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Abstract—We study the problem of broadcasting packets in
wireless networks. At each time slot, a network controller acti-
vates non-interfering links and forwards packets to all nodes at a
common rate; the maximum rate is referred to as the broadcast
capacity of the wireless network. Existing policies achieve the
broadcast capacity by balancing traffic over a set of spanning
trees, which are difficult to maintain in a large and time-varying
wireless network. We propose a new dynamic algorithm that
achieves the broadcast capacity when the underlying network
topology is a directed acyclic graph (DAG). This algorithm
utilizes local queue-length information, does not use any global
topological structures such as spanning trees, and uses the idea
of in-order packet delivery to all network nodes. Although the
in-order packet delivery constraint leads to degraded throughput
in cyclic graphs, we show that it is throughput optimal in
DAGs and can be exploited to simplify the design and analysis
of optimal algorithms. Our simulation results show that the
proposed algorithm has superior delay performance as compared
to tree-based approaches.

I. INTRODUCTION

Broadcast refers to the fundamental network functionality
of delivering data from a source node to all other nodes. It uses
packet replication and appropriate forwarding to eliminate un-
necessary packet retransmissions. This is especially important
in power-constrained wireless systems which suffer from inter-
ference and collisions. Broadcast applications include mission-
critical military communications [1], live video streaming [2],
and data dissemination in sensor networks [3].

The design of efficient wireless broadcast algorithms faces
several challenges. Wireless channels suffer from interference,
and a broadcast policy needs to activate non-interfering links
at any time. Wireless network topologies undergo frequent
changes, so that packet forwarding decisions must be made
in an adaptive fashion. Existing dynamic multicast algorithms
that balance traffic over spanning trees [4] may be used for
broadcasting, since broadcast is a special case of multicast.
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These algorithms, however, are not suitable for wireless net-
works because enumerating all spanning trees is computation-
ally complex and needs to be performed repeatedly when the
network topology changes.

In this paper, we study the fundamental performance of
broadcasting packets in wireless networks. We consider a time-
slotted system. At every slot, a scheduler decides which wire-
less links to activate and which packets to forward on activated
links, so that all nodes receive packets at a common rate.
The broadcast capacity is the maximum common reception
rate of distinct packets over all scheduling policies. We then
design optimal wireless broadcast algorithms without the use
of spanning trees. To the best of our knowledge, there exists
no capacity-achieving scheduling policy for wireless broadcast
without spanning trees.

We begin by considering a rich class of scheduling policies
⇧ that perform arbitrary link activations and packet forward-
ing, and characterize the broadcast capacity over this policy
class ⇧. We impose two additional constraints that improve
the understanding of the problem. First, we consider the
subclass of policies ⇧

in-order ⇢ ⇧ that enforce the in-order
delivery of packets. Second, we focus on the subset of policies
⇧

⇤ ⇢ ⇧

in-order that allows the reception of a packet by a node
only if all its incoming neighbors have received the packet.
It is intuitively clear that the policies in the more structured
class ⇧

⇤ are easier to describe and analyze, but may yield
degraded throughput performance. We show the surprising
result that when the underlying network topology is a directed
acyclic graph (DAG), there is a control policy ⇡

⇤ 2 ⇧

⇤ that
achieves the broadcast capacity. In contrast, there exists a
cyclic network in which no control policy in ⇧

⇤ or ⇧

in-order

can achieve the broadcast capacity.
To enable the design of the optimal broadcast policy, we

establish a queue-like dynamics for the system state, which is
represented by relative packet deficit. This is non-trivial for
the broadcast problem because explicit queueing structure is
difficult to maintain in the network due to packet replication.
As a result, achieving the broadcast capacity reduces to finding
a scheduling policy that stabilizes the system states using the
drift analysis [5], [6].

In this paper, our contributions include:
• We define the broadcast capacity of a wireless network
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and show that it is characterized by an edge-capacitated
graph bG that arises from optimizing the time-averages
of link activations. For integral-capacitated DAGs, the
broadcast capacity is determined by the minimum in-
degree of the graph bG, which is equal to the maximal
number of edge-disjoint spanning trees.

• We design a dynamic algorithm that utilizes local queue-
length information to achieve the broadcast capacity of
a wireless DAG network. This algorithm does not rely
on spanning trees, has small computational complexity,
and is suitable for mobile networks with time-varying
topology.

• We demonstrate the superior delay performance of our al-
gorithm, as compared to centralized tree-based algorithm
[4], via numerical simulations.

In the literature, a simple method for wireless broadcast is to
use packet flooding [7]. The flooding approach, however, leads
to redundant transmissions and collisions, known as broadcast
storm [8]. In the wired domain, it has been shown that
forwarding useful packets at random is optimal for broadcast
[9]; this approach does not extend to the wireless setting due
to interference and the need for scheduling [10]. Broadcast on
wired networks can also be done using network coding [11],
[12]. However, efficient link activation under network coding
remains an open problem.

