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Abstract— In this paper we consider a wireless network
composed of a base station and a number of clients, with the
goal of scheduling real-time traffic. Even though this problem
has been extensively studied in the literature, the impact
of delayed acknowledgment has not been assessed. Delayed
feedback is of increasing importance in systems where the round
trip delay is much greater than the packet transmission time,
and it has a significant effect on the scheduling decisions and
network performance.

Previous work considered the problem of scheduling real-
time traffic with instantaneous feedback and without feedback.
In this work, we address the general case of delayed feedback
and use Dynamic Programming to characterize the optimal
scheduling policy. An optimal algorithm that fulfills any feasible
minimum delivery ratio requirements is proposed. Moreover, we
develop a low-complexity suboptimal heuristic algorithm which
is suitable for platforms with low computational power. Both
algorithms are evaluated through simulations.

I. INTRODUCTION

Wireless networks provide a flexible platform to support
a variety of applications such as voice, multimedia, e-mail
and messaging. The increasing number of clients using this
technology leads to a growing demand for various Quality
of Service requirements.

Two requirements associated with real-time traffic are the
maximum time to deliver a packet and the minimum delivery
ratio. The first imposes a deadline by which the packets
must be delivered, while the second limits the fraction of
packets that miss the deadline. Meeting those requirements
over an unreliable wireless channel is challenging due to
transmission errors that result in packet losses.

Feedback is often used to improve reliability. After re-
ceiving a packet, the receiver sends an acknowledgment to
the sender if the data was received correctly. The feedback
mechanism can be implemented in a number of different
ways, depending on the network characteristics. Latency, the
ratio of the round trip delay time to the data transmission
time, plays an important role in the design and performance
of systems employing feedback [1].

From the sender standpoint, the feedback associated with
each transmission arrives after a round trip delay. In low
latency systems, such as wireless LANs with low data-rate
and short round trip delay, waiting for the acknowledgment
before transmitting the next packet has minimal impact on
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performance. On the other hand, when the round trip delay
takes much longer then the data transmission, it is necessary
to allow multiple data packets transmissions in a row prior
to receiving the feedback. However, to the best of our
knowledge, the influence of the round trip delay has not been
analyzed in the context of scheduling real-time traffic.

The problem of optimizing scheduling decisions in net-
works that support traffic with deadlines has been addressed
in the literature in a variety of contexts and under diverse sys-
tem conditions. Wired multi-hop networks with unicast traffic
have been studied in [2], [3], [4]. In [2], a tree network with a
single destination was considered. It was shown that forward-
ing the packet with shortest time to extinction (STE policy)
maximizes the delivery ratio. In [3], a more general network
with multiple source destination pairs was addressed. An
online algorithm for joint admission and scheduling was
developed using time slot reservations. A similar network
setting, using a different analytical model, was considered in
[4], where a tractable approach for scheduling in multi-hop
networks based on adapting the service discipline to meet
delivery ratio constraints was designed.

In other related works, researchers have studied wireless
single-hop networks [5], [6], [7], [8], [9]. The authors in
[5] proposed an analytical framework to model a network
supporting unicast traffic with deadlines and instant feed-
back. Based on this framework, two debt-based policies
that meet any feasible constraints were presented. Articles
[6], [7], [8], [9] extend the model in [5] to a variety of
scenarios: [6] considers variable-bit-rate traffic; [7] general-
izes for heterogeneous deadlines and time-varying channel;
[8] models multicast traffic with instant feedback; and [9]
models broadcast traffic with no feedback.

Prior literature addressed the specific cases of instant
feedback and no feedback. In the case of instant feedback,
the optimal scheduling policy was found to be a Greedy
policy [5], [8], where clients are prioritized before every
transmission opportunity and the undelivered packet with
highest priority is forwarded. In the case of no feedback, as
the scheduler does not know whether a packet was delivered
or not, slots are allocated to each client a priory according
to the algorithm found in [9].

