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Abstract—We consider the problem of scheduling trans-
missions over a wireless downlink when channel state infor-
mation (CSI) is not available to the transmitter. We assume
channel states are time varying and evolve according to a
Markov Chain. We show that using current QLI does not
stabilize the system due to correlations between backlog
and channel state. We show that the throughput optimal
scheduling policy in this context must use delayed queue
length information (QLI). We characterize the extent to
which QLI must be delayed as a function of the channel
state statistics.

I. INTRODUCTION

We consider the scheduling problem in a wireless down-
link where channel state information (CSI) is unavailable
at the base station, as in Figure 1. Packets arrive to the base
station and are placed in queues to await transmission to
their respective destinations. Due to wireless interference,
only one transmission can be scheduled in each time slot.
Furthermore, the channels to each user are independent,
but evolve over time according to a Markov process. We
seek a throughput optimal scheduling policy such that the
queue lengths at the base station remain bounded.

Throughput optimal scheduling was pioneered by Tas-
siulas and Ephremides in [1], and has been studied in
a variety of contexts. The optimal policies depend on
the channel model and the information available to the
transmitter, as summarized in Table I. If the channel state
process is IID, and no CSI is available, then any work-
conserving policy is throughput optimal; a commonly used
throughput optimal policy in this scenario is one which
schedules the longest queue. If the transmitter has current
CSI and queue length information (QLI), the throughput
optimal policy is one that transmits over the channel that
maximizes the product of the channel rate and the queue
length at the current time [1], [2]. If the CSI and QLI
are delayed, Ying and Shakkottai show that the optimal
policy schedules the channel with the largest product of the
delayed QLI and the conditional expectation of the channel
rate at the current time, given the delayed CSI [3]. If the
CSI is not acquired until an acknowledgement is received
from the transmission, then the throughput optimal policy
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is to transmit over the channel that maximizes the product
of the belief of the channel and the queue backlog [4].

While throughput optimal scheduling has been studied
in a variety of contexts, to the best of our knowledge, there
have been no results on throughput optimal scheduling
when the controller has QLI but not CSI, and the channel
process has memory. In fact, Tassiulas and Ephremides
state that,

An interesting variation of the problem... is the
case where the connectivity information is not
available for the decision making and the server
allocation can be based on queue lengths... The
study of stability and optimal delay performance
in [the] case of dependent connectivities are
open problems for further investigation [1].

In this paper, we consider a scenario in which QLI
is available to the transmitter, but not CSI. Typically,
throughput optimal policies schedule the links with the
largest backlogs, to ensure a fair server allocation while
maintaining bounded backlogs[1], [2]. However, when the
channel state process has memory, then long backlogs may
be associated with poor channel qualities. Thus, giving
priority to these channels is not an effective resource
allocation, and the longest queue first policy does not
stabilize the system.

We show that instead, the policy which schedules links
based on significantly stale QLI is throughput optimal.
While it has been known that the use of delayed QLI
does not hurt throughput performance [5], in this scenario
delayed QLI is required for stability. We characterize the
degree by which QLI must be delayed for throughput
optimality. Additionally, we provide simulation results to
support the theoretical results of delayed QLI optimality,
and show that using fresh QLI reduces the achievable
throughput.

II. SYSTEM MODEL

Consider a system of M nodes, representing a wireless
downlink, as in Figure 1. Packets arrive externally at the
base station, and are destined for node i according to an
i.i.d. Bernoulli arrival process Ai(t) of rate λi. Packets are
stored in a separate queue at the base station, based on the
destination node, to await transmission. Let Qi(t) be the
packet backlog corresponding to node i at time t. Due to
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Fig. 1: Wireless Downlink

Model No CSI Delayed CSI Full CSI

IID Channels maxiQi(t)E[Si(t)] maxiQi(t)E[Si(t)] maxiQi(t)Si(t)

Markov Channels *This work* maxiQi(t− τ)E[Si(t)|Si(t− τ)] maxiQi(t)Si(t)

TABLE I: Throughput optimal policies for different system mod-
els. Column corresponds to a different amount of information at
the controller. Rows corresponds to the memory in the channel.
S(t) is the channel state and Q(t) is the backlog.

wireless interference, the base station is able to transmit
to only one node at a time, although this model can easily
be extended to allow for multiple transmissions per slot.