The rest of the paper is organized as follows. Section
II introduces the wireless network model. In Section III,
we define the broadcast capacity of a wireless network and
provide a useful upper bound from a fundamental cut-set
bound. In Section IV, we propose a dynamic broadcast policy
that achieves the broadcast capacity in a DAG. Simulation
results are presented in Section V. Due to space limitations,
we provide a subset of the proofs in the Appendix; see the
technical report [13] for the complete proofs.

II. THE WIRELESS NETWORK MODEL

We consider a wireless network that is represented by a
directed graph G = (V,E, c,S), where V is the set of nodes,
E is the set of directed point-to-point links, c = (cij) denotes
the capacity of links (i, j) 2 E, S is the set of all feasible
link-activation vectors, and s = (se, e 2 E) 2 S is a
binary vector indicating that the links e with se = 1 can
be activated simultaneously. The structure of the activation
set S depends on the interference model. Under the primary
interference constraint, the set S consists of all binary vectors
corresponding to matchings of the underlying graph G [14],
see Fig. 1. In the case of a wired network, S is the set of
all binary vectors since there is no interference. In this paper,
we allow an arbitrary link-activation set S , which captures
different wireless interference models. Let r 2 V be the source
node at which the broadcast traffic is generated. We consider a
time-slotted system. In slot t, the number of packets generated
at the node r is denoted by A(t), where A(t) is i.i.d. over slots
with mean �. These packets need to be delivered to all nodes
in the wireless network.

r

a b

c

�

(a) a wireless network

r

a b

c

(b) activation vector s1

r

a b

c

(c) activation vector s2

r

a b

c

(d) activation vector s3

Fig. 1: A wireless network and its three feasible link activations
under the primary interference constraint.

III. WIRELESS BROADCAST CAPACITY

Intuitively, the network supports a broadcast rate � if there
exists a scheduling policy under which all network nodes
can receive distinct packets at rate �. The broadcast capacity
is the maximally supportable broadcast rate in the network.
Formally, we consider a class ⇧ of scheduling policies where
each policy ⇡ 2 ⇧ is a sequence of actions {⇡t}t�1

taken in
every slot t. Each action ⇡t consists of two operations: (i) the
scheduler activates a subset of links by choosing a feasible
activation vector s 2 S; (ii) each node i forwards a subset of
packets (possibly empty) to node j over an activated link (i, j),
subject to the link capacity constraint. The class ⇧ includes
policies that use all past and future network information, and
may forward any subset of packets over a link.

To introduce the notion of broadcast capacity, we define the
random variable R

⇡
i (t) to be the number of distinct packets

received by node i 2 V from the beginning of time up to time
t, under a policy ⇡ 2 ⇧. The time average limT!1 R

⇡
i (T )/T

is the rate of distinct packets received at node i.

Definition 1. A policy ⇡ is called a “broadcast policy of rate
�” if all nodes receive distinct packets at rate �, i.e.,

lim

T!1

1

T

R

⇡
i (T ) = �, for all i 2 V, w. p. 1, (1)

where � is the packet arrival rate at the source node r.1

1We can use the following more rigorous condition in (1):

min
i2V

lim inf
T!1

1

T
R⇡

i (T ) = �, w. p. 1, (2)

under which all results in this paper still hold.
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Definition 2. The broadcast capacity �

⇤ of a wireless network
is the supremum of all arrival rates � for which there exists
a broadcast policy ⇡ of rate �, ⇡ 2 ⇧.

A. An upper bound on broadcast capacity �

⇤

We characterize the broadcast capacity �

⇤ of a wireless
network by providing a useful upper bound. This upper bound
is understood as a necessary cut-set bound of an associated
edge-capacitated graph that reflects the time-average behavior
of the wireless network. We provide an intuitive explanation
of the bound that will be formalized in Theorem 1 as follows.

Fix a policy ⇡ 2 ⇧. Let �

⇡
e be the fraction of time link

e 2 E is activated under ⇡; that is, we define the vector

�⇡
= (�

⇡
e , e 2 E) = lim

T!1

1

T

T
X

t=1

s⇡(t), (3)

where s⇡(t) is the link-activation vector under policy ⇡ in
slot t (assuming all limits exist). The average flow rate over a
link e under policy ⇡ is upper bounded by the product of the
link capacity and the fraction of time the link e is activated,
i.e., ce�⇡

e . It is convenient to define an edge-capacitated graph
bG = (V,E, (bce)) associated with policy ⇡, where each directed
link e 2 E has capacity bce = ce�

⇡
e ; see Fig. 2 for an example

of such an edge-capacitated graph. Next, we provide a bound
on the broadcast capacity by maximizing the broadcast rate at
each node on the graph bG over all feasible vectors �⇡ .

We define a proper cut U of the network graph G (or bG)
as a proper subset of the node set V that contains the source
node r. Define the link subset

EU = {(i, j) 2 E | i 2 U, j /2 U}. (4)

Since U ⇢ V , there exists a node n 2 V \ U . Consider the
throughput of node n under policy ⇡. The max-flow min-cut
theorem shows that the throughput of node n cannot exceed
the total link capacity

P

e2EU
ce �

⇡
e across the cut U . Since

the achievable broadcast rate �

⇡ of policy ⇡ is a lower bound
on the throughput of all nodes, we have �

⇡ 
P

e2EU
ce �

⇡
e .