The goal of this paper is to address the general case, in
which the feedback delay is a parameter of the network. Our
main contributions include:
• extend the network model of [5] to account for arbitrary
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feedback delays;
• solve for the optimal scheduling policy and characterize

the feasible throughput region of the network;
• develop an optimal dynamic algorithm that satisfies any

feasible delivery ratio requirements;
• develop a low-complexity heuristic algorithm that is

shown through simulation to achieve good performance.

The remainder of this paper is outlined as follows. In
the next section the system model is presented. In Sec.
III, the problem is formulated and solved using Dynamic
Programing. In Sec. IV, we describe the Feasible Region
and the optimal algorithm. In Sec. V, we propose a heuristic
algorithm and present simulation results. We conclude the
paper and comment on further work in Sec. VI.

II. SYSTEM MODEL

Consider a wireless system with a base station (BS) send-
ing unicast data packets with deadlines to N clients. Time is
divided into slots, and T successive slots form a frame. The
BS generates one packet per client at the beginning of every
frame and drops those packets that were not delivered by the
end of the frame. Notice that the maximum time to deliver
a packet is the frame length (T ). The kth frame comprises
slots t ∈ {kT, · · · ,(k+1)T −1}, where t,k ∈ Z+ are the slot
index and the frame index, respectively.

In a slot, the BS transmits the packet of a selected client
i ∈ {1, · · · ,N} over the wireless channel. The packet is
successfully delivered to that client with probability pi and
a transmission error occurs with probability 1− pi. In either
case, the client sends a feedback signal through a delayed
control channel. The ACK/NACK reaches the BS, without
errors, d slots after the transmission. Therefore, when a
packet is transmitted in slot t, the BS receives the feedback at
the end of slot t +d, implying that the feedback information
is only available for the scheduling decision of slot t +d+1
onwards. Fig. 1 illustrates this events.

This network model allows us to consider the problem
over one frame only, as in [8], due to the periodicity of
the system. Packets arrive at the beginning of each frame
and undelivered packets are dropped at the end of the same
frame. The system is renewed at the start of each frame, thus,
henceforward, we regard the system over the first frame, i.e.
k = 0.

The scheduling policies which are considered in this paper
are work conserving and non-anticipatory, i.e. policies which
never idle when there are undelivered packets in the system,
and do not use future information in making decisions. This
class of policies is denoted by Π and the policies by η ∈Π.

Recalling that packets are dropped from the system when
they miss the deadline, a performance metric of interest is
the long-term delivery ratio of each client, referred to as its
throughput. Let Dη

i (k) be an indicator random variable that
is equal to 1 if, by following policy η , the packet is delivered
to client i during the kth frame, and zero otherwise. Then,

Fig. 1. Illustration of a frame in time for N = 2, T = 5 and d = 1. The
set st represents the clients that have received their packet and whose ACK
signal have reached the BS by the beginning of the tth time slot.

the throughput of client i under policy η is given by

q̂η

i := liminf
K→∞

1
K

K−1

∑
k=0

Dη

i (k). (1)

Observe that if the same policy is used across frames, by the
Law of Large Numbers q̂η

i =E[Dη

i (0)], where the RHS is the
expected throughput. We say that a given vector of required
minimum delivery ratios, (qi)

N
i=1, is fulfilled by policy η if

and only if q̂η

i ≥ qi, for all i, with probability 1.
Another metric of interest is the expected weighted sum

throughput (EWST). In particular, let ~α = (αi)
N
i=1 be a

vector of client weights with αi ≥ 0. Then, the EWST is
expressed as ∑

N
i=1 αiE[D

η

i (0)]. This metric has a central role
in the dynamic program, for it characterizes a network-wide
performance.

III. DYNAMIC PROGRAMMING FORMULATION

In this section, the discrete-time system is considered from
the Dynamic Programming [10] standpoint, where we focus
on the performance metric EWST. The three components
of the cost-to-go function (state, transition and reward) are
presented and the finite-horizon program is solved.

