therefore, we have∑
w∈S̄

∑
e∈δ(v̄)

reȳ
w
e =

∑
w∈S̃

∑
e∈δ(v̄)

reỹ
w
e ,

which implies M1(ȳ, k) ≤ M1(ỹ, k) by the definition of
M1(y, k). Similarly, we can prove M1(ȳ, k) ≥ M1(ỹ, k).
As a result, it follows that M1(ȳ, k) = M1(ỹ, k) for any
interference-free channel assignments ȳ and ỹ.



To prove the second part, consider a non-interference-free
channel assignment ŷ. Obviously, under the asignment ŷ, the
preemption of k white channels can possibly lead to the
preemption of more than k links incident on a node. Hence,
there exists a set Ŝ ∈ W(k) such that

{e ∈ δ(v̄) :
∑
w∈Ŝ

ŷwe = 1} ⊇ {e ∈ δ(v̄) :
∑
w∈S̄

ȳwe = 1}.

Therefore, we can conclude that M1(ȳ, k) ≤M1(ŷ, k).

Lemma 3 together with Lemma 1 immediately implies that
IFA achieves no more than 1.5 times of the minimum recovery
capacity. In fact, we can further tighten this bound, as shown
in the following theorem.

Theorem 4. Suppose there is a feasible solution to
WhiteRec and an interference-free assignment exists. Then
any interference-free assignment achieves ( 5

4 ,
Rmin

Rmax
) approxi-

mation to WhiteRec.

Proof. We first prove that any IFA achieves no more than 5
4

times the minimum recovery capacity. We start by introducing
a lemma whose proof is similar to Lemma 1 and thus omitted.

Lemma 4. Let V ′ = {U ⊆ V : |U | ≥ 5, |U | odd}. Then for
any assignment y and integer k ≥ 1:

max
U∈V′,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e ≤

5

4
M1(y, k).

Now we get down to proving that any IFA achieves no more
than 5

4 times of the minimum recovery capacity. Denote V3

the collection of node sets with cardinality 3. For any channel
assignment y and any integer k ≥ 1, we rewrite C(y, k) as:

C(y, k) = max{M1(y, k),M2(y, k)}

= max
{
M1(y, k), max

U∈V3,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e ,

max
U∈V′,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e

}
∆
= max{M1(y, k), A(y, k), B(y, k)}.

Let y′ be an arbitrary IFA and y∗ be the optimal solution to
WhiteRec. We observe three key facts:
(1) A(y′, k) ≤ A(y∗, k). This is due to the fact that in any

induced graph of 3 nodes the interference-free assignment
y′ allocates different channels to different edges, which
is optimal in that induced graph.

(2) B(y′, k) ≤ 5
4M1(y′, k) ≤ 5

4M1(y∗, k). This is due to
Lemma 4 and the fact that any IFA minimizes M1(y, k).

(3) M2(y′, k) ≥ M1(y′, k) otherwise C(y′, k) =
M1(y′, k) ≤ M1(y∗, k) ≤ C(y∗, k), which implies that
y′ is optimal. This fact further shows that C(y′, k) =
max{A(y′, k), B(y′, k)}.

Then we have
C(y′, k)

C(y∗, k)
=

max{A(y′, k), B(y′, k)}
max{M1(y∗, k), A(y∗, k), B(y∗, k)}

≤ max
{A(y′, k)
A(y∗, k)

,
B(y′, k)

M1(y∗, k)

}
≤ 5

4
.

Next, we prove that any IFA y′ can sustain Rmin

Rmax
-fraction

of traffic over each link. Note that C(y′, 1) = M1(y′, 1) under
the IFA y′. By Lemma 3, the IFA y′ minimizes M1(y, 1), so
we have C(y′, 1) = M1(y′, 1) ≤ M1(y, 1) ≤ C(y, 1) for any
assignment y. Let ŷ be a feasible solution to WhiteRec, i.e.,
β(ŷ) ≥ 1. Then it follows that for any IFA y′

β(y′) ≥ Rmin

C(y′, 1)
≥ Rmin

Rmax

Rmax

C(ŷ, 1)
≥ Rmin

Rmax
β(ŷ) ≥ Rmin

Rmax
,

where the first and third inequalities are due to Lemma 2, the
second inequality is due to our claim that C(y′, 1) ≤ C(ŷ, 1)
and the last inequality holds because of our assumption that
β(ŷ) ≥ 1. This completes our proof.