Each node is connected to the base station through an in-
dependent, time-varying channel. Let Si(t) ∈ {OFF,ON}
be the channel state of the channel at node i at time t.
Assume the channel states evolve over time according to
a Markov chain, shown in Figure 2. If a packet for node
i is scheduled for transmission, and Si(t) = ON, then
the packet is successfully transmitted, assuming there are
packets awaiting transmission. On the other hand, if the
channel at node i is OFF, then the transmission fails, and
the packet remains in the system. Let PSi(1) and PSi(0)
be the steady state probability of channel i being ON or
OFF respectively.

The base station has access to the history of queue
lengths for each node i, but no information regarding chan-
nel states. Therefore, the base station makes a transmission
decision based on QLI, but not CSI1. Let Π be the set of
transmission policies which do not use CSI.

Definition A queue with backlog Qi(t) is stable under
policy P if

lim sup
n→∞

1

n

n−1∑
t=0

E[Qi(t)] <∞ (1)

The complete network is stable if all queues are stable.

Definition The throughput region Λ is the closure of the
set of all rate vectors λ that can be stably supported over
the network by any policy P ∈ Π.

Definition A policy is said to be throughput optimal if it
stabilizes the system for any arrival rate λ ∈ Λ.

In this work, we characterize the throughput region of
the system above, and propose a throughput optimal
scheduling policy using delayed QLI.

1We assume packet acknowledgements occur at a separate layer, and
cannot be used to predict the channel state.
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Fig. 2: Markov Chain describing the channel state evolution.

III. THROUGHPUT REGION

The throughput region is characterized by the following
linear program (LP).

Maximize:
ε

Subject To:
λi + ε ≤ αiPSi

(1) ∀i ∈ {1, . . . ,M}
M∑
i=1

αi ≤ 1, αi ≥ 0 ∀i ∈ 1, . . . ,M

(2)

In the above LP, αi represents the fraction of time the
base station schedules node i for transmission. To maintain
stability, the arrival rate to each queue must be less than
the service rate at that queue, which is a function of αi and
the statistics of the channel. Thus, the throughput region,
Λ, is the set of all non-negative arrival rate vectors λ such
that there exists a feasible solution to (2) for which ε ≥ 0.

Theorem 1 (Throughput Region). For any non-negative
arrival rate vector λ, the system can be stabilized by some
policy P ∈ Π if and only if λ ∈ Λ.

Necessity is shown in Lemma 1, and sufficiency is
shown in Theorem 2 by proposing a throughput optimal
scheduling policy, and proving that for all λ ∈ Λ, that
policy stabilizes the system.

Lemma 1. Suppose there exists a scheduling policy P ∈
Π that stabilizes the system without using CSI, then there
exists an αi such that (2) has a solution with ε ≥ 0.

Lemma 1 shows that for all λ ∈ Λ, there exists a
stationary policy STAT ∈ Π that stabilizes the system, by
scheduling link i with probability αi. The value of αi that
stabilizes the network depends on the arrival rates, which
are not available to the controller. In the following section,
we develop a scheduling policy based on delayed QLI, that
stabilizes the system without requiring knowledge of the
arrival rates or channel statistics.

IV. DYNAMIC QLI-BASED SCHEDULING POLICY

Due to the ergodicity of the finite-state Markov chain
in Figure 2, for any ε > 0, there exists a τQ such that the
probability of the channel state conditioned on the channel
state τQ slots in the past is within ε

2 of the steady state
probability of the Markov chain.∣∣∣∣P(S(t) = s

∣∣S(t− τQ(ε))
)
−P

(
S(t) = s

)∣∣∣∣ ≤ ε

2
(3)
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Fig. 3: Symmetric arrival rate vs. average queue backlog for a
4-queue system. Transition probabilities satisfy p = q = 0.01

Note that τQ(ε) is related to the mixing time of the Markov
chain. In general, the Markov chain approaches steady
state exponentially fast, at a rate of p+ q [6].

Theorem 2 proposes the Delayed Longest Queue (DLQ)
scheduling policy, which stabilizes the network whenever
the input rate vector is interior to the capacity region Λ.
Note, this proves sufficiency in Theorem 1.

Theorem 2. Consider the Delayed Longest Queue (DLQ)
scheduling policy, which at time t schedules the following
channel for transmission:

i∗ = argmax
i

Qi(t− τQ(ε)), (4)

where τQ(ε) is defined in (3). For any arrival rate λ, and
ε > 0 satisfying λ + ε1 ∈ Λ, this policy stabilizes the
system.