A. State Augmentation

Consider the set of clients N = {1, ...,N} and the state
space S= 2N , which is the collection of all subsets of clients.
Let st ∈ S, t ∈ {0, · · · ,T −1}, represent the clients that have
received their packet and whose ACK signal have reached the
BS by the beginning of the tth time slot, as illustrated in Fig.
1. One implication of this definition is that s0 = · · ·= sd = /0,
because the first time a feedback is received in any frame is
at the end of slot d.

From the point of view of the BS, clients can be divided
into three groups. i) clients with confirmed delivered packets,
ii) clients that have been served but the feedback signal
has not arrived yet and iii) clients that were not served
or have confirmed a transmission error (NACK). As each
client belongs to one group, a complete representation of
the system state can be achieved by characterizing two out
of the three groups.

Let ut be the scheduling decision (or control) in time slot t,
i.e. the client selected by the BS for transmission in that slot.
The set (ut−1, · · · ,ut−d) depicts the transmissions which have
not been acknowledged by the beginning of slot t. Hence,
combining st with (ut−1, · · · ,ut−d) gives the augmented state
s̃t = (st ;ut−1, · · · ,ut−d), which fully represents the system.
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Recalling that the policies are work conserving, the set
of allowed scheduling decisions can be defined as Ut(st) =
N \st . Imposing ut ∈Ut(st), ∀t, guarantees that the BS will
only idle when all packets have been acknowledged, i.e.
Ut(st = N ) = /0.

B. State Transition

As mentioned, the first feedback arrives to the BS at
the end of slot d. This means that the (augmented) state1

for t ∈ {0,1, · · · ,d− 1} changes according to the transition
probability

P{s̃t+1 = (st+1 = /0;ut ,ut−1, · · · ,u0)|s̃t ,ut}= 1. (2)

On the other hand, when t ∈ {d, · · · ,T − 1}, the transition
depends on the feedback to be received at the end of slot t.
There are three possible events: the feedback is a NACK, an
ACK or it is associated to the transmission of a previously
confirmed delivery. These events are illustrated in Fig. 1 at
t = 2, 3 and 4, respectively. In the case of a NACK, the
associated transition probability is

P{s̃t+1 = (st ;ut , · · · ,ut−d+1)|s̃t ,ut}= 1− put−d , (3)

and in the case of an ACK,

P{s̃t+1 = (st ∪ut−d ;ut , · · · ,ut−d+1)|s̃t ,ut}= put−d . (4)

Notice that these transitions can only take place at the tth
slot if ut−d ∈ Ut(st). In contrast, ut−d /∈ Ut(st) yields the
deterministic transition

P{s̃t+1 = (st ;ut , · · · ,ut−d+1)|s̃t ,ut}= 1. (5)

With all state transition probabilities defined, in the next
section we analyze the reward function associated with each
state transition.

C. Reward Function

The last concept to be introduced prior to the actual DP
formulation is the reward function. The reward is directly re-
lated to the EWST. From the expression of this performance
metric, a straightforward definition for the reward at time t
is that the system gets a reward of αut−d when an ACK is
received from client ut−d and zero otherwise.

For describing the reward function, three periods are
distinguished. The first, t ∈ {0, · · · ,d − 1}, in which there
is no feedback:

gt(s̃t+1, s̃t) = 0. (6)

The second, t ∈ {d, · · · ,T −1}, with delayed feedback:

gt(s̃t+1, s̃t) =

=

{
αut−d if st+1 = st ∪{ut−d} and ut−d ∈Ut(st),

0 otherwise. (7)

1Henceforth we will use the terms augmented state and state interchange-
ably to denote s̃t

The third, t = T , to account for the expected reward of
packets that are successfully received by the end of the frame
but whose ACK is received after the end of the frame:

gT (s̃T ) = ∑
i∈Ut (st )

αi(1− (1− pi)
ni), (8)

where ni is the cardinality of i in the set {uT−1, · · · ,uT−d}
and Ut(st) = N \st .