This inequality holds for all proper cuts U and we have

�

⇡  min

U : a proper cut

X

e2EU

ce �
⇡
e . (5)

Equation (5) holds for any policy ⇡ 2 ⇧. Thus, the broadcast
capacity �

⇤ of the wireless network satisfies

�

⇤
= sup

⇡2⇧

�

⇡  sup

⇡2⇧

min

U : a proper cut

X

e2EU

ce �
⇡
e

 max

�2conv(S)

min

U : a proper cut

X

e2EU

ce �e,

where the last inequality holds because the vector �⇡ associ-
ated with any policy ⇡ 2 ⇧ lies in the convex hull conv (S) of
the activation set S . The next theorem formalizes the above
characterization of the broadcast capacity �

⇤ of a wireless
network.

Theorem 1. The broadcast capacity �

⇤ of a wireless network

r

a b

c

1/2

1/2

1/4

1/4

1/4

1/4

Fig. 2: The edge-capacitated graph bG for the wireless network with
unit link capacities in Fig. 1 and under the time-average vector
�⇡

= (1/2, 1/4, 1/4). The link weights are the capacities ce�⇡
e . The

minimum proper cut in this graph has value 1/2 (when U = {r, a, c}
or {r, b, c}). An upper bound on the broadcast capacity is obtained
by maximizing this value over all vectors �⇡ 2 conv (S).

under general interference constraints satisfies

�

⇤  max

�2conv(S)

min

U : a proper cut

X

e2EU

ce �e. (6)

Proof of Theorem 1: See the technical report [13].

B. In-order packet delivery

Studying the performance of a general broadcast policy is
difficult because packets are replicated across the network and
may be received out of order. To avoid retransmissions of
a packet, the nodes must keep track of the identity of the
received packets, which complicates the system state—instead
of the number of packets received, the system state is described
by the subset of packets received at all nodes.

To simplify the system state, we focus on the subset of
policies that enforce the in-order packet delivery constraint:

Constraint 1 (In-order packet delivery). A network node is
allowed to receive a packet p only if all packets {1, 2, . . . , p�
1} have been received by that node.

We denote this policy subclass by ⇧in-order. In-order packet
delivery is useful in live media streaming applications [2], in
which buffering out-of-order packets incurs increased delay
that degrades video quality. In-order packet delivery greatly
simplifies the network state space. Let Ri(t) be the number
of distinct packets received by node i by time t. For policies
in ⇧in-order, the set of received packets by time t at node i

is {1, . . . , Ri(t)}. Therefore, the network state in slot t is
completely represented by the vector R(t) =

�

Ri(t), i 2 V

�

.
Imposing the in-order packet delivery constraint potentially

reduces the wireless broadcast capacity. It is of interest to
study under what conditions in-order packet delivery can attain
the broadcast capacity �

⇤ of the general policy class ⇧. The
next lemma shows that there exists a cyclic network topology
in which any broadcast policy enforcing the in-order packet
delivery constraint is not throughput optimal.

Lemma 1. Let �⇤
in-order be the broadcast capacity of the policy

subclass ⇧in-order ⇢ ⇧ that enforces in-order packet delivery.
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There exists a network topology with directed cycles such that
�

⇤
in-order < �

⇤.

Proof: See Appendix A.

C. Achieving broadcast capacity of a DAG

In the rest of the paper, we study optimal broadcast algo-
rithms when the network topology is a DAG. For this, we
simplify the upper bound (6) on the broadcast capacity �

⇤ in
Theorem 1 in the case of a DAG. For each receiver node v 6= r,
we consider the proper cut Uv that separates the network from
node v:

Uv = V \ {v}. (7)

Using these cuts {Uv, v 6= r}, we define another upper bound
�DAG on the broadcast capacity �

⇤ as:

�DAG , max

�2conv(S)

min

{Uv,v 6=r}

X

e2EUv

ce �e (8)

� max

�2conv(S)

min

U : a proper cut

X

e2EU

ce �e � �

⇤
,

where the first inequality uses the subset relation {Uv, v 6=
r} ✓ {U : a proper cut} and the second inequality follows
from Theorem 1. In Section IV, we will propose a dynamic
policy that belongs to the policy class ⇧in-order and achieves
any arrival rate that is less than �DAG. Combining this result
with (8), we establish that the broadcast capacity of a DAG is

�

⇤
= �DAG = max

�2conv(S)

min

{Uv,v 6=r}

X

e2EUv

ce �e

= max

�2conv(S)

min

U : a proper cut

X

e2EU

ce �e, (9)

which is achieved by a broadcast policy that uses in-order
packet delivery. In other words, imposing the in-order packet
delivery constraint does not reduce the broadcast capacity
when the network topology is a DAG.