Note that IFA has a much better approximation ratio
than the greedy algorithm with respect to both the recovery
capacity and the sustainable traffic. In particular, if channels
are homogeneous, then any interference-free assignment is
guaranteed to sustain 100% traffic demands while requiring
less than 1.25 times of the minimum recovery capacity. The
caveat is that such a good approximation ratio only holds true
when IFA exists (i.e., when |W | > dmax).

E. Scaling of Recovery Capacity

In this section, we investigate the scaling of the required
recovery capacity under the proposed algorithms. Specifically,
we show that the required recovery capacity becomes
negligible as compared to the total traffic if the network size
is relatively large.

To facilitate our analysis, we make a simplified assumption
that traffic is uniform across the entire secondary network, i.e.,
re = r for any e ∈ E. Also assume that white channels are
homogeneous, i.e., Rw,e = R for any w ∈ W and e ∈ E.
Denote by C∗(k) the recovery capacity required to protect
against any k channel preemptions under Algorithm 2. Also
let Ltot be the total traffic demands in the secondary network,
i.e., Ltot =

∑
e∈E re = r|E|. The following theorem shows

the scaling of the relative recovery capacity ratio C∗(k)/Ltot
with the network size |V |.

Theorem 5. Suppose there is a feasible solution to WhiteRec.
Then C∗(k)

Ltot
= O( 1

|V | ) as |V | → ∞ for any k ∈ Z+.

Proof. We only present a sketch of the proof, and the complete
proof can be found in the technical report [25]. Consider the
channel assignment scheme shown in Algorithm 2. Clearly, at
most

⌈
dmax+1
|W |

⌉
links incident on the same node are assigned

the same channel. Denote by y the above white channel
assignment. We can verify the following inequality:

C∗(k) ≤ rk
⌈
dmax + 1

|W |

⌉
.

If WhiteRec is feasible, we can further prove that dmax ≤
|W |R
r , which implies that

C∗(k) ≤ rk
⌈
R

r
+

1

|W |

⌉
. (14)



At the same time, it is easy to see that

Ltot = r|E| ≥ r dmin|V |
2

≥ r|V |
2
. (15)

Dividing (14) by (15) yields the desired result. Note that k,
R/r and 1/|W | are constants as compared to |V |.

Theorem 5 demonstrates that as the network size grows, the
recovery capacity needed to protect against k white channel
preemptions becomes negligible as compared to the total
traffic. Our simulation results (see Section IV-B) show that
the recovery capacity required to survive 2 preemptions is
less than 1% of the total traffic in a 200-node network, even
with very few white channels. This is mainly due to the effect
of spatial reuse. That is, although the total traffic increases
linearly with the network size, more links can be activated
simultaneously; thus, the required recovery capacity does not
scale up with the network size.

IV. PERFORMANCE EVALUATION

In this section, we numerically study our schemes.
Specifically, we seek to answer the following questions:
• How does the recovery capacity scale with the network size?
• What is the bi-criteria approximation quality of the greedy
algorithm and IFA?

A. Simulation Setup

We use Erdős-Renyi Random Graph to simulate the network
topology, where links are established with probability 0.6
and the maximum node degree is bounded by 8. The traffic
demand over each link is uniformly distributed in the range
[1,100]Mbps. The capacity of each white channel is uniformly
distributed in the range [75,200]Mbps. In our simulation, 5000
random graph instances are tested.

B. Scaling of Recovery Capacity

We first investigate how the relative recovery capacity ratio
(see Section III-E for the definition) scales with the network
size. As is observed in Fig. 2, the recovery capacity ratio goes
down with the growth of the network size. Specifically, the
required recovery capacity is only around 1% of the total traffic
demands in a 200-node network, even with very few white
channels (e.g., |W | = 3). Therefore, we expect the recovery
capacity to become negligible as compared to the total traffic
demands as the network size continues to grow. In addition,
curve fitting shows that the recovery capacity ratio scales as
Θ( 1
|V |a ) where a ranges in 1.02-1.09, which roughly matches

the theoretical bound we obtain in Theorem 5.