D. Dynamic Program

Within a frame, the system evolves in steps and yields a
reward which is additive over time, making it adequate for
a DP formulation. For a given ~α , the problem of optimizing
the EWST is defined as

EWST (~α) := max
η∈Π

N

∑
i=1

αiE
[
Dη

i (0)
]
, (9)

and solved by applying the cost-to-go function Jt(s̃t) recur-
sively. Working backwards in time, we have
• for t = T :

JT (s̃T ) = gT (s̃T = (sT ;uT−1, · · · ,uT−d));

• for t ∈ {d, · · · ,T −1}, the general equation:

Jt(s̃t) = max
ut∈Ut (st )

Es̃t+1 [gt(s̃t+1, s̃t)+ Jt+1(s̃t+1)],

which, in the case ut−d /∈Ut(st), takes the form:

Jt(s̃t) = max
ut∈Ut (st )

[Jt+1(st ;ut , · · · ,ut−d+1)],

and with ut−d ∈Ut(st), the form:

Jt(s̃t) = max
ut∈Ut (st )

[αut−d put−d+

+ put−d Jt+1(st ∪ut−d ;ut , · · · ,ut−d+1)+

+(1− put−d )Jt+1(st ;ut , · · · ,ut−d+1)];

• lastly, for t ∈ {0, · · · ,d−1}:

Jt(s̃t) = max
ut∈Ut (st )

[Jt+1(st+1 = /0;ut , · · · ,u0)].

At each step t and for every possible s̃t , the value of Jt(s̃t)
is attained by choosing the optimal u∗t . By keeping track of
those choices, the optimal policy η∗ is obtained. The output
of the recursion at t = 0 is the optimal performance J0( /0) =
EWST (~α) associated with η∗.

So far, the mechanism to obtain the optimal network
performance for a given ~α was described. Nonetheless, the
actual constraint is not the weight vector, but a vector of
minimum delivery ratios, (qi)

N
i=1. In the next section, we

propose an optimal algorithm which fulfills any feasible
vector of qi.

IV. FEASIBLE REGION AND OPTIMAL
ALGORITHM

For defining the concept of feasibility, we first present the
Feasible Throughput Region. Then, the optimal algorithm
called Frame-based Max-weight Policy is described.
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Fig. 2. Feasible Throughput Region of a two-user wireless network with
T = 5, p1 = p2 = 0.4 and different values of delay. The circles represent
the throughput vectors attained by the optimal policies.

A. Feasible Throughput Region

The Feasible Region is the set of throughput vectors(
E
[
Dη

i (0)
])N

i=1 that can be achieved by the policies in Π.
To characterize this region, similarly to [8], we evaluate
its boundaries. From the DP formulation, (9), it can be
seen that, for a given weight vector, no policy attains a
higher performance than η∗. Therefore, by sweeping ~α
and iteratively solving the Dynamic Program, the optimal
throughput vectors, denoted by (E [D∗i (0)])

N
i=1, are collected.

It then follows that the Feasible Region is the convex hull
of those vectors. The convex hull represents randomizations
between different η∗.

In Fig. 2 the Feasible Region for a fixed (T,N, pi) is
illustrated. Delays range from instant feedback, d = 0, to
no feedback, d ≥ T −1. The convex hull is depicted by the
lines and the optimal throughput vectors by the circles, some
of which are numbered for future reference.

Any vector of minimum delivery ratios, (qi)
N
i=1, that lies

inside the convex hull is called feasible, for it can be fulfilled
by a randomization over the optimal policies. Next, we
propose a feasibility optimal algorithm, i.e. an algorithm
which fulfills any feasible requirement.