IV. DAG BROADCAST ALGORITHM

We design an optimal broadcast policy for a wireless DAG.
We start with imposing an additional constraint that leads to
a new subclass of policies in which it is possible to describe
the network dynamics by means of relative packet deficits,
i.e., Ri(t) � Rj(t), between nodes i and j. We analyze
the dynamics of the minimum relative packet deficit at each
node j, where the minimization is over all incoming neighbors
of j. The minimum relative deficits play the role of virtual
queues in the system, and we design a control policy that
stabilizes them. The main result of this section is to show that
this control policy achieves the broadcast capacity whenever
the network topology is a DAG.

A. System state by means of packet deficits

We show in Section III-B that, in the policy class ⇧in-order,
the system state is represented by the vector R(t). To simplify
the system dynamics further, we impose another constraint
on ⇧in-order as follows. We say that node i is an in-neighbor

of node j if there exists a directed link (i, j) 2 E in the
underlying graph G.

Constraint 2. A packet p is eligible for transmission to node j

in a slot only if all the in-neighbors of j have received packet
p in previous slots.

We denote this new policy class by ⇧

⇤ ✓ ⇧in-order.2
Fig. 3 shows the relationship between different policy classes
discussed in this paper.

⇧ ⇧

in-order
⇧

⇤
⇡⇤q

⇧: all policies that perform
link activations and routing

⇧

in-order: policies that enforce
in-order packet delivery

⇧

⇤: policies that allow reception
only if all in-neighbors have
received the specific packet

Fig. 3: The relationship between different policy classes.

The following properties of the system states R(t) under a
policy in ⇧

⇤ are useful.

Lemma 2. Let In(j) denote the set of in-neighbors of a node
j in the network. Under any policy ⇡ 2 ⇧

⇤, we have:

(1) Rj(t)  mini2In(j) Ri(t) for all nodes j 6= r.
(2) The collection of packets that are eligible to be received

by a node j 6= r from its in-neighbors in slot t is
�

p | Rj(t) + 1  p  min

i2In(j)
Ri(t)

 

.

We define the packet deficit over a directed link (i, j) 2 E

by Qij(t) = Ri(t) � Rj(t). Under a policy in ⇧

⇤, Qij(t) is
always nonnegative because, by part (1) of Lemma 2, we get

Qij(t) = Ri(t)�Rj(t) � min

k2In(j)
Rk(t)�Rj(t) � 0.

The quantity Qij(t) is the number of packets that have been
received by a node i but not by node j. Intuitively, if all packet
deficits Qij(t) are bounded, then the total number of packets
received by any node is not far from that generated at the
source node r; as a result, the broadcast throughput is equal
to the packet arrival rate.

To analyze the system dynamics under a policy in ⇧

⇤, it is
useful to define the minimum packet deficit at node j by

Xj(t) = min

i2In(j)
Qij(t), 8j 6= r. (10)

From part (2) of Lemma 2, Xj(t) is the maximum number of
packets that node j is allowed to receive from its in-neighbors
in slot t. As an example, Fig. 4 shows that the packet deficits
at node j, as compared to the upstream nodes a, b, and c, are
Qaj(t) = 8, Qbj(t) = 5, and Qcj(t) = 4, respectively. Thus

2If the network contains a directed cycle, then a deadlock may occur under
a policy in ⇧⇤ and yields zero broadcast throughput. This problem does not
arise when the network is a DAG.
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Xj(t) = 4 and node j is only allowed to receive four packets
in slot t due to Constraint 2. We can rewrite Xj(t) as

Xj(t) = Qi⇤t j(t), where i

⇤
t = arg min

i2In(j)
Qij(t), (11)

and the node i

⇤
t is the in-neighbor of node j from which node

j has the smallest packet deficit in slot t; ties are broken
arbitrarily in deciding i

⇤
t .3 Our optimal broadcast policy will

use the minimum packet deficits Xj(t).

a b jc

Ra(t) = 18

Rb(t) = 15 Rc(t) = 14

Rj(t) = 10

Fig. 4: Under a policy ⇡ 2 ⇧

⇤, the set of packets available
for transmission to node j in slot t is {11, 12, 13, 14}, which
are available at all in-neighbors of node j. The in-neighbor of
j inducing the smallest packet deficit is i⇤t = c, and Xj(t) =

min{Qaj(t), Qbj(t), Qcj(t)} = 4.

B. The dynamics of the system variable Xj(t)

We analyze the dynamics of the system variables

Xj(t) = Qi⇤t j(t) = Ri⇤t (t)�Rj(t), (12)

under a policy ⇡ 2 ⇧

⇤. Define the service rate vector µ(t) =
(µij(t))i,j2V by

µij(t) =

(

cij if (i, j) 2 E and the link (i, j) is activated,
0 otherwise.

Equivalently, we may write µij(t) = cijsij(t), and the number
of packets forwarded over a link is constrained by the choice
of the link-activation vector s(t). At node j, the increase in the
value of Rj(t) depends on the identity of the received packets;
in particular, node j must receive distinct packets. Next, we
clarify which packets are to be received by node j.