The proof of Theorem 2 is in the Appendix. The DLQ
policy transmits a packet from the longest queue using
delayed QLI. If fresher QLI is available, it cannot be
used by the DLQ policy to stabilize the system. This
is because at time t, the queue with the largest backlog
Qi(t) is also likely to have an OFF channel. On the other
hand, if sufficiently delayed QLI is used in the DLQ
policy, then the QLI is independent of the current channel
state, because the state process reaches its steady-state
distribution over the τQ slots that the QLI is delayed.
Under DLQ, the base station schedules queues for which
the backlog is long, without favoring OFF channels.

The required delay on the QLI depends on the mixing
time of the channel state process. As p + q approaches
1, the Markov process approaches an IID process, and
current QLI can be used. However, using further delayed
QLI doesn’t affect the overall throughput region. The
drawback of using delayed QLI is increased packet delays.
Therefore, if no CSI is available to the base station, the
optimal policy must trade off between throughput and
delay.

V. SIMULATION RESULTS AND CONCLUSIONS

We simulate a system of four queues, and apply the
DLQ policy for different delays to QLI (τQ). We plot
the average queue backlog over 100,000 time-slots for

Fig. 4: Symmetric arrival rate vs. average queue backlog for a
4-queue system. Transition probabilities satisfy p = q = 0.1

different symmetric arrival rates2. For small arrival rates,
the average queue length remains small. As the arrival
rate increases, the backlog slowly increases until a certain
point, after which the backlog greatly increases. This point
represents the boundary of the throughput region, and for
arrival rates outside of this region, the system of queues
cannot be stabilized.

For a system of four queues with symmetric channel
transition probabilities p = q, the boundary of the stability
region on the symmetric arrival rate line is given by 1

2 ·
1
4 = 0.125, since each node transmits equally often, and
each channel is ON with probability 1

2 . Therefore, under
the throughput optimal policy, the queue lengths should
remain bounded for arrival rates λ < 0.125.

Figures 3 and 4 show the results for transition prob-
abilities p = q = 0.01 and p = q = 0.1 respectively.
As shown in Figure 3, when the QLI is insufficiently
delayed, the system becomes unstable before the boundary
of the stability region (0.125). For τQ = 1, the system
becomes unstable at approximately λ = 0.03, representing
a 75% reduction in the stability region. As τQ increases,
the maximum arrival rate supportable by the DLQ policy
increases. At τQ = 150, it appears that the system becomes
stable for all arrival rates within the stability region.

Similar results are shown in Figure 4 for a channel with
less memory. In this case, the attainable throughput of the
DLQ policy is less sensitive to the magnitude of the delays
in QLI. The simulation results suggest that τQ = 100 is
sufficient to achieve the full throughput region in this case.

In summary, using current QLI does not stabilize the
system when the channel state process has memory, and
significantly stale QLI, based on the amount of memory
in the channel, must be used for throughput optimality.

VI. APPENDIX

Proof of Theorem 2: Let τQ = τQ(ε), where the
dependence on ε is clear. Let Y(t) be the history of
queue-lengths in the system up to time t, i.e. Y(t) =
{Q(0), . . . ,Q(t)}. The vector Y(t) forms a Markov pro-

2A symmetric arrival rate implies that each node sees the same arrival
rate.
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cess. Define the following quadratic Lyapunov function:

L(Q(t)) =
1

2

M∑
i=1

Q2
i (t). (5)

The T -step Lyapunov drift is computed as

∆T (Y(t)) = E
[
L(Q(t+ T ))− L(Q(t))

∣∣∣∣Y(t)

]
(6)

We show that under the DLQ policy, the T -step Lyapunov
drift is negative for large backlogs, implying the stability
of the system under the DLQ policy for all arrival rates
within Λ, which follows from the Foster-Lyapunov criteria
[7]. We bound the Lyapunov drift by combining (7), (5)
and (6), and showing for large queue lengths, this upper
bound is negative.

Consider the DLQ scheduling policy. Let Di(t) be the
departure process of queue i, such that Di(t) = 1 if there
is a departure from queue i at time t under policy DLQ.
Consider the evolution of the queues over T time slots.

Qi(t+T ) ≤
(
Qi(t)−

T−1∑
k=0

Di(t)

)+

+
T−1∑
k=0

Ai(t+k) (7)

Equation (7) is an inequality rather than an equality due
to the assumption that the departures are taken from the
backlog at the beginning of the T -slot period, and the
arrivals occur at the end of the T slots. The Lyapunov
drift in (6) is bounded as follows:

∆T (Y(t))

≤ B + E
[ M∑
i=1

Qi(t)

( T−1∑
k=0

Ai(t+ k)−
T−1∑
k=0

Di(t+ k)

)∣∣∣∣Y(t)

]
(8)

where B is a finite constant, which exists due to the
boundedness of the second moment of the arrival process.