C. Approximation Quality

Since we consider the bi-criteria approximation framework,
two metrics should be evaluated: the recovery capacity and
the fraction of traffic sustained over each link. Through the
rest of this section, we study the two aspects by comparing
the following schemes.
• Greedy Algorithm (Algorithm 1).
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Fig. 2. Scaling of the relative recovery capacity ratio with the network size
|V | (where k = 2 channel preemptions are to be survived).

• Interference-Free Assignment (IFA). Note that an
interference-free assignment is guaranteed to exist only
if |W | > dmax (in our simulation, dmax = 8).

• Random Assignment (RndAssign) that assigns each link
a random white channel.

• Optimal result to WhiteRec, computed with Gurobi, a
large-scale mathematical programming solver.

Recovery Capacity. Fig. 3 illustrates the comparison of
these schemes with respect to the recovery capacity; Table
I lists the detailed approximation gap3. We first focus on the
approximation quality of IFA. When k = 1, IFA yields the
same amount of recovery capacity as the optimal solution and
the approximation gap is zero. In fact, it can be analytically
shown that IFA is optimal when k = 1 (see the technical report
[25] for details). When k = 2, IFA is only slightly worse than
the optimum (less than 2%, as is shown in Table I), much
better than the 1.25-approximation bound. The only caveat is
that IFA is guaranteed to exist only if |W | > dmax.

Next, we investigate the approximation quality of the greedy
algorithm. Despite its relatively loose approximation ratio, the
greedy algorithm performs very well in practice. The worst
approximation gap is 26% when k = 1 and 14% when k =
2. It also outperforms the random assignment by almost an
order of magnitude in terms of the approximation gap. When
compared with IFA, the greedy algorithm is slightly worse but
it has the advantage of being applicable in any scenario.

TABLE I
APPROXIMATION GAP OF DIFFERENT SCHEMES

Survive k = 1 failures Survive k = 2 failures
|W | Rnd Greedy IFA Rnd Greedy IFA

2 50% 12% N/A 0% 0% N/A
3 84% 22% N/A 32% 9% N/A
5 120% 24% N/A 68% 14% N/A
7 151% 26% N/A 90% 11% N/A
8 148% 18% N/A 87% 7% N/A
9 140% 7% 0% 83% 3% 2%

10 134% 3% 0% 79% 1% 0%
11 127% 1% 0% 75% 0% 0%
12 122% 0% 0% 72% 0% 0%

3The approximation gap is defined by ALG−OPT
OPT

, where ALG is the amount
of required recovery capacity by using the approximation algorithm and OPT
is the minimum recovery capacity.
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Fig. 3. The comparison among different algorithms with respect to the
required recovery capacity (|V | = 20).

Sustainable Traffic. In Fig. 4, we illustrate the comparison
among different assignment schemes in terms of the fraction
of traffic sustained over each link. Note that the maximum
sustainable traffic level is obtained by solving FEASI (see
Section III-B2) in Gurobi. We first notice that if there is only
a small number of white channels, the maximum sustainable
traffic level can be less than 100%. With more white channels,
we have more spectrum resources and 100% traffic demands
are sustainable. By comparison, the fraction of traffic sustained
by the greedy algorithm is reasonably good as compared to the
maximum sustainable level (at least 60% of the maximum),
and the greedy algorithm significantly outperforms the random
assignment. In particular, given a sufficient number of white
channels (say |W | ≥ 9), the greedy algorithm yields a similar
performance to IFA and sustains over 90% traffic demands.
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Fig. 4. Comparison among different algorithms with respect to the fraction
of traffic sustained over each link (|V | = 20).

V. CONCLUSIONS

In this paper, we use backup channels to provide reliability
guarantees for secondary users. In particular, we investigate the
optimal white channel assignment that minimizes the recovery
capacity required to survive a given number of white channel
preemptions. This problem is shown to be coupled by two
NP-hard objectives, and two bi-criteria approximation schemes
are developed. Moreover, we show that the required recovery
capacity is negligible as compared to the total network traffic
in a large-scale network, which demonstrates the scalability of
this framework.