The number of available packets for reception at node
j is min{Xj(t),

P

k2V µkj(t)}, because: (i) Xj(t) is the
maximum number of packets node j can receive from its in-
neighbors due to Constraint 2; (ii)

P

k2V µkj(t) is the total
incoming transmission rate at node j under a given link-
activation decision. To correctly derive the dynamics of Rj(t),
we consider the following efficiency requirement on policies
in ⇧

⇤:

Constraint 3 (Efficient forwarding). Given a service rate
vector µ(t), node j pulls from the activated incoming links
the following subset of packets
n

p | Rj(t) + 1  p  Rj(t) + min{Xj(t),

X

k2V

µkj(t)}
o

,

(13)

3We note that the minimizer i⇤t is a function of the node j and the time
slot t; we slightly abuse the notation by neglecting j to avoid clutter.

where which packets are pulled over each incoming link are
arbitrary but must satisfy Constraint 1.4

Constraint 3 states that scheduling policies must avoid
forwarding the same packet to a node over two different
incoming links in a slot. Under certain interference models
such as the primary interference model, at most one incoming
link is activated at a node in a slot, and Constraint 3 is
redundant.

In (12), the packet deficit Qi⇤t j(t) increases with Ri⇤t (t)

and decreases as Rj(t) increases, where Ri⇤t (t) and Rj(t) are
both non-decreasing. It follows that we can upper bound the
increase of Qi⇤t j(t) by the total capacity

P

m2V µmi⇤t (t) of
activated incoming links at node i

⇤
t . Also, we can express the

decrease of Qi⇤t j(t) by the exact number of distinct packets
received by node j from its in-neighbors, and it is given by
min{Xj(t),

P

k2V µkj(t)} by Constraint 3. Consequently, the
one-slot evolution of the variable Qi⇤t j(t) is given by5

Qi⇤t j(t+ 1) 
�

Qi⇤t j(t)�
X

k2V

µkj(t)
�

+

+

X

m2V

µmi⇤t (t)


�

Xj(t)�
X

k2V

µkj(t)
�

+

+

X

m2V

µmi⇤t (t),

(14)

where (x)

+

= max(x, 0) and we recall that Xj(t) = Qi⇤t j(t).
It follows that Xj(t) evolves over slot t according to

Xj(t+ 1)

(a)
= min

i2In(j)
Qij(t+ 1)

(b)
 Qi⇤t j(t+ 1)

(c)

�

Xj(t)�
X

k2V

µkj(t)
�

+

+

X

m2V

µmi⇤t (t), (15)

where (a) follows the definition of Xj(t), (b) follows because
node i

⇤
t 2 In(j), and (c) follows from (14). In (15), we abuse

the notation to define
P

m2V µmr(t) = A(t) for the source
node r, where A(t) is the number of exogenous packet arrivals
in slot t.

C. The optimal broadcast policy
Our broadcast policy is designed to keep the minimum

deficits Xj(t) bounded. For this, we regard the variables Xj(t)

as virtual queues that follow the dynamics (15). By performing
drift analysis on the virtual queues Xj(t), we propose the
following max-weight-type broadcast policy that belongs to
the policy subclass ⇧⇤ which enforces Constraints 1, 2, and 3.
We will show that this policy achieves the broadcast capacity
�

⇤ of a wireless network over the general policy class ⇧ when
the underlying network graph is a DAG.

Optimal Broadcast Policy ⇡

⇤ over a Wireless DAG:

In slot t, the algorithm has the input {Rj(t), j 2 V } and
performs the following four steps.

4Due to Constraints 1 and 2, the packets in (13) have been received by all
in-neighbors of node j.

5We emphasize that the node i⇤t is defined in (11), depends on the particular
node j and time t, and may be different from the node i⇤t+1.
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Step 1: For each link (i, j) 2 E, compute the deficit
Qij(t) = Ri(t)�Rj(t) and the set of nodes Kj(t) for which
node j is the deficit minimizer:

Kj(t) =
�

k 2 V | j = arg min

m2In(k)
Qmk(t)

 

. (16)

We note that the ties are broken arbitrarily in finding a deficit
minimizer.

Step 2: Compute Xj(t) = mini2In(j) Qij(t) for j 6= r and
assign to link (i, j) the weight

Wij(t) =
�

Xj(t)�
X

k2Kj(t)

Xk(t)
�

+

, (17)

where Wij(t) is the minimum deficit of node j minus that of
all nodes for which node j is the deficit minimizer. Intuitively,
the term Wij(t) arises because while delivering a packet to
node j decreases Xj(t) by one, it also increases Xk(t) by
one for all nodes for which node j is an in-neighbor and the
deficit minimizer.

Step 3: In slot t, choose the link-activation vector s(t) =
(se(t), e 2 E) such that

s(t) 2 arg max

(se,e2E)2S

X

e2E

ceseWe(t). (18)

Every node j 6= r uses activated incoming links to pull packets
{Rj(t) + 1, . . . , Rj(t) + min{

P

i cijsij(t), Xj(t)}} from its
in-neighbors according to Constraint 3.