The difference between queue lengths at any two times
t and s is bounded using the following inequality:

Qi(t)−Qi(s) ≤ |t− s|, (9)

which holds assuming that an arrival occurs in each slot,
and no departures occur, or vice versa. This inequality
establishes a relationship between current queue lengths
and delayed queue lengths.

Qi(t) ≤ Qi(t+ k − τQ) + |k − τQ| (10)
Qi(t) ≥ Qi(t+ k − τQ)− |k − τQ| (11)

The inequalities in (10) and (11) are used in (8) to upper
bound the Lyapunov drift in terms of the delayed QLI.

∆T (Y(t))

≤ B + E
[ T−1∑
k=0

M∑
i=1

(Qi(t+ k − τQ) + |k − τQ|)Ai(t+ k)

−
T−1∑
k=0

M∑
i=1

(Qi(t+ k − τQ)− |k − τQ|)Di(t+ k)

∣∣∣∣Y(t)

]
(12)

≤ B′ + E
[ T−1∑
k=0

M∑
i=1

Qi(t+ k − τQ)

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]
(13)

Equation (13) follows from upper bounding the per-slot
arrival and departure rate each by 1, defining B′ =
B + 2MT 2, and using E[Ai(t + k)] = λi. To bound
(13), we require the channel state at slot t + k to be
independent from Y(t), which only holds in slots where
k is sufficiently large. Thus, we break the summation in
(13) into two parts: a smaller number of slots for which k
is small, and a larger number of slots for which k is large.
A trivially conservative bound is used for k < τQ, but the
frame size is chosen to ensure the first τQ slots is a small
fraction of the overall T slots.

∆T (Y(t))

≤ B′ +
T−1∑
k=0

E
[ M∑
i=1

Qi(t+ k − τQ)

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]

≤ B′ +
τQ−1∑
k=0

E
[ M∑
i=1

Qi(t+ k − τQ)

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]

+

T−1∑
k=τQ

E
[ M∑
i=1

Qi(t+ k − τQ)

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]
(14)

For values of k < τQ, the upper bound follows by trivially
upper bounding the arrival rate by 1 and lower bounding
the departures by 0 in each slot.
τQ−1∑
k=0

E
[ M∑
i=1

Qi(t+ k − τQ)

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]

≤
τQ−1∑
k=0

M∑
i=1

E
[
Qi(t+ k − τQ)

∣∣Y(t)
]

(15)

≤
τQ−1∑
k=0

M∑
i=1

Qi(t− τQ) +

τQ−1∑
k=0

M∑
i=1

k (16)

≤ τQ
M∑
i=1

Qi(t− τQ) +
1

2
(τQ)2M (17)

where (16) follows from (9).
Now consider slots for which k ≥ τQ. The last term on

the right hand side of (14) can be rewritten by conditioning
on the delayed QLI at the current slot t + k and using
the law of iterated expectations. For exposition, define
Q̂
k−τQ
i = Qi(t+ k − τQ).

E
[ T−1∑
k=τQ

M∑
i=1

Q̂
k−τQ
i

(
λi −Di(t+ k)

)∣∣∣∣Y(t)

]

= E
[ T−1∑
k=τQ

E
[ M∑
i=1

Q̂
k−τQ
i

(
λi −Di(t+ k)

)∣∣∣∣Q̂k−τQ
]∣∣∣∣Y(t)

]
(18)

Let φi be a binary variable denoting whether queue i is
scheduled under the DLQ policy as a function of the de-
layed QLI. For these time-slots, we evaluate the expected
departure rate, and compare it to the departure rate of the
STAT policy in Lemma 1, which we know stabilizes the
system. The expected departure rate is expanded as

E
[ M∑
i=1

Q̂
k−τQ
i Di(t+ k)

∣∣∣∣Q̂k−τQ ,Y(t)

]
(19)

=
M∑
i=1

Q̂
k−τQ
i E

[
φi(Q̂

k−τQ)Si(t+ k)
∣∣Q̂k−τQ ,Y(t)

]
(20)
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=
M∑
i=1

Q̂
k−τQ
i φi(Q̂

k−τQ
i )E

[
Si(t+ k)

∣∣Q̂k−τQ
i ,Y(t)

]
. (21)

Equation (21) follows since the scheduling under DLQ is
completely determined by the delayed QLI.