B. Optimal Algorithm

The Optimal Algorithm is a dynamic schedule that drives
the throughput vector of the network to a point above
the feasible requirement. To achieve this goal, we use the
delivery debt, defined as the difference between the number
of required deliveries and the current number of deliveries, as
the weight vector (~α) in the Dynamic Program. The output
is the optimal policy η∗k to be applied in the current frame.
This describes the outline of one iteration of the Optimal
Algorithm. A precise description follows.

FRAME-BASED MAX-WEIGHT ALGORITHM:
(i) At the beginning of the frame k, calculate for each

client:
– the total number of packets delivered Qi(k);
– the delivery debt di(k) = kqi−Qi(k).

(ii) Solve the Dynamic Program with αi = max{di(k),0};

(iii) Employ η∗k during frame k.

In each frame, the algorithm employs the optimal policy
that gives higher weights to clients with higher debts. A proof
similar to the one in [8], using Lyapunov Drift techniques
[11], can be given to show that the Frame-based Max-
weight Algorithm is feasibility optimal. Simulation results
are provided in Sec. V.

A negative aspect of the Optimal Algorithm is that it can
be computationally demanding, for it involves solving the
Dynamic Program at every frame. One iteration of the DP
entails maximizing over ut , at each step t, for every possible
s̃t = (st ;ut−1, · · · ,ut−d). Recalling that there are T slots in a
frame, 2N subsets st and Nd different sets (ut−1, · · · ,ut−d),
this amounts to O(2NNdT ) maximizations in a single itera-
tion. A heuristic algorithm which is suited for platforms with
low computational power and has a performance comparable
to the optimal is presented next.

V. INSIGHT INTO THE POLICIES AND HEURISTIC
ALGORITHM

By solving the DP, the Optimal Algorithm randomizes
over all possible η∗, covering the entire Feasible Region.
The Heuristic Algorithm uses a predefined subset of policies
and a randomization based on vector projections to cover a
considerable portion of the Feasible Region. The first part
of this section discusses the choice of the subset of policies
and the second part describes the Heuristic Algorithm.

A. Subset of Policies

A well-known scheduling strategy is the Greedy Policy.
It prioritizes clients and, in each slot, schedules the client
with highest priority. The Greedy Policy in the context of
this paper is as follows: in slot t, the BS transmits ut =
argmaxut∈Ut (st )αut put . Notice that a given weight vector ~α
defines a priority ordering of clients in the Greedy Policy.
It was shown in [8], that this is the optimal policy for
instant feedback. The outcome of the DP extends this result,
showing that in some ranges of ~α the same Greedy Policy
is also optimal for delayed feedback. In Fig. 2, points 1
through 4 and their symmetric along the diagonal correspond
to Greedy Policies.

For a given network setting (T , N, pi, d), consider the
subset containing N! Greedy Policies, one for each possible
priority sequence. By randomizing over those policies, it is
possible to obtain the convex hull of the corresponding limit-
ing points. Fig. 3 shows the simulated throughput vectors of
the Greedy Policies and the resulting Greedy Convex Hull.
As can be seen, the Greedy Convex Hull is significantly
reduced in comparison to the Feasible Region.

To expand the Greedy Convex Hull, we add to the subset
a group of policies denoted here by Round Robin. Points 5
and 6 in Fig. 2 are examples of such policies. Round Robin
policies choose the next client to be scheduled (from the
pool of allowed ut ) in a cyclic order. Considering T = 5 and
N = 3, a sample schedule would be (1,2,3,1,2). Once the
cyclic order is defined for the first frame, it is repeated in
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Fig. 3. Comparison of the different convex hulls for T = 7, N = 2, d = 3,
p1 = 0.1 and p2 = 0.3. The throughput vectors of the Greedy and Round
Robin Policies are obtained by simulating the network for 5×104 frames.

the following frames. Intuitively, the objective is to postpone
the retransmission of packets with pending feedback, in
order to avoid the state transition represented by (5), which
is associated to zero reward. As illustrated in Fig. 3, the
simulated throughput vectors of the Round Robin policies
expand the Greedy Convex Hull into the Heuristic Convex
Hull. Notice that there are N! Round Robin polices in the
subset, one for each permutation of clients.