Step 4: The vector (Rj(t), j 2 V ) is updated as follows:

Rj(t+ 1) =

(

Rj(t) +A(t), j = r,

Rj(t) + min{
P

i cijsij(t), Xj(t)}, j 6= r,

and Rj(0) = 0 for all j 2 V .

We illustrate the above algorithm in an example in Fig. 5.
The next theorem demonstrates the optimality of the broadcast
policy ⇡

⇤.

Theorem 2. If the underlying network graph G is a DAG, then
for any exogenous packet arrival rate � < �DAG, the broadcast
policy ⇡

⇤ yields

lim

T!1

R

⇡⇤

i (T )

T

= �, 8i 2 V, with probability 1,

where �DAG is the upper bound on the broadcast capacity �

⇤

in the general policy class ⇧, as shown in (8). Consequently,
the broadcast policy ⇡

⇤ achieves the broadcast capacity �

⇤

when the network topology is a DAG.

Proof: See the technical report [13].

D. Number of disjoint spanning trees in a DAG

Theorem 2 provides an interesting combinatorial result that
relates the number of disjoint spanning trees in a DAG to the
in-degrees of its nodes.

Lemma 3. Consider a directed acyclic graph G = (V,E) that
is rooted at a node r, has unit-capacity links, and possibly

r

a b

c

Step 1

Rr(t) = 10

Ra(t) = 3 Rb(t) = 3

Rc(t) = 2

Qra(t) = 7

Qrb(t) = 7

Qrc(t) = 8

Qab(t) = 0

Qac(t) = 1

Qbc(t) = 1

Kr(t) = {a}
Ka(t) = {b, c}⇤

Kb(t) = {;}
Kc(t) = {;}

r

a b

c

Step 2

Xa(t) = 7 Xb(t) = 0

Xc(t) = 1

Wra(t) = (Xa(t) � Xb(t) � Xc(t))
+

= 6

Wrb(t) = (Xb(t))
+

= 0

Wrc(t) = (Xc(t))
+

= 1

Wab(t) = (Xb(t))
+

= 0

Wac(t) = (Xc(t))
+

= 1

Wbc(t) = (Xc(t))
+

= 1

r

a b

c

Step 3

Ra(t) = 3

Rc(t) = 2

s1: Wra(t) + Wbc(t) = 7

s2: Wrb(t) + Wac(t) = 1

s3: Wrc(t) + Wab(t) = 1

Choose the link-activation vector s1
Forward the next packet #4 on (r, a)

Forward the next packet #3 on (b, c)

#4

#3

r

a b

c

Step 4

Rr(t + 1) = 11

Ra(t + 1) = 4 Rb(t + 1) = 3

Rc(t + 1) = 3

One packet arrives at the source

Fig. 5: Running the optimal broadcast policy ⇡⇤ in slot t in a wireless
network with unit-capacity links and under the primary interference
constraint. Step 1: computing the deficits Qij(t) and Kj(t); a tie is
broken in choosing node a as the in-neighbor deficit minimizer for
node c, hence c 2 Ka(t); node b is also a deficit minimizer for node
c. Step 2: computing Xj(t) for j 6= r and Wij(t). Step 3: finding
the link activation vector that is a maximizer in (18), and forwarding
the next in-order packets over activated links. Step 4: a new packet
arrives at the source node r, and new values of {Rr(t+ 1), Ra(t+
1), Rb(t+ 1), Rc(t+ 1)} are updated.

contains parallel edges. The maximum number k

⇤ of disjoint
spanning trees in G is given by

k

⇤
= min

v2V \{r}
din(v)

where din(v) denotes the in-degree of the node v.
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Proof of Lemma 3: See Appendix B.

V. SIMULATION RESULTS

We simulate the optimal broadcast policy ⇡

⇤ in a wireless
DAG network with the primary interference constraint in
Fig. 6; the link capacities are presented as weights on the links.
The broadcast capacity �

⇤ of the network is upper bounded
by the maximum throughput of node c, which is 1 because
at most one of its incoming links can be activated at any
time. To show that the broadcast capacity is indeed �

⇤
= 1,

we consider the three spanning trees {T
1

, T
2

, T
3

} rooted at
the source node r. By finding the optimal time-sharing of all
feasible link activations over a subset of spanning trees using
linear programming, we can show that the maximum broadcast
throughput using only the spanning tree T

1

is 3/4. The
maximum broadcast throughput over the two trees {T

1

, T
2

} is
6/7, and that over all three trees {T

1

, T
2

, T
3

} is 1. Thus, the
upper bound is achieved and the broadcast capacity is �⇤

= 1.
We compare our broadcast policy ⇡

⇤ with the tree-based
policy ⇡tree in [4]. While the policy ⇡tree is originally proposed
to transmit multicast traffic in a wired network by balancing
traffic over multiple trees, we slightly modify the policy ⇡tree
for broadcasting packets over spanning trees in the wireless
setting; link activations are chosen according to the max-
weight procedure. See Fig. 7 for a comparison of the average
delay performance under the policy ⇡

⇤ and the tree-based
policy ⇡tree over different subset of trees. The simulation
duration is 10

5 slots. We observe that the policy ⇡

⇤ achieves
the broadcast capacity �

⇤
= 1 and is throughput optimal.