Note that the throughput optimal policy maximizes the
expression in (21); however, the expectation cannot be
computed because it requires knowledge of the conditional
distribution of the channel state sequence given QLI,
which requires knowledge of the arrival rates to compute.
However, when QLI is sufficiently delayed, the bound in
(3) can be used to remove the conditioning on QLI.

P
(
Si(t+ k) = s

∣∣Q̂k−τQ ,Y(t)
)

=
∑
s′∈S

P
(
Si(t+ k − τQ) = s′

∣∣Q̂k−τQ
i ,Y(t)

)
·P
(
Si(t+ k) = s

∣∣Si(t+ k − τQ) = s′
)

(22)

≥ P
(
Si(t+ k) = s

)
− ε

2
(23)

Equation (22) follows from the law of total probability, and
the Markov property of the channel state. Equation (23)
holds from the definition of τQ in (3), which implies the
conditional state distribution is within ε

2 of the stationary
distribution. The expression in (21) can now be bounded
in terms of an unconditional expectation.

M∑
i=1

Q̂
k−τQ
i φi(Q̂

k−τQ
i )E

[
Si(t+ k)

∣∣Q̂k−τQ
i ,Y(t)

]
=

M∑
i=1

Q̂
k−τQ
i φi(Q̂

k−τQ
i )P

(
Si(t+ k) = 1

∣∣Q̂k−τQ
i ,Y(t)

)
(24)

≥
M∑
i=1

Q̂
k−τQ
i φi(Q̂

k−τQ
i )PSi(t+k)(1)− ε

2

M∑
i=1

Q̂
k−τQ
i (25)

= PS(1) max
i
Q̂
k−τQ
i − ε

2

M∑
i=1

Q̂
k−τQ
i . (26)

Equation (24) follows from the distribution of channel
state. The inequality in (25) follows from applying (23)
and upper bounding φi(Q) ≤ 1. Equation (26) follows
from applying the DLQ policy. Combining equation (26)
with equation (18) yields
M∑
i=1

Q̂
k−τQ
i λi − PS(1) max

i
Q̂
k−τQ
i +

ε

2

M∑
i=1

Q̂
k−τQ
i (27)

Now, we reintroduce the stationary policy of Lemma
1 to complete the bound. Recall that for any λ ∈ Λ,
there exists a stationary policy which schedules node i
for transmission with probability αi, and satisfies

λi + ε ≤ αiPS(1) ∀i ∈ {1, . . . ,M}. (28)

Note that the ε in the theorem statement and in (28) are
designed to be equal. The expression in (27) is bounded
by adding and subtracting identical terms corresponding
to the stationary policy.

M∑
i=1

Q̂
k−τQ
i (λi − αiPS(1)) +

M∑
i=1

Q̂
k−τQ
i αiPS(1)

− PS(1) max
i
Q̂
k−τQ
i +

ε

2

M∑
i=1

Q̂
k−τQ
i (29)

≤ −ε
M∑
i=1

Q̂
k−τQ
i +

M∑
i=1

Q̂
k−τQ
i αiPS(1)

− PS(1) max
i
Q̂
k−τQ
i +

ε

2

M∑
i=1

Q̂
k−τQ
i (30)

≤ − ε
2

M∑
i=1

Q̂
k−τQ
i (31)

≤ − ε
2

M∑
i=1

Qi(t− τQ) +
ε

2
Mk (32)

Equation (30) follows from (28), and equation (31) follows
from the fact that since

∑
i αi ≤ 1, the weighted sum of

queue lengths is maximized by placing all the weight at
the largest queue length. Equation (32) follows from (9).

The upper bound in (32) for slots k ≥ τQ is combined
with (17) for k < τQ to bound the drift in (14).

∆T (Y(t)) ≤ B′ + τQ

M∑
i=1

Qi(t− τQ) +
1

2
(τQ)2M

+

T−1∑
k=τQ

E
[
− ε

2

M∑
i=1

Qi(t− τQ) +
ε

2
Mk

∣∣∣∣Y(t)

]
(33)

≤ B′ + 1

2
τ2QM(1− ε

2
) +

ε

4
MT 2

+ τQ

M∑
i=1

Qi(t− τQ)− (T − τQ)
ε

2

M∑
i=1

Qi(t− τQ) (34)

Thus, for any ξ > 0, and T satisfying

T ≥
2(1 + ε

2 )τQ + 2ξ

ε
, (35)

there exists a positive constant K such that

∆T (Y(t)) ≤ K − ξ
M∑
i=1

Qi(t− τQ). (36)

Thus, for large enough queue backlogs, the T -slot Lya-
punov drift is negative, and from [2] it follows that the
overall system is stable.
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