The Round Robin policy is not optimal for every network
setting. However, as shown in Fig. 3, even when it is not
optimal, this policy can be used to expand the Greedy
Convex Hull. Naturally, the shorter the distance between the
throughput vector of the Round Robin policy and the border
of the Feasible Region, the larger is the Heuristic Convex
Hull. To examine this distance in different network settings,
we present next some simulation results.

Let the performance metric be meani(q̂
η

i ), which is the
average throughput per client of policy η . Consider two
policies: i) Round Robin with clients in order of increasing
index; ii) Optimal Policy obtained from the DP for ~α =
(1)N

i=1. Figs. 4 and 5 compare both policies in a variety of
settings. Simulations run for 106 frames. The results show
that the average throughput per client of the Round Robin
policy is comparable to the Optimal in every simulation, what
suggests that the performance of the Round Robin policy is
in fact close to the border of the Feasible Region, specifically
of the point which represents the performance of the Optimal
Policy for ~α = (1)N

i=1.

B. Heuristic Algorithm and Simulation Results

The goal of the Heuristic Algorithm is to fulfill the
minimum delivery ratio requirements by selecting the best
policy, within the subset, to be employed in each frame. At
the beginning of the kth frame, let the average debt of client
i be defined as ai(k) := qi−Qi(k)/k, where (qi)

N
i=1 is the

requirement vector and Qi(k) is the total number of delivered
packets. The vector of average debts (ai(k))N

i=1 represents
the best return a policy could provide. From the same
perspective, the throughput vectors, (q̂η

i )
N
i=1, of each Greedy

and Round Robin policies represent their expected returns.
By projecting each (q̂η

i )
N
i=1 on (ai(k))N

i=1 and comparing the

Fig. 4. Simulation results of the Average Throughput per client in networks
with T = 10, d = 5 and pi = 1/3,∀i. For each value of N, simulations run
for 106 frames.

Fig. 5. Simulation results of the Average Throughput per client in networks
with N = 4, d = 5 and pi = 1/3,∀i. For each value of T , simulations run
for 106 frames.

projection lengths, the algorithm can evaluate which policy is
most suited for the kth frame. Fig. 6 illustrates the projection
of one throughput vector. A complete description of the
Heuristic Algorithm follows.

HEURISTIC ALGORITHM
(i) At the beginning of the frame k, compute for each client:

– the total number of packets delivered Qi(k),
– the average debt ai(k) = qi−Qi(k)/k;

(ii) For each policy η in the subset, project the vector
(q̂η

i )
N
i=1 on (ai(k))N

i=1;
(iii) During the kth frame, employ the policy with longer

projection length.

The Optimal and Heuristic Algorithms are studied via
simulations. To examine their performances, the metrics of
interest are the achieved throughput vector and the Deadlines
Miss Ratio [5]. The DMR is defined as

DMR(k) :=
1
N

N

∑
i=1

max{di(k),0} , (10)

and represents the dynamic behavior of the algorithm regard-
ing the delivery debt.

Simulation runs were provided for 5×104 frames in two
distinct settings. Figs. 7 and 8 consider the network with
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Fig. 6. Projection of the throughput vector of one of the Round Robin
policies on the vector of average debts.