The broadcast policy ⇡

⇤ does not rely on the limited tree
structures and therefore has the potential to exploit all degrees
of freedom in packet forwarding in the network; such freedom
may lead to better delay performance as compared to the tree-
based policy. To observe this effect, we consider the 10-node
DAG network subject to the primary interference constraint in
Fig. 8. For every pair of node {i, j}, 1  i < j  10, the
network has a directed link from i to j with capacity (10� i).
By induction, we can calculate the number of spanning trees
rooted at the source node 1 to be 9! ⇡ 3.6⇥ 10

5. We choose
five arbitrary spanning trees {Ti, 1  i  5}, over which the
tree-based algorithm ⇡tree is simulated. Table I demonstrates
the superior delay performance of the broadcast policy ⇡

⇤,
as compared to that of the tree-based algorithm ⇡tree over
different subsets of the spanning trees. It also shows that a
tree-based algorithm that does not use enough trees would
result in degraded throughput.

VI. CONCLUSION

We characterize the broadcast capacity of a wireless network
under general interference constraints. When the underlying
network topology is a DAG, we propose a dynamic algorithm
that achieves the wireless broadcast capacity. Our novel design,
based on packet deficits and the in-order packet delivery
constraint, is promising for application to other systems with
packet replicas, such as multicasting and caching systems.
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(a) The wireless network
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a b
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(b) Tree T1
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(c) Tree T2

r

a b

c

(d) Tree T3

Fig. 6: A wireless DAG network and its three embedded spanning
trees.
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Fig. 7: Average delay performance of the optimal broadcast policy
⇡⇤ and the tree-based policy ⇡tree that balances traffic over different
subsets of spanning trees.
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tree-based policy ⇡tree over the spanning trees: broadcast
� T

1

T
1

⇠ T
2

T
1

⇠ T
3

T
1

⇠ T
4

T
1

⇠ T
5

policy ⇡

⇤

0.5 12.90 12.72 13.53 16.14 16.2 11.90
0.9 1.3⇥ 10

4 176.65 106.67 34.33 28.31 12.93
1.9 3.31⇥ 10

4

1.12⇥ 10

4

4.92⇥ 10

3 171.56 95.76 14.67
2.3 3.63⇥ 10

4

1.89⇥ 10

4

1.40⇥ 10

4

1.76⇥ 10

3 143.68 17.35
2.7 3.87⇥ 10

4

2.45⇥ 10

4

2.03⇥ 10

4

1.1⇥ 10

4 1551.3 20.08
3.1 4.03⇥ 10

4

2.86⇥ 10

4

2.51⇥ 10

4

1.78⇥ 10

4 9788.1 50.39

TABLE I: Average delay performance of the tree-based policy ⇡tree over different subsets of spanning trees and the optimal broadcast policy
⇡⇤.
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Fig. 8: The 10-node wireless DAG network and a subset of spanning
trees.

Future work involves the study of cyclic networks, where
optimal policies must be sought in the class ⇧ \⇧in-order.

REFERENCES

[1] A. Karam, L. Zhang, and A. Lakas, “An efficient broadcasting scheme in
support of military ad hoc communications in battle field,” in Innovations
in Information Technology (IIT), 2013 9th International Conference on.
IEEE, 2013, pp. 78–83.

[2] Livestream R�. [Online]. Available: http://new.livestream.com/
[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” Communications Magazine, IEEE, vol. 40, no. 8,
pp. 102–114, Aug 2002.

[4] S. Sarkar and L. Tassiulas, “A framework for routing and congestion
control for multicast information flows,” Information Theory, IEEE
Transactions on, vol. 48, no. 10, pp. 2690–2708, 2002.

[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” Automatic Control, IEEE Transactions on,
vol. 37, no. 12, pp. 1936–1948, 1992.

[6] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[7] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for flood-
ing in wireless mobile ad hoc networks,” in Wireless Communications
and Networking, 2003. WCNC 2003. 2003 IEEE, vol. 2. IEEE, 2003,
pp. 1124–1130.

[8] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless networks, vol. 8, no.
2-3, pp. 153–167, 2002.

[9] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE. IEEE,
2007, pp. 1073–1081.

[10] D. Towsley and A. Twigg, “Rate-optimal decentralized broadcasting: the
wireless case,” in ACITA, 2008.

[11] S. Zhang, M. Chen, Z. Li, and L. Huang, “Optimal distributed broad-
casting with per-neighbor queues in acyclic overlay networks with arbi-
trary underlay capacity constraints,” in Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on. IEEE, 2013, pp. 814–
818.

[12] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with
intra-session network coding,” in In Proc. 43rd Annual Allerton Confer-
ence on Communication, Control, and Computing, 2005.