REFERENCES

[1] J. Mitola III, “Cognitive radio for flexible mobile multimedia
communications,” ACM/Kluwer MONET, vol. 6, no. 5, pp.
435–441, 2001.

[2] FCC. Order, FCC 11-131. 2011.
[3] H. Kim and K. Shin, “Fast discovery of spectrum opportunities

in cognitive radio networks,” IEEE DySPAN, 2008.
[4] Q. Liang, S. Han, F. Yang, G. Sun, and X. Wang, “A Distributed-

Centralized Scheme for Short- and Long-Term Spectrum Sharing
with a Random Leader in Cognitive Radio Networks,” IEEE J.
Sel. Areas Commun., vol. 30, no. 11, pp. 2274-2284, 2012.

[5] K. F. Li, W. C. Lau, and O. C. Yue, “Link restoration in cognitive
radio networks,” IEEE ICC, 2008.

[6] K. Chowdhury and I. Akyildiz, “Cognitive wireless mesh
networks with dynamic spectrum access,” IEEE J. Sel. Areas
Commun., vol. 26, no. 1, pp. 168–181, 2008.

[7] I. Akyildiz, W. Lee, and K. Chowdhury, “CRAHNs: Cognitive
radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp.
810–836, 2009.

[8] Q. Liang et. al., “Two-Dimensional Route Switching in Cognitive
Radio Networks: A Game-Theoretical Framework,” IEEE/ACM
Transactions on Networking, vol. 23, no. 4, pp. 1053-1066, 2015.

[9] P. Tseng and W. Chung, “Local Rerouting and Channel Recovery
for Robust Multi-Hop Cognitive Radio Networks,” IEEE ICC,
2013.

[10] Q. Zhao et. al., “Decentralized cognitive mac for opportunistic
spectrum access in ad hoc networks: A POMDP framework,”
IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589–600, 2007.

[11] A. Chia-Chun Hsu, D. Weit, and C.-C. Kuo, “A cognitive MAC
protocol using statistical channel allocation for wireless ad-hoc
networks,” IEEE WCNC, 2007.

[12] J. Zhao and G. Cao, “Robust topology control in multi-hop
cognitive radio networks,” IEEE INFOCOM, 2012.

[13] M. Cardei and A. Mihnea, “Channel Assignment in Cognitive
Wireless Sensor Networks,” IEEE ICNC, 2014.

[14] K. Jagannathan, I. Menache, E. Modiano, and G. Zussman,
“Noncooperative spectrum access - the dedicated vs. free
spectrum choice,” ACM Mobihoc, 2011.

[15] E. Modiano, D. Shah, and G. Zussman, “Maximizing
Throughput in Wireless Networks via Gossiping,” ACM
SIGMETRICS, 2006.

[16] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Optimal
cross-layer congestion control, routing and scheduling design in
ad hoc wireless networks,” IEEE INFOCOM, 2006.

[17] S. Singh, R. Mudumbai, and U. Madhow, “Distributed
coordination with deaf neighbors: efficient medium access for
60 GHz mesh networks,” IEEE INFOCOM, 2010.

[18] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,”
IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 910
–917, 1988.

[19] M. Ehrgott. Multicriteria Optimization. Lecture Notes in
Economics and Mathematical Systems, Springer, 2000.

[20] R. L. Graham. Bounds on Multiprocessing Timing Anomalies.
SIAM J. On Applied Math., vol. 17, no. 2, pp. 416-429, 1969.

[21] J. Misra and D. Gries, “A constructive proof of Vizing’s
Theorem,” Information Processing Letters, vol. 41, no. 3, pp.
131–133, 1992.

[22] V. Vizing. On an estimate of the chromatic class of a p-graph.
Diskret. Analiz., vol. 3, pp. 25–30, 1964.

[23] J. Edmonds, “Maximum matching and a polyhedron with (0,1)
vertices,” J. Res. Nat. Bur. Standards, vol. 69, pp. 125–130, 1965.

[24] S. Subramaniam and R. Barry, “Wavelength assignment in fixed
routing WDM networks,” IEEE ICC, 1997.

[25] Q. Liang, H. Lee, and E. Modiano, “Robust Design of Spectrum
Sharing Networks,” Technical Report, arXiv:1603.03102, 2016.