Fig. 7. Comparison of the throughput vectors attained by the Optimal and
Heuristic Algorithms in a two-user network with T = 5, d = 3, p1 = 0.3,
p2 = 0.4, q1 = 0.7 and q2 = 0.54. Both algorithms fulfill the minimum
delivery ratio requirement.

a requirement vector placed inside the Heuristic Convex
Hull, while Figs. 9 and 10 consider a requirement vector
placed between the Heuristic Convex Hull and the Feasible
Region. The simulated throughput vectors in Fig. 7 shows
that both algorithms can fulfill any constraints that lie inside
the Heuristic Convex Hull. Moreover, the DMR in Fig. 8
shows that the Optimal and Heuristic Algorithms drive the
throughput vector to the minimum delivery ratio within 200
frames even when this requirement is close to the edge of
the Heuristic Convex Hull. In contrast, when the requirement
vector is outside the Heuristic Convex Hull but inside the
Feasible Region, we see from Figs. 9 and 10 that the
Heuristic Algorithm fails to fulfill the delivery requirement
but the Optimal Algorithm obtains the desired delivery ratio
within a few hundred frames.

VI. CONCLUDING REMARKS

This paper studied the problem of scheduling packets with
hard deadlines and delivery ratio constraints in a wireless
network with delayed feedback. We extended the analytical
model of [5] to account for delayed feedback and used
Dynamic Programming to solve for the optimal policy. This
solution was the groundwork for the Optimal and Heuris-

Fig. 8. Dynamic behavior of the simulation in Fig. 7 for the first 600
frames.

Fig. 9. Comparison of the throughput vectors attained by the Optimal
and Heuristic Algorithms in a two-user network with T = 5, d = 2, p1 =
0.1, p2 = 0.45, q1 = 0.34 and q2 = 0.5. The Optimal Algorithm fulfills the
minimum requirement, while the Heuristic Algorithm fails.

tic Algorithms. The Optimal Algorithm was shown to be
feasibility optimal and both were evaluated through simu-
lations. Results suggested that the low-complexity Heuristic
Algorithm can fulfill any delivery ratio requirements that lie
inside the convex hull formed by its subset of policies.

Some interesting extensions of this work include con-
sideration of multicast traffic and time-varying channels.
Multicast traffic could be approached with the simplifications
proposed in [8], in which the system model can be adapted,
without loss of generality, to consider each client subscribing
to a single flow. Time-varying channels could be considered
using the framework proposed in [7].

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall,
1992.

[2] P. P. Bhattacharya, L. Tassiulas, and A. Ephremides, “Optimal schedul-
ing with deadline constraints in tree networks,” IEEE Transactions on
Automatic Control, vol. 42, pp. 1703–1705, Dec. 1997.

[3] Z. Mao, C. E. Koksal, and N. B. Shroff, “Optimal online scheduling
with arbitrary hard deadlines in multihop communication networks,”
IEEE/ACM Transactions on Networking, Nov. 2014.

[4] R. Li and A. Eryilmaz, “Scheduling for end-to-end deadline-
constrained traffic with reliability requirements in multihop networks,”
IEEE/ACM Transactions on Networking, vol. 20, pp. 1649–1662, Feb.
2012.

[5] I.-H. Hou, V. Borkar, and P. R. Kumar, “A theory of qos for wireless,”
in Proceedings of IEEE INFOCOM, Apr. 2009, pp. 486–494.

1148



[6] I.-H. Hou and P. R. Kumar, “Admission control and scheduling for qos
guarantees for variable-bit-rate applications on wireless channels,” in
Proceedings of ACM MOBIHOC, May 2009, pp. 175–184.

[7] ——, “Scheduling heterogeneous real-time traffic over fading wireless
channels,” in Proceedings of IEEE INFOCOM, Mar. 2010, pp. 1–9.

[8] K. S. Kim, C.-P. Li, and E. Modiano, “Scheduling multicast traffic with
deadlines in wireless networks,” in Proceedings of IEEE INFOCOM,
May 2014, pp. 2193–2201.

[9] I.-H. Hou, “Broadcasting delay-constrained traffic over unreliable
wireless links with network coding,” IEEE/ACM Transactions on
Networking, vol. 23, pp. 728–740, Feb. 2014.

[10] D. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2005, vol. 1.

[11] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan and Claypool
Publishers, 2010.

Fig. 10. Dynamic behavior of the simulation in Fig. 9 for the first 600
frames.

1149