[13] “Throughput-optimal broadcast on directed acyclic graphs,” http://arxiv.
org/abs/1411.6172, Tech. Rep.

[14] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

[15] R. Rustin, Combinatorial Algorithms. Algorithmics Press, 1973.

APPENDIX

A. Proof of Lemma 1

Consider the cyclic wired network in Fig. 9(a), where all
edges have unit capacity and there is no interference constraint.
Node a has total incoming capacity equal to two; thus, the
broadcast capacity of the network is upper bounded by �

⇤  2.
In fact, the network has two edge-disjoint spanning trees as
shown in Figures 9(b) and 9(c). We can achieve the broadcast
capacity �

⇤
= 2 by routing odd and even packets along the

trees T

1

and T

2

, respectively.
Consider a policy ⇡ 2 ⇧in-order that provides in-order deliv-

ery of packets to all network nodes. Let Ri(t) be the number
of distinct packets received by node i up to time t; node i

receives packets {1, 2, . . . , Ri(t)} by time t due to in-order
packet delivery. Consider the directed cycle a ! b ! c ! a
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r

a b

c
(a) A wired network with
a directed cycle a ! b !
c ! a.

r

a b

c
(b) Tree T1

r

a b

c
(c) Tree T2

Fig. 9: A cyclic wired network and its two edge-disjoint spanning
trees that yield the broadcast capacity �⇤

= 2.

in Fig. 9(a). The necessary condition for all links in the cycle to
forward packets in slot t is Ra(t) > Rb(t) > Rc(t) > Ra(t),
which is infeasible. Thus, there must exist an idle link in the
cycle in every slot. Define the indicator variable xe(t) = 1 if
link e is idle in slot t under policy ⇡, and xe(t) = 0 otherwise.
Since at least one link in the cycle is idle in every slot, we
have

x

(a,b)(t) + x

(b,c)(t) + x

(c,a)(t) � 1.

Taking a time average of the above inequality yields

1

T

T
X

t=1

�

x

(a,b)(t) + x

(b,c)(t) + x

(c,a)(t)
�

� 1.

Taking a lim sup at both sides, we obtain

X

e2{(a,b),(b,c),(c,a)}

lim sup

T!1

1

T

T
X

t=1

xe(t)

� lim sup

T!1

X

e2{(a,b),(b,c),(c,a)}

1

T

T
X

t=1

xe(t)

� 1.

The above inequality implies that

max

e2{(a,b),(b,c),(c,a)}
lim sup

T!1

1

T

T
X

t=1

xe(t) �
1

3

. (19)

Since the nodes {a, b, c} are symmetrically located (i.e., the
graph obtained by permuting the nodes {a, b, c} is isomorphic
to the original graph), without any loss of generality we may
assume that the link e = (a, b) attains the maximum in (19),
i.e.,

lim sup

T!1

1

T

T
X

t=1

x

(a,b)(t) �
1

3

. (20)

Noting that xe(t) = 1 if link e is idle in slot t and that node b

receives packets from nodes r and a, we can upper bound
Rb(T ) by

Rb(T ) 
T
X

t=1

�

1� x

(r,b)(t) + 1� x

(a,b)(t)
�


T
X

t=1

�

2� x

(a,b)(t)
�

.

It follows that

lim inf

T!1

Rb(T )

T

 2� lim sup

T!1

1

T

T
X

t=1

x

(a,b)(t) 
5

3

where the last inequality uses (20). Thus, we have

min

i2V
lim inf

T!1

Ri(T )

T

 lim inf

T!1

Rb(T )

T

 5

3

,

which holds for all policies ⇡ 2 ⇧in-order. Taking the supremum
over the policy class ⇧in-order shows that the broadcast capacity
�

⇤
in-order subject to the in-order packet delivery constraint

satisfies

�

⇤
in-order = sup

⇡2⇧in-order

min

i2V
lim inf

T!1

Ri(T )

T

 5

3

< 2 = �

⇤

Here, we use the more rigorous definition of a broadcast
policy of rate � in (2). Hence the network broadcast capacity
is strictly reduced by in-order packet delivery in the cyclic
network in Fig. 9(a).

B. Proof of Lemma 3

We regard the DAG G as a wired network in which all links
can be activated simultaneously. Theorem 2 and (9) show that
the broadcast capacity of the wired network G is

�

⇤
= �DAG = min

U : a proper cut

X

e2EU

ce (21)

= min

{Uv,v 6=r}

X

e2EUv

ce = min

v2V \{r}
din(v) (22)

where Uv = V \ {v} is the proper cut that separates node v

from the network, EUv is the set of incoming links of node v,
and the last equality follows that the maximizer in (9) is the
all-one vector � = 1 and that all links have unity capacity.
The Edmond’s theorem [15] states that the maximum number
of disjoint spanning trees in the directed graph G is

k

⇤
= min

U : a proper cut

X

e2EU

ce. (23)

Combining (22) and (23) completes the proof.
